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ABSTRACT
Creating decision support systems to help people coordinate in the
real world is difficult because it requires simultaneously address-
ing planning, scheduling, uncertainty and distribution. Generic
AI approaches produce inadequate solutions because they cannot
leverage the structure of domains and the intuition that end-users
have for solving particular problem instances. We present a gen-
eral approach where end-users can encode their intuition as guid-
ance enabling the system to decompose large distributed problems
into simpler problems that can be solved by traditional centralized
AI techniques. Evaluations in field exercises with real users show
that teams assisted by our multi-agent decision-support system out-
perform teams coordinating using radios.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Real-Time Dynamic Planning and Scheduling, Human-Agent In-
teraction, Human Guidance, Decision Support

1. INTRODUCTION
Teams of people need to coordinate in real-time in many dy-

namic and uncertain domains. Examples include disaster rescue,
hospital triage, and military operations. It is possible to develop
plan a priori, but many parts of these plans must be left unspecified
because people won’t know exactly what needs to be done until
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they are executing the plan in the field. Additionally, requirements
and tasks can evolve during execution.

Our work addresses a fundamental multi-agent systems endeavor
of creating decision support systems that help humans perform bet-
ter in these domains. The technical challenges to compute good
solutions for these problems have been well documented [10, 7, 3].

Established approaches address subsets of the problem, but none
have adequately addressed the full problem. Classical planning
techniques can barely compute the sets of actions that each per-
son should perform for large problems involving metric resources
and cannot cope at all with uncertainty and distribution. Decision-
theoretic planning addresses uncertainty, but performance degrades
with increased distribution and scale. Distributed constraint opti-
mization techniques address distribution, but do not address tem-
poral reasoning, uncertainty or scale.

In practice, it is possible to address specific domains with custom
algorithms that use powerful heuristics to leverage the structures
unique to that domain. These solutions are expensive to create as
even these domains involve planning, uncertainty and distribution.
The goal remains to develop generic approaches that produce good
solutions that help human teams in many domains.

We introduce a new approach, STaC, based on the premise that
people have good intuitions about how to solve problems in each
domain. The idea is to enable users to encode their intuition as
guidance for the system and to use this guidance to vastly simplify
the problems that the system needs to address. The approach is
related to heuristic planning, but differs in two important aspects.
First, the goal is to capture intuition about solving specific instances
of the problem rather than providing heuristics that apply to many
instances in the domain. End-users rather than domain experts or
developers encode heuristics for the system. Second, in STaC, the
intuition is not captured by rules of what actions to take in spe-
cific situations, but rather as a decomposition of the problem into
simpler problems that can be solved independently.

Figure 1 illustrates the approach. The large box P denotes all
problems from multiple domains that can be encoded using a generic
modeling formalism. We used a formalism based on TAEMS [9],
but the approach can be used with any hierarchical task network
formalism. The oval labeled AI represents generic artificial in-
telligence approaches designed to solve all the problems that can
be encoded in P . The solution quality of these generic solvers is
questionable because, as detailed above, the problems present chal-
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Figure 1: The STaC Approach

lenges beyond the capabilities of current techniques.
Inside P , two smaller boxes, D1 and D2, represent two domains

that can be encoded in the given formalism. The STaC oval repre-
sents our generic approach to solving problems in P . To solve a
problem instance, STaC takes two inputs: a model M specific to a
domain, and guidance G specific to the problem instance. The fig-
ure illustrates the inputs for solving problem instances in domains
D1 and D2 with STaC.

The model is defined by software developers, and declares the
capabilities agents possess and the capabilities that relevant actions
in the domain require in order to be performed. These capabilities
define the vocabulary for users to express the guidance that encodes
their intuition about how to solve a particular problem instance.

The key to STaC is using the model and guidance to produce
sufficiently smaller task structures that can be centralized so that a
single agent can determine who does what, when and where with
respect to these significantly simpler task structures. This mitigates
the distribution challenge and enables using auxiliary solvers based
on established AI techniques which produce good solutions at a
smaller scale. These smaller task structures are solved indepen-
dently assuming that the human guidance has addressed any signif-
icant dependencies.

STaC addresses tracking the dynamism in these task structures,
the transitioning of agents assignment between these smaller task
structures and the invocation of auxiliary solvers. Given that the
task structures are treated independently and sufficiently small to
be centralized, we call them sandbox reasoners. The sandbox rea-
soners required in each domain are different, so custom code must
be written for each domain. However, the benefit of the approach
is that sandbox reasoners are significantly simpler than the custom
solvers required to produce a custom solution for a domain.

The rest of the paper is organized as follows. The next sections
introduces the real-world domain where our approach was tested
followed by related work. We then describe the details of the STaC
approach and the particular sandbox reasoners used in our example
domain. We close with evaluation results, conclusions and direc-
tions for future work.

2. FIELD EXERCISES
The field exercises were based on a simulated disaster rescue

domain. The first two exercises were held in the city of Rome,
NY, and the second three were in Stanton Wood Park in Herndon,
VA. Images of the field exercise in Rome, NY are shown in Fig-
ure 2 and a map of the sites and road network of Stanton Wood

Figure 2: Field Exercise Images from Rome, NY

Park are shown in Figure 3. They were organized and evaluated by
independent parties contracted by the DARPA Coordinators pro-
gram. The rules of the field exercise were created collaboratively
by the teams building coordinator agents, the independent evalu-
ation team, and subject matter experts. The specific instances or
scenarios that comprised the test problems were chosen by the in-
dependent evaluation team.

2.1 Sites
Various locations were selected as sites and a feasible road net-

work was constructed. If the site was populated, it could have in-
jured people in either critical and serious condition. Populated sites
would also have gas, power and water substations which may have
been damaged. In addition, any site could have facilities such as a
hospital, clinic, warehouse, gas main station, power main station
and water main station. A team would obtain points by rescuing
injured to hospitals or operational clinics (before a deadline associ-
ated with each injured person) and by repairing main stations and
substations. The goal of a scenario was to accumulate as many
points as possible before the scenario deadline.

2.2 Teams
The teams were composed of 8 field agents and 2 command

agents. Each agent had a different set of skills. Three specialists
in gas, power and water could perform major and minor repairs in
their respective skill area. The medical specialist could load any
type of injured person by themselves. The remaining four survey
specialists could have any collection of skills involving minor re-
pairs. The field agents could move throughout the field exercise
area and perform actions. The command agents were located at a
base where they helped to coordinate the activities of the team. The
Radio Team communicated only with radios. Our CSC Team had
ruggedized tablet computers on which our agents were loaded, in
addition to radios. The tablets had cell modems and GPS.

2.3 Dynamism and Uncertainty
Many outcomes were revealed during the game for which little

or no likelihood information was given a priori, i.e., no probability
distribution functions over outcomes. Teams did know the space of
possible outcomes beforehand. A survey for damage at a main sta-
tion or substation revealed the number and type of problems chosen
from a set of known possible problems. A survey for injured at a
populated site revealed the number, types and deadlines for the in-
jured at that site. As the result of a survey, any team member might
be injured, forcing them to go to an operational medical facility to
recover before proceeding with any other action. A survey could



also reveal that the vehicle of the agent doing the survey had failed
and would require a vehicle repair before the agent could travel to
any other site. While traveling, agents could encounterroad blocks
which could not be passed until fixed. Travel and repair times could
vary and repairs could fail. These dynamic and uncertain events
were planned parts of the exercise. In addition, the teams had to
address uncertainties inherent in the environment, such as noisy
radios, weather, and other activities in the public settings. Further-
more, most of these outcomes were only observable by the agent
encountering the outcome.

2.4 Scenario
The independent evaluation team chose the scenario from the

space of possible exercises and informed the teams of the details be-
low one day prior to the test: (1) the locations of populated sites and
facilities, (2) the road network and ranges on travel times between
sites, (3) a range for the total number of injured at each site, (4) the
points for rescuing each type of injured, which could vary by type
and site, (5) the points for repairing each substation or main station,
which could vary by type and site, (6) potential problems after sur-
veys for damage and corresponding repair options, (7) ranges on
repair times, (8) likelihoods of failure for every repair activity, and
(9) the skills of the survey specialist agents. The deadlines (for the
scenario and injured) did not allow teams to do all possible repairs
and rescues. The teams had one day to form a high-level strat-
egy. The only element of uncertainty which could be modeled ac-
curately with a probability density function was (8). When a team
member completed a repair activity, they would call the evaluation
team, which would report whether the repair was successful or a
failure. The range in (3) was respected by the scenario designers,
i.e., the number of injured did not fall outside the given range.

2.5 Coordination
There were many rules and couplings that forced agents to coor-

dinate. To do surveys, gas and power substations at the site had to
be off, which required agents with those skills. Two agents had to
be at the same location simultaneously to load a critically injured
person or repair a road block. Repair options could involve mul-
tiple tasks and require two agents with certain skills to act in syn-
chrony or in a particular sequence. Some repair options required
kits which guaranteed their success, but kits were available only at
warehouses. Agents could transport at most one entity, i.e, either a
repair kit or a single casualty. A substation was considered repaired
only if the corresponding main station was also repaired. A clinic
was not operational until all substations at the site and all corre-
sponding main stations were repaired. These are examples of rules
that, along with the dynamism and uncertainty in outcomes men-
tioned earlier, created challenging real-time real-world distributed
coordination problems.

The goal was to see if humans operating with radios and a multi-
agent decision-support system could outperform humans operating
with only radios. Although the field exercises still abstracted some
aspects of a real-world disaster scenario, we believe they closely
approximated the challenges of helping a human team solve diffi-
cult real-world problems.

3. RELATED WORK
The STaC framework was developed during the DARPA Coor-

dinators program. In the first two years, DARPA ran competitive
evaluations on simulated scenarios, and CSC, the underlying sys-
tem behind the STaC framework, won such evaluations by consid-
erable margins against two competing approaches: an MDP-based
approach [11] and an STN framework [14].

Figure 3: Stanton Woods Park, Herndon, VA

The MDP-based [11] approach addressed the infeasibility of rea-
soning over the joint state space by setting the circumstance set to
a subset of local state space that is reachable from the current lo-
cal state, unrolling the state space by doing a greedy estimation of
boundary values. It biased its local reward function on the com-
mitments made by the agents during execution. However, such ap-
proximations lose critical information, exploring state spaces that
are far from good distributed solutions.

The STN framework [14] addressed temporal uncertainty by us-
ing a time interval (instead of a point) as the circumstance that de-
noted feasible start times for a method to be executed. The sys-
tem used constraint propagation to update the start intervals of the
agents’ activities during execution. A policy modification phase
was triggered if execution was forced outside the given set of in-
tervals. One of the problems of this approach is that agents tried
to maintain consistency and optimize their local schedules, losing
information that was needed to timely trigger policy modifications
for their schedules.

We encoded scenarios of the field exercise as planning problems
using PDDL [5]. The motivation was to identify to the extent to
which current automated planning technology can address complex
distributed, resource-driven, and uncertain domains. Unfortunately,
this proved to be extremely difficult for state-of-the-art planning
systems. From the set of planning systems tried, only LPG-TD [6],
and SGPLAN [4] solved a few simplified problems, after uncer-
tainty, dynamism, non-determinism, resource-metrics, partial ob-
servability and deadlines were removed. Planners were unable to
scale to more than 5 sites. LPG-TD produced solutions more effi-
ciently but less optimally.

In general, mixed-initiative approaches where humans and soft-
ware collaborate can often produce better solutions for complex
problems. Mixed-initiative planning systems have been developed
where users and software interact to construct plans. Users manip-
ulate plan activities by removing or adding them during execution
while minimizing the changes from a reference schedule [1, 8, 12].
However, most of these systems are centralized, so humans and
systems are fully aware of the entire plan, and of the consequences
of updating it. In our scenario, agents (including humans) have
subjective views of the world, and any decision may trigger many
unknown global effects.

Multi-agent systems for disaster domains have been studied in



the context of adjustable autonomy. The idea is to improve limited
human situational awareness that reduces human effectiveness in
directing agent teams by providing the flexibility to allow for mul-
tiple strategies to be applied. A software prototype, DEFACTO,
was presented and tested on a simulated environment under some
simplifications (e.g., no bandwidth limitations, reliable communi-
cations, omnipresence) [13]. Our work also recognizes the impor-
tance of flexible frameworks to allow better human-agent interac-
tions. The test-bed presented in this paper does not make any major
simplifications, being a first step toward creating multi-agent sys-
tems for real-world problems.

4. THE STaC APPROACH
Our goal is to create a general framework for incorporating hu-

man strategic guidance. We introduce the formalism for STaC guid-
ance and give an example from our domain. We then describe how
this guidance is executed with the use of Total Capability Require-
ment (TCR) sets. We provide an example of a TCR set and discuss
how dynamic updates enable execution of the guidance.

4.1 STaC Guidance
We make the following assumptions about a general multi-agent

coordination problem. There are a set of agents N and a set of ac-
tions A. Agents have capabilities from a set of capabilities: Θn ∈
Θ. Each action is mapped to a capability, i.e., γ : A → Θ. An
agent can perform any action for which it has the capability.

The problem is composed of a collection of tasks T . Each task
t ∈ T is associated with a set of potential actions involved in com-
pleting it: At ⊂ A. It is not necessary that {At} be disjoint. Fur-
thermore, for the purposes of guidance, it is not relevant how these
tasks relate to the actual reward function. It is only important that
the notion of tasks exists.

We can define a generic representation for human strategic guid-
ance as follows. Guidance is an ordered set of guidance groups:
G = {Gi}. Each guidance group Gi is associated with a subteam
of agents Si ⊂ N and an ordered set of guidance elements Ei.
Each guidance element ej

i ∈ Ei is composed of a task tj
i ∈ Ti, a

set of constraints Cj
i , and a temporal bound bj

i . The constraints Cj
i

are a collection of capability-number pairs {(θ, nθ)} where θ ∈ Θ
and nθ ∈ Z∗ is a non-negative integer. The pair (θ, nθ) indicates
that each agent in the subteam can use the capability θ at most
nθ times for the task in the guidance element. The temporal bound
bj
i ∈ {0}∪{<, >}×R+ is another constraint that can indicate that

the guidance element is only valid if the time remaining is greater or
less than some number (bj

i = 0 indicates no temporal constraint).
Thus,

G = {Gi} = {(Si, Ei)} = {(Si, {(tj
i , C

j
i , bj

i )})}
= {(Si, {(tj

i , {(θ
j,k
i , n

θ
j,k
i

)}, bj
i )})}.

We refer to this as the STaC (Subteam-Task-Constraints) formalism
for strategic guidance. One can now define a strategy composed of
a sequence of subteams, each responsible for a collection of tasks,
each of which are to be performed under some constraints. We
note that since agents will traverse the elements of this guidance in
order, STaCs are actually queues.

4.1.1 Field Exercise Example
We first defined a set of capabilities that were relevant to the field

exercise. We also associated each capability with several capability
classes for more compact expression of constraints. Below are the
set of capabilities and associated classes for actions involving gas

and injured, respectively. Capabilities and classes for power and
water are analogous to those for gas.

gas_major: gas, gas_main
gas_minor: gas, gas_main
survey_gas_main: gas, gas_main, survey
survey_gas_sub: gas, survey
turn_off_gas_main: gas, gas_main, turnoffs
turn_off_gas_sub: gas, turnoffs
pickup_gas_kit: gas, pickup
dropoff_gas_kit: gas, dropoff

load_critical: critical, injured
assist_load_critical: critical, injured
survey_injured: injured, survey
generic: injured

Consider the STaC guidance fragment below. We see an or-
dered set of guidance groups, each with a subteam of agents and
an ordered set of guidance elements. The only() operator sets the
capability-number pairs for all capabilities not in the argument to
zero. The no() operator sets the capability-number pairs for all ca-
pabilities in the argument to zero. The intent of this plan fragment
is for the survey specialist to turn off services at the substations at
Site 4 and Site 3, enabling other agents to work there. The gas and
survey specialists go to the warehouse at Site 6, pick up gas kits,
then restore the gas main station and gas substation at Site 1. The
medical specialist and survey specialist are responsible for making
sure they each rescue two critically injured people before rescuing
all others. The gas and power specialist are then responsible for do-
ing everything except water-related actions at Site 4, but if less than
10 minutes are left in the scenario, they switch to rescuing injured.

survey_specialist_1:
( task_site_04, [ only( turnoffs ) ], 0);
( task_site_03, [ only( turnoffs ) ], 0);

gas_specialist, survey_specialist_1:
( task_site_06, [ only( pickup_gas_kit ) ], 0),
( task_site_01, [ only( gas ) ], 0);

survey_specialist_1, medical_specialist:
( task_site_04, [ (load_critical, 2) ],0),
( task_site_04, [ only( injured ) ],0);

gas_specialist, power_specialist:
( task_site_03, [ no(water) ], >10),
( task_site_03, [ only( injured ) ], 0);

Here, the tasks chosen for each guidance element are all those as-
sociated with a particular site. This is not a requirement in the guid-
ance formalism. For example, the second guidance group could
have also been:

gas_specialist, survey_specialist_1:
( task_site_06, [ only( pickup_gas_kit ) ], 0),
( task_gas_main, [ ], 0),
( task_gas_substation_site_01, [ ], 0);

This would have specified a fixed ordering between repairing the
main station and the substation which did not exist in the original.
The expression of guidance is not necessarily unique and can be
tailored to the intuition and structure that the designer finds most
appropriate.

4.2 STaC Execution
While STaC guidance is compact and has intuitive meaning for

a human, the agents have no semantic awareness of what it signi-
fies beyond identifying tasks and limiting actions. This is due to
the generality of the formalism. Furthermore, the guidance does
not specify which actions to perform, which agents should perform
them, the timing of these actions or how to react to any dynamism
and uncertainty during execution. We address those challenges
here.



4.2.1 Total Capability Requirement (TCR) Sets
Given the STaC formalism, one of the key decisions that every

agent must make is when to transition from one task to another.
A simple solution is to wait until the current guidance element is
completed and then move to the next guidance element (which may
involve going to the next relevant guidance group). This approach
would lead to significant waste if the agent were unable to con-
tribute to the current guidance element.

Consider the example shown in Section 4.1.1. If the gas special-
ist arrives at Site 1 first and discovers that all the repair options for
the gas main station and gas substation can be completed by the gas
specialist alone, or that there exists repair options for both the main
station and the substation that can be performed by the gas special-
ist alone and are guaranteed to succeed, the gas capabilities of the
survey specialist are not needed. It may make sense for the sur-
vey specialist to skip Site 1 and head to Site 4 to help the medical
specialist rescue injured, even though the repairs at Site 1 have not
been completed. It is important to determine dynamically whether
the capabilities of each agent in the subteam are needed for the task
being executed in the guidance element.

Total Capability Requirement (TCR) sets are a mechanism to
achieve this. For every task t ∈ T , there is an associated TCR
set Rt = {Rt

i}, which is a set of requirements. Each requirement
Rt

i = (nt
i, Q

t
i) is a tuple of a requirement number nt

i and require-
ment type Qt

i . A requirement type Qt
i = {qt

i,j} is a collection of
requirement elements, where each requirement element is a tuple
qt

i,j = (ct
i,j , l

t
i,j , n

t
i,j) where ct

i,j is a capability, lti,j is a location,
and nt

i,j is an element number. Thus, Rt = {Rt
i} = {(nt

i, Q
t
i)} =

{(nt
i, {qt

i,j})} = {(nt
i, {(ct

i,j , l
t
i,j , n

t
i,j)})}.

2:[(gas_minor, site_01, 1)]
1:[(gas_minor, site_01, 2)]
4:[(assist_load_critical, site_01, 2)]
1:[(power_minor, site_01, 1) (power_minor, site_03, 1)]

Consider the example above which is a possible TCR set for
task_site_01. This indicates that there are two instances of the
need for a single agent with gas minor capability, one instance of
a need for two agents with gas minor capability, four instances of
a need for two agents capable of loading a critically injured person
and one instance of a need for having an agent with power minor ca-
pability at Site 1 at the same time that there is an agent with power
minor capability at Site 3. The first requirement could occur be-
cause the gas main station has two problems, each of which could
be solved with a gas minor repair. The second requirement could
occur because the gas substation has one problem that requires two
agents with gas minor skills to perform a synchronized repair. The
third requirement could be due to the discovery of four critically
injured people. The fourth requirement represents the need for re-
mote synchronization: the need for two agents at two different loca-
tions at the same time. In the field exercise, some power substations
required an agent at the substation and another at the main station
simultaneously to turn the power substation on.

If the guidance element was:
( task_site_01, [ only( gas ) ], 0 )

then only the first two requirements involving the gas minor capa-
bility would be considered when deciding whether an agent should
remain committed or released from the task. The TCR sets are
dynamically updated such that once a skill is no longer needed, as
repairs are completed or injured are loaded, the appropriate require-
ments are decremented or deleted.

4.2.2 Calculating TCR Sets

Figure 4: Model Template for Power Substation

Our calculation of TCR sets can best be described in the context
of our modeling specification for the field exercise scenarios. We
used a hierarchical task network structure that was an extension of
CTAEMS [2], which is itself a variant of TAEMS [9] developed for
the DARPA Coordinators Phase 2 evaluation. The essential prop-
erty was that tasks (including the root task which represented the
overall reward function) were composed of subtasks iteratively un-
til reaching a primitive task which was composed of actions. Tasks
could also have non-hereditary relationships such as enablement
and disablement. Every task was also associated with state aggre-
gation functions that determined how the state of its subtasks (or
child actions) affected the state of the task. An example of a tem-
plate used to model power substations is shown in Figure 4. This
also illustrates the issue of dynamism as the task node for Prob-
lems must remain without children until the power substation is
surveyed for damage. Then, the appropriate problems and repair
options are added dynamically to the model. It would be cumber-
some and practically infeasible to express every possible combina-
tion of problems and repair options that could occur. The issues are
similar when it comes to modeling the discovery of injured people.

The TCR set for a given task is calculated by applying a TCR ag-
gregation function, chosen based on the state aggregation function
associated with the task, to the TCR sets of its subtasks and en-
abling tasks. For example, a sum state aggregation function would
correspond to a union TCR aggregation function, and a sync state
aggregation function would correspond to a cross-product TCR ag-
gregation function. Thus, TCR sets would start from actions, which
are each associated capability and flow forward and up through en-
ablement and ancestral links to form TCR sets for every task. These
sets can be dynamically updated as tasks change states.

For example, once a task is completed, the TCR set can be set to
null indicating that it does not require any more capabilities. This
makes the TCR sets vanish as tasks are completed, allowing agents
to be released as soon as possible. In order to address the dynamic
nature of the model, tasks that might be expanded during execu-
tion must be marked with TCR sets that indicate reasonable upper
bounds on needed capabilities. These sets are then changed to the
actual TCR sets once outcomes has been observed in the environ-
ment. Having an HTN-based model helps to construct and manage
TCR sets, but is not necessary. As long as there exists a non-cyclic
mapping that describes the relationships of tasks to other tasks and
actions, a dynamic methodology to assign TCR sets to tasks can be
constructed.

4.3 Partial Centralization
STaC execution can be implemented such that a single agent is

responsible for choosing all actions involved with a single task-
constraint tuple of a guidance element. We create a mapping, ω :
T → N , where every task has an owner. The task owner con-
tacts agents who are responsible for related tasks and actions to



subscribe to relevant state updates. When an agent reaches a par-
ticular task-constraint tuple, it cedes autonomy to the owner of that
task until the task owner releases the agent from that commitment.
The owner agent keeps track of the set of capabilities of all agents
bound to that task as well as the TCR set of that tasks and repeatedly
solves an optimization problem to find the best set of agents to keep
for the current TCR set. If the solution is a set that is a strict subset
of the bound agents, it can release the other agents. Our optimiza-
tion problem minimized a weighted combination of the number of
agents kept and their capabilities. The key insight here is that par-
tial centralization of autonomy always occurs implicitly and thus,
it is beneficial to align the metric for partial centralization with the
properties of the domain where it matters.

5. SANDBOX REASONING
Once the task owner has chosen which set of agents to keep, it

must then also decide, subject to the constraints in the guidance,
which actions to perform and which agents should perform to ac-
complish the task. We call this process sandbox reasoning because
the task owner’s deliberation over what to do for a single task-
constraint tuple is isolated from all actions and tasks that are not
related to the task at hand. The task owner does not need to con-
sider impact on the future or on concurrently executing tasks. It
is given a collection of agents and autonomy to use them however
it sees fit to accomplish the task as well as possible. The conse-
quences of the interactions have, in principle, been considered and
addressed by human strategic guidance.

In creating the agent model for a field exercise scenario, we
instantiated structure (sometimes, dynamically during execution)
from a small set of templates. Examples include power substa-
tion restoration (as shown in Figure 4) or critically injured rescue.
Similarly, the tasks in the guidance were also be a subset of tasks
that make intuitive sense to the strategy designer. In our case, the
task types involved in guidance were far fewer than the templates
involved in model generation. We believe that the notion of us-
ing templates for generation and more significantly for guidance is
a general principle that is applicable to many domains. This be-
lief was also reflected in the DARPA Coordinators program and its
Phase 2 evaluation. The main templates needed for guidance were
a repair and rescue manager. We discuss the automated reasoners
in these managers below.

5.1 Repair Manager
The repair manager would take as input (1) a collection of facil-

ities that had been damaged, (2) a set of problems for each facility,
(3) a set of repair options for each problem, (4) set of agents with
(5) associated capabilities and (6) times that they would be avail-
able to be scheduled for activities, The output would be a policy
that yielded a collection of agent-action tuples given a simplified
version of the state. While this may seem field-exercise specific,
this reasoner had no semantic knowledge of the field exercise.

The problem was generalized as follows: Given a set of tasks
{Ti}, where each task is a conjunction of a set of problems, Ti =
min({Pj}), each problem is a disjunction of repairs, Pj = max({Rk}),
and each repair is a function of actions, Rk = �({al}) where
� ∈ {sync, sequence, min} is a collection of operators that re-
quire the elements to have synchronized start times, sequential ex-
ecution, or conjunctive success in order for the repair to succeed,
respectively. Each action is associated with a capability, expected
duration, and probability of failure. We also have a set of agents
where each have an associated set of capabilities and an availabil-
ity time. This is a straightforward optimization given an appropri-
ate objective function.

We needed a fast solution (less than five seconds) because users
needed guidance from the solver after performing a survey. Our
solution to was to build a policy based on a simplified represen-
tation of state. The state vector is indexed by all possible actions
and takes values from the set {NotStarted, Succeeded, Failed}.
The policy output given for a state is a set of agent-action pairs.

The policy is constructed by running simulation traces of the op-
timization problem. At every time step in the simulation, if there
are idle agents and no action-agent tuples for the current state in
the policy, the agents are randomly assigned to an action they can
perform and marked busy for the expected duration. These assign-
ments are then associated with the state of the simulation where ex-
ecuting actions are interpreted to have succeeded. The outcomes of
the actions in the simulation are determined using the given proba-
bility of failure. Multiple simulation runs are used to build a single
policy which receives a score based on the average idle time of all
agents. Multiple policies are generated using the same mechanism
and the policy with the best score is stored. To execute the policy,
the task owner maps the current state of the actions to the policy
state by mapping executing actions to Succeeded and schedule the
associated action-agent tuples as the next action for the agent. If
there is no agent-action tuple for the translated state or if any of the
input parameters (e.g. availability times, new tasks) change, policy
generation restarts from scratch. While this is a simple stochas-
tic sampling approach, it produces reasonable policies with very
limited computation requirements. Policy generation was typically
bounded to five seconds. Also, while the potential state space is
exponential in the number of actions, typical policies had at most
about 200 states.

The key idea is that we could create a sandbox reasoner that can
solve a generic context-independent problem which could be ap-
plied to many tasks in the guidance. One could, in theory, use an
MDP or STN-based approach if it yielded a solution within the lim-
its of bounded rationality in the domain at hand.

5.2 Rescue Manager
The rescue manager would similarly take as input a list of agents

and a set of injured with associated types and deadlines, and out-
put a set of agent-action pairs when agents became idle. We used
a simple reactive planner with a handful of simple heuristics to de-
termine when to wait for an agent to help load a critically injured
(which requires two agents to be present simultaneously) and when
to take a serious (which could be done by one agent). This also
can be formulated as a generic problem consisting of a set of tasks
with associated deadlines and durations and the tasks can be either
a singleton action or require synchronized actions by two different
agents. The rules were variations of: “If an agent is on the way and
it will arrive later than the duration of the singleton action, perform
the singleton action and return to the site, otherwise, wait for the
agent.” The variations were due to the constraints placed on the
rescue task and the number of agents available to do the rescues.

The general philosophy of the STaC approach to guidance, its ex-
ecution and sandbox reasoning is to create a generic framework for
human strategic input to decompose a very difficult problem into
smaller problems that can be solved in isolation with automated
tools created to solve large classes of task structures that appear in
the guidance. Our system was completely unaware of any seman-
tics of the field exercise, and a similar approach could be used in a
completely different domain.

6. EVALUATION
Figure 5 shows the scores for the three scenarios run in Herndon.

For each scenario, the top, lighter bar shows the radio-team score,



Figure 5: Herndon Evaluation

and the bottom, darker bar shows the score of the team using the
CSC system described in this paper. The middle bar shows the
results of a simulation of the scenario using a baseline version of
the system with simple sandbox reasoners. In order to calibrate
the simulation scores, we also ran a simulation of the complete
version of the system using the same dice rolls used in the physical
scenario. The simulation results for the full system were within 200
points of the results obtained in the field, which suggests that if the
baseline system had been used in the field, the results would also
be close to those shown in the figure.

In the baseline version, the repair manager uses a random strat-
egy where agents randomly select a repair task to perform from the
set of tasks that the agent is eligible to perform according to its
capabilities. The baseline rescue manager uses a greedy strategy
where agents select the injured with the earliest deadline that lives
long enough to arrive to the medical facility before the deadline.
In the baseline rescue manager, agents don’t wait for a partner that
enables loading a critically injured that they would not be eligible
to load otherwise.

The results show that more sophisticated sandbox reasoners al-
ways resulted in better scores: 5.8%, 8.4% and 24.8% improve-
ments. The differences in scenarios 1 and 2 were small, and in those
scenarios the baseline system also outperformed the radio team. In
scenario 3, the difference is more significant. This scenario empha-
sized injured, and the greedy strategy used in the simple version
of the system delayed rescuing the critically injured. Agents res-
cue seriously injured with later deadlines instead of waiting for a
partner to rescue a more valuable critically injured with an earlier
deadline.

Figure 6 shows simulation results that compare the effects of al-
ternative strategies. We organized these strategies along two di-
mensions: the number of clinics that would be made operational
(0, 1 and 2), and the number of independent subteams (1, 2 and
4). In the strategies with 1 clinic, the team repaired the clinic that
was considered most useful (closest to the most valuable injured).
In the scenarios with 2 and 4 teams, we specified the teams so that
they could perform repairs independently. In the strategies with
0 clinics, the teams performed no repairs and rescued injured to
a medical facility that was always operational and required no re-
pairs. In the strategies with 1 and 2 clinics, the agents first repair
the main stations, then the clinics and then visit the remaining sites
to rescue all injured and perform all repairs according to the fol-
lowing algorithm. First, the sites are ordered according to the total
expected number of points achievable at the site. The teams take
turns picking the next most valuable site from the ordered list until
the list is exhausted. The idea is to complete the most valuable sites
first so that when time runs out the most valuable sites have been

completed.
Figure 6 shows that in the Herndon 1 and 2 scenarios, the strate-

gies that repair 1 or 2 clinics are competitive with the radio team,
outscoring them in 11 out of the 12 strategies involved. However,
in all three scenarios, the CSC strategy used in the field was sig-
nificantly better than all the alternative strategies. The difference is
due mainly to the use of constraints. In the alternative strategies,
the agents performed all tasks at a site, whereas the strategies used
in the field used constraints to prevent agents from performing tasks
that we deemed not worthwhile. In addition, we used constraints
on the number of injured rescued to prevent agents from rescuing
all injured at a site before moving to the next site. Instead, we used
longer itineraries that visited sites multiple times in a round-robin,
so agents would rescue the most urgent injured first.

7. CONCLUSIONS AND FUTURE WORK
Our 18-month experience working on a system to compete against

radio teams in the field exercises provided significant evidence for
the benefits of our approach. Our starting point was our generic
CSC system developed during the previous two years to solve generic,
synthetically generated problem instances specified in CTAEMS.
Even though the synthetically generated problem instances were
generated according to templates that combined “typical” coordi-
nation situations, the resulting problems were not understandable
by humans. In contrast, the field exercise problems are natural, and
appeal to our lifetime of experience coordinating every day activi-
ties. Intuitions about space, distance, time, importance and risk all
came into play, enabling teams of humans to devise a sophisticated
strategy within one hour of brainstorming. It became obvious early
on that the generic CSC system would not be able to produce solu-
tions comparable to the desired sophisticated, coordinated behavior
of human-produced strategies.

Our existing system had performed extremely well in Phase 2 by
using our Predictability and Criticality Metrics (PCM) approach.
In the PCM approach, the policy modifications that agents consider
are limited to those that can be evaluated accurately through criti-
cality metrics that capture global information. These policy modifi-
cations were simple and thus the reasoners that implemented them
were simple too.

For the field exercises, we extended our approach so that policy
modifications would be constrained using the guidance provided
by the users. This guidance was in the form of a sequence of sites
to visit. The system was left to make decisions that we believed
it could evaluate accurately (e.g., how to perform repairs or rescue
injured at a single site). The system relied on the TCR set criticality
metric to determine how to move agents along the list of guidance
elements. The approach worked well. Our users outperformed the
radio team because they were able to communicate their strategy to
their agents, and the system optimized the execution of the strategy,
adapting it to the dynamics of the environment.

The field exercises in Rome, NY used a simpler language for
specifying guidance. It had a single guidance group consisting of
the entire set of agents. Also, it did not support constraints to con-
trol the capabilities within a guidance element. In that evaluation,
our system remained competitive with the radio team, but lost in
two out of the three scenarios. The final language for guidance was
inspired by our observations of the radio-team strategies, extensive
discussions with subject matter experts and extensive numbers of
simulations. We noted that while the human team could not exe-
cute a strategy as well as we could, the space of strategies that they
were able to engage were far more sophisticated than ours. This led
to the creation of a the more sophisticated formalism for capturing
human strategic guidance.



Figure 6: Baselines

We have taken the first step towards generic coordination tech-
nology that end-users can tailor to specific problem instances. The
approach was validated in one domain thanks to the extensive and
expensive evaluations carried out by the DARPA Coordinators pro-
gram. In the future, we hope to be able to apply this approach to
other application domains. One key area that needs to be inves-
tigated is extensions to allow human users to make guidance ad-
justments during execution. There are situations where a series of
outcomes either invalidates an assumption when creating the a pri-
ori guidance or creates an opportunity to improve on that guidance.
Addressing this requires the ability for human users to quickly and
easily understand and modify the guidance while it is being exe-
cuted. Even more advanced steps would be evaluating and ulti-
mately generating appropriate online guidance modifications.
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