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Abstract—Many people involved in malicious cyber activity
rely on online environments to improve their hacking skills
and capabilities, among which, darkweb marketplaces are one
of the most prevalent. Vendors advertise and sell their wares
worldwide on those markets, generating communities of like-
minded individuals focused on sub fields of hacking. As there is
no direct communication between vendors in these environments,
identifying the communities formed by them becomes challeng-
ing; especially with the absence of ground truth knowledge to
validate the results. In this paper, we develop a method based on
Machine Learning and Social Network Analysis (SNA) to identify
and validate communities of malware and exploit vendors, using
product offerings in 20 different marketplaces on the darkweb. To
validate the viability of our approach, we cross-validate the com-
munity assignments of common individuals selling their products
on two mutually exclusive sets of marketplaces, demonstrating
how the multiplexity of social ties can be used to detect and
validate communities of malware and exploit vendors.

I. INTRODUCTION

Recently, darkweb sites have become the main venue for

online purchasing of malicious hacking products and services

by cyber criminals. An example that illustrates this fact is

given by Nunes et. al in [1]. An exploit targeting Microsoft

Windows operation system was for sale on a darkweb market

in March 2015. The vulnerability was disclosed by Microsoft

a month earlier, with no publicly available exploit at that time.

Four months after the availability of the exploit, FireEye1

reported that the Dyre banking Trojan, designed to target

organizations to steal credit card information, used the exploit.

In this context, consider the importance of finding communi-

ties of vendors with similar hacking expertise for surveillance

purposes. Many vendors possibly linked to the Dyre Banking

Trojan, could be automatically identified if at least one of them

had been already confirmed as offering the exploit online. In

more complex scenarios, those communities might correspond

to sets of individuals dealing with similar products or services

in multiples sub fields of hacking simultaneously, such as card-

ing, phishing and keyloggers. Therefore, identifying malicious

hacking vendors’ communities may reveal patterns about the

structure, organization, operation, and information flow of their

corresponding networks, helping intelligence agencies target

critical communities for removal or surveillance [2]

In this paper, we explore a new method based on social

network analysis and machine learning techniques to identify

1A major cybersecurity firm.

and validate communities of malware and exploit vendors on

darkweb marketplaces. We collect information about hacking-

related product offerings in 20 different markets, from where

we produce a similarity matrix of the vendors. To create

this matrix, we leverage unsupervised learning to cluster the

vendors’ products into 34 hacking categories according to [3].

Then, we quantify the similarity between vendors analyz-

ing the number of product categories shared between them

and also the number of products they have in each product

category. Finally, as a way to address the lack of ground truth

(the existing communities), we split the marketplaces into two

disjoint sets, in order to detect the community overlapping

between them. We believe the multiplexity of social ties [4],

which makes individuals interact in multiple domains, can help

us to validate a considerable part of the mined communities.

This paper makes the following main contributions: 1)

We cluster around 40,000 hacking-related products gathered

in [1] using 34 product categories specified in [3]; 2) We

calculate the similarity of malicious hacking vendors using

four different metrics, based on their shared product categories

and their corresponding number of products, to infer the

implicit connections between them; 3) We perform community

finding to detect the communities of hacking-related vendors

in two disjoint sets of marketplaces, validating our results

by checking the overlapping between them. We found the

ARI score achieves 0.445 using our method, while randomly

assigning individuals to communities yields an ARI of -0.006.

II. DATASET OF DARKWEB MARKETPLACES

In this work, we collect data provided by a commercial

version of the system described in [1], from where we select 20

popular English hacking-related marketplaces on the darkweb
2. Table I shows the size of our original dataset, including

number of markets, products and vendors.

TABLE I
SCRAPED DATA FROM DARKWEB MARKETPLACES.

Original Filtered
Marketplaces 20 Marketplaces 20
Products (Total) 74,200 Products (Total) 40,610
Products (Distinct) 51,902 Products (Distinct) 27,581
Vendors 7,055 Vendors 390

2Collection of websites that exist on encrypted networks of deepweb. It is
a region that is intentionally and securely hidden from view, being not found
by traditional search engines and not visited by traditional browsers [5].
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Fig. 1. System overview. (a) Creating the bipartite network of Vendors X Products, (b) Clustering the products in product categories, (c) Splitting the
marketplaces into two disjoint sets (green and blue), (d) Creating a bipartite network of Vendors X Product Categories for each set of markets, (e) Projecting
the bipartite networks (Vendors X Products Categories) to monopartite networks (Vendors X Vendors) for each set of markets, (f) Finding the communities
of vendors in each set of markets, (g) Calculating the community overlapping between the two set of markets.

III. METHODOLOGY

This section explains the steps of our approach designed to

address the community finding of malicious hacking-related

vendors. Figure 1 illustrates the system overview.

A. Creating the Bipartite Network of Vendors X Products

The first step of our approach consists of collecting the

malicious hacking products offered by each vendor on the

marketplaces to generate a bipartite network of vendors and

their corresponding products. Therefore, the nodes of this

bipartite graph are formed by vendors and products, while

the edges are created only between these two type of nodes.

We apply string-match over the vendors’ screen-name and

products’ names to uniquely identify them in this paper 3.

As our community finding method uses duplicated vendors

in different set of marketplaces to validate the results, we filter

our dataset considering only vendors present in at least two

markets, and naturally, their corresponding products. Table I

shows the size of the filtered dataset. Using this filtered dataset,

we generate a bipartite graph considering the vendors and

distinct products as two disjoint sets of nodes, and the total

number of products as the connecting edges.

B. Clustering the Products in Product Categories

As we collect data from different sites, there is inconsistency

as to how products are categorized on each site - if such non-

trivial categorization even exists for a given site. Furthermore,

there is a clear absence of a standardized method for vendors

to register their products. As a consequence, the majority of

the products are unique when compared with simple matching

or regular expression technique (we observe that around 70%

of the distinct products belong to single vendors).

In order to mitigate this inconsistency, we cluster the

products in 34 hacking categories according to [3]. The idea is

to make the vendors share more information, assigning similar

products to the same product category. This strategy allows

us to generate a more precise matrix of vendors similarity,

using their shared product categories and the corresponding

products. Following the approach in [3], we apply character

n-grams in range 3 to 6 over the product names, to engineer

features that represent products as vectors. Then, we value

all features using TF-IDF, after eliminating stopping words

and executing steaming. Finally, we run K-Means using cosine

3 We leave other methods of similarity-based comparison to future work.

similarity as the distance function (spherical K-Means [6]) in

the entire dataset (27,581 distinct products) - to produce the 34

product categories detailed in [3]. The top 5 ones with respect

to the number of products are: Netflix-related, Viruses/Counter

AntiVirus, VPN, Keyloggers and Linux-related, with 3786,

3216, 3064, 2662, 1875 products respectively.

C. Splitting the Marketplaces into Two Disjoint Sets

In this work, we split our dataset into two disjoint partitions

of marketplaces. We use an optimization process to produce

a division that maximizes the redundancy of vendors, so

that we can verify if the duplicated individuals form similar

communities in both partitions. Table II presents the results of

the data split algorithm, showing that we found 329 duplicated

vendors in our two disjoint sets of markets.

TABLE II
RESULTS OF THE SPLIT OF MARKETPLACES.

Set1 Set2
Number of Markets 10 10

Number of Products 13,486 27,124

Number of Vendors 345 374

Number of Duplicated Vendors in Both Sets of Markets 329

D. Bipartite Networks of Vendors X Product Categories

At this point, we are able to connect the vendors to their

product categories in a bipartite graph, allowing us to check

which product categories are shared between them. Figure 2

illustrates this process with a subset of the graph within Set1.

Fig. 2. Sample of the network of vendors, products and product categories
(a). Projection of the network of (a) in a network of vendors and product
categories (b). Projection of the network of (b) in a network of vendors (c).

In panel (a), we see the vendors connected to their products,

which in turn are connected to their product categories. In

panel (b), we plot the same graph without the products to better

visualize the shared product categories between the vendors.

Vendors who were previously disconnected from others (note

the 9 disconnected components highlighted in panel (a), since

the vendors only own exclusive products) are now connected
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TABLE III
SIMILARITY METRICS.

Metric Formula

Jaccard [8] J(Vi, Vj) =
M11

M01+M10+M11
, where Vi and Vj are two binary vectors corresponding to the assignment of existing product categories

for vendors i and j, M11 represents the number of product categories where Vi and Vj both have a value of 1, M01 represents

the number of product categories where the product category of Vi is 0 and the product category of Vj is 1, and M10 represents the

number of product categories where the product category of Vi is 1 and the product category of Vj is 0.

Cosine [8] Cos(Vi, Vj) =
Vi•Vj

‖Vi‖‖Vj‖ , where Vi and Vj are two non binary vectors corresponding to the assignment of the total number of produ-

cts within each existing product categories that belong to vendors i and j.

Correlation [8] Corr(Vi, Vj) =
cov(Vi,Vj)

σ(Vi)
∗σ(Vj)

, where Vi and Vj are two binary vectors corresponding to the total number of products within each exis-

existing product categories that belong to vendors i and j, cov(Vi, Vj) is the covariance of Vi and Vj , and σ(Vi)
is the

standard deviation of Vi.

Tanimoto [8] T (Vi, Vj) =
Vi•Vj

‖Vi‖2‖Vj‖2−Vi•Vj
, where Vi and Vj are two non binary vectors corresponding to the assignment of the total number of

products within each existing product categories that belong to vendors i and j.

using the shared product categories in panel (b). We observe

the majority of vendors (≈ 63%) are assigned to more than one

product category in both sets of markets. This increases the

probability of creating new connections in the graph, although

vendors assigned to only one product category are also in most

cases sharing it with other individuals.

E. Projecting Bipartite Networks (Vendors X Product Cate-
gories) to Monopartite Networks (Vendors X Vendors)

Our challenge here is to project the bipartite graphs (Ven-

dors X Product Categories) in monopartite graphs (Vendors

X Vendors). This step is crucial for this paper, since the

algorithms we use to find the communities of vendors are

designed to work with networks with only one type of node,

and not to work with multimodal networks [7].

To accomplish this task, we create a similarity matrix

between vendors using two pieces of information: their product

categories and their corresponding products. The former infor-

mation basically creates a binary matrix connecting vendors

and product categories, where “1” means the vendor has a

least one product in the corresponding product category, and

“0” otherwise. The later information adds magnitude to the

product categories owned by vendors, including the number

of products vendors have within each product category. We

use both information to create a similarity matrix between

vendors, considering an edge between two specific individuals

if the corresponding similarity (weight) is greater than a given

threshold δ. To calculate this weight, we use four different

similarity metrics according to Table III.

The idea of calculating those similarity metrics is to use

them to weight the edges of our graphs, since those weights

should represent the level of similarity between vendors. We

rely on the assumption that vendors with a high similarity

based on their product offerings will form a community of

interests in the real world. Figure 2 illustrates this projection

process of a bipartite network of vendors and product cate-

gories - panel (b) - to a monopartite network of vendors -

panel (c). Now, it is possible see in panel (c) that vendors are

directed connected to each others in a weighed graph.

F. Finding the Communities of Vendors

After producing the network of vendors, we search for

their potential communities in both sets of marketplaces. For

this task, we use the Louvain heuristic method of community

detection [7], which optimizes the modularity objective func-

tion [9] 4 to uncover a non-overlapping community network

structure. Figure 3 shows the produced communities and

inform the modularity Q found in Set1 (0.579) and in the Set2
(0.514) using Jaccard similarity metric. These values indicate

that both networks present a considerable clustering property.

Fig. 3. Communities found for δ = 0.51 in Set1 (a) and Set2 (b) using
Jaccard similarity metric.

G. Calculating the Vendors Community Overlapping

Finally, we move to the final step of our work: the validation

of the found communities. We accomplish this task checking

the vendors community overlapping in both sets of market-

places. A high agreement here would mean a strong similarity

between the vendors and consequently a strong likelihood of

they belong to the same community in the real world.

In order to calculate this level of agreement between both

sets, we use the Adjusted Rand Index (ARI) proposed in [10],

which produces a score between [-1,1] accordingly. Jointly,

we prune the generated networks varying the threshold δ in

[0,0.99] (considering the step as 0.01), to verify how the

ARI changes correspondingly. We also analyze the trade-off

between the threshold δ and the total number of vendors

possible to be identified. Figure 4 shows the results for our

networks of vendors created using the four similarity metrics.

As verified in Figure 4, the highest value identified for ARI

(0.445) is produced when we use Jaccard similarity to create

the network of vendors, and when we set the value of δ as 0.51.

These results show that only the product categories are relevant

to create the similarity matrix of vendors (binary matrix), and

their magnitude (number of products in each category) should

be avoided. Here, the number of communities identified in

4Modularity measures how much the community structure found is distant
from randomly generated ones [9], returning a scalar value in [-1,1].
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Fig. 4. Curve of ARI produced for our networks when we vary δ.

Set1 and Set2 is 37 and 48 respectively, and the number of

vendors correctly assigned in both sets to the same community

is 169. This number represents 51.3% of the possible number

of vendors that could be identified in both sets of markets.

After identifying the communities and the corresponding

vendors in both sets, we make a final examination of the

distribution of vendors per communities. Our intention is to

check if the creation of those agreements between both sets

could not be easily done at random. In order to accomplish

that, we get the number of vendors present in each community

and apply the same distribution to a randomly community

assignment method, carrying out this experiment for both sets.

Our results show a value of -0.006 calculated for ARI, which

demonstrates a non-randomness property of our method.

IV. RELATED WORK

To the best of our knowledge, this is the first applied study

where social network information of malware and exploit

vendors is derived from darkweb malicious hacking market-

places. Previous studies examined characteristics of malicious

hacking forums, aspects of non-malicious hacking markets, or

the products for sale in a hacking market.

In [11], two topic-based social networks were created,

one from the topic creator and another from the repliers

perspective. The authors tried to identify group of topics as

well as group of key-members who created them over a single

forum. Yang et. al [12] used the same dataset, but they tried

to form clusters of users based on their messages timestamps.

Then, they compared user activeness to discover the focused

theme of discussion. Anwar et. al [2] treated each post as

entity with its own related information, using a collection

of 58 Surface Web forums. They tried to cluster those posts

using agglomerative clustering, based on similarities between

each pair of entities. Unlike our study, the relationships in

darkweb forums can be easily observed from the post/reply

activities of forum users, while in marketplaces there is no

explicit communications amongst vendors. Then, inferring

those relationships is a significant contribution of this paper.

Our previous work on marketplaces [13], [1], [3] focused

on: 1) a game theoretic analysis of a small subset of the data in

this paper; 2) classify products as malicious hacking-related;

3) categorize malicious hacking-related products for sale; and

did not attempt to find social structures, such as communities.

V. CONCLUSIONS

In this work, we mine communities of malware and exploit

vendors on 20 darkweb marketplaces, connecting different

vendors based on their product offerings. The multiplexity of

social ties allowed us to find these hidden communities using

two disjoint sets of markets and then successfully validate

the results. We use a combination of product clustering and

similarity functions to connect vendors and community finding

algorithms to identify their communities. Finally, we analyze

the overlapping of the communities identified in our both sets

of markets, observing a reasonable value for this metric. Our

method is one further step towards comprehending implicit so-

cial networks formed on darkweb, helping intelligent agencies

to track suspicious hacking-related organizations.
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