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The Semantic Web promises seamless integration of heterogeneous data from dis-

tributed sources, letting agents (human users or automated programs) perform

sophisticated and detailed analyses of this data. An agent would send a query, expressed

in terms of its preferred ontology (schema), to a system that would then find and integrate

the relevant data from multiple sources and return it
using the agent’s ontology.

Before achieving this vision, however, we must
address several challenges. We need technologies
to integrate data described in different ontologies,
for example, as well as different types of data, such
as images or structured data. In addition, a Seman-
tic Web-based system must recognize when dif-
ferent objects at different sites denote the same
real-world entity. Other challenges include effi-
ciently querying distributed information and con-
verting legacy data in traditional databases and
Web sites (HTML) into more semantic represen-
tations such as RDF. 

Building Finder is a running application that
showcases our approach to meeting these chal-
lenges. The application integrates satellite imagery,
geospatial data, and structured and semistructured
data from various online data sources using Seman-
tic Web technologies. Users can query an inte-
grated view of these sources and request Building
Finder to accurately superimpose buildings and
streets obtained from various sources on satellite
imagery. The data sources integrated by Building
Finder are heterogeneous not only in terms of the
data, but also in terms of how the application
accesses the sources. 

Building Finder overview
Building Finder helps users obtain satellite imagery,

street information, and building information about an
area. Users can request that Building Finder superim-
pose the building information on the satellite imagery,
or they can click on a particular building or house to
obtain detailed information from property tax records
or a white page directory. Similarly, Building Finder
can superimpose street information or provide detailed
information about a house. Building Finder accesses
satellite imagery from Microsoft’s Web service Terra-
Service (http://terraserver-usa.com); streets from the
US Census Bureau’s Tigerline files, which are available
as a database hosted at the University of Southern Cal-
ifornia; property tax information from the Los Ange-
les County Assessor’s property tax information Web
site; and residence information from the Yahoo White
Pages Web site (http://people.yahoo.com). 

What makes Building Finder even more attractive
is that users can navigate through the Building Finder
interface manually or have agents query the appli-
cation using RDF Data Query Language (RDQL)
queries and obtain results in RDF.

As Figure 1 shows, our GUI consists of an input
form and an image. The input form lets users spec-
ify attributes the system will use to formulate RDQL
queries and retrieve the URL as well as additional
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information, which the GUI displays. In the
figure, the image on the right represents a
satellite picture with middle point at coordi-
nates (33.927, –118.406). The picture is 400
× 400 pixels, and each pixel equals 1 meter
on the ground. 

Unfortunately, Tigerline’s street informa-
tion is often inaccurate and rarely aligns with
the streets on the TerraService satellite
imagery. Aligning two geospatial data sets is
a difficult problem often referred to as con-
flation.1 For the Building Finder application,
we obtain conflated street information from
the Tigerline files for the city of El Segundo,
Calif., using our localized image-processing
approach for automatically aligning vector
data with satellite imagery.2 Although Build-
ing Finder’s coverage is currently limited to
El Segundo, it would be trivial to use this
approach in the future to obtain conflated
Tigerline files for all of the US.

There are three ways to use the applica-
tion’s GUI:

• The user retrieves a specific image by fill-
ing in its coordinates and clicking “update.”

• The user navigates to nearby images by
clicking one of four white arrows around
the image. 

• The user clicks on the box on the image
(see Figure 2) that corresponds to a spe-
cific house the user wants information
(owner and address) about.

The GUI in Figure 2 shows the results of
running the user query. The boxes in the
satellite image indicate building locations,
and the lines represent streets.

Technologies for efficient 
data interaction

To efficiently integrate semantically
heterogeneous information from multiple
data sources, Building Finder uses several
technologies:

• Machine-learning techniques for convert-
ing traditional legacy Web sources and
databases into Web services3

• A record linkage system for integrating
data from multiple sources referring to a
single entity

• A mediator system providing uniform
access to data from various Web services

• An efficient execution system for infor-
mation-gathering agents

• RDQL and RDF formalisms for repre-
senting queries and query results

Online source wrapping
Much information on the Web is format-

ted for human readers, not machines. Soft-
ware wrappers let programs or agents retrieve
and translate data from Web sources into a
format the software can easily manipulate.
Building Finder relies on wrappers to provide
the needed data on a per-query basis because
the breadth and depth of queries prevents us
from storing or caching all data locally.

Figure 3 shows how the wrapper navigates
and extracts information from the Yahoo
White Pages. Given a name, a city, and a
state, the wrapper queries the Yahoo site by
binding inputs to the wrapper to the corre-
sponding variables in the search form on that
site. Yahoo White Pages returns the results
page, which lists names, addresses, and
phone numbers, and the wrapper uses extrac-
tion rules to extract the data. If Yahoo returns
more than one results page, the wrapper
extracts the data from all pages. Building
Finder filters the data, formats it into a table
form, and sends it to the mediator, which
chooses how to integrate the data to answer
queries formulated according to user inputs. 

Because most Web pages are written in
HTML, extracting data is a complicated task.
HTML is a language with which Web
browsers specify a Web page’s format; it’s
not intended to help locate specific data on a
page. HTML tags have no semantics with
respect to a page’s content. Consequently, a

wrapper must learn how to extract each data
key on each Web page by searching for an
HTML tag pattern leading to the data. For
example, if we want to extract the person’s
name in Figure 4, we might notice that the
tag always preceding the name data is
<html>Name:<b> and the tag following the
name data is </b>. Thus, we would create a
rule for the wrapper to extract the keyword
“A Smith” by starting extraction after the tag
<html>Name:<b> and stopping at the tag </b>.
This process, called wrapper rule learning,
uses machine-learning techniques4–6 for
extracting data automatically from semi-
structured Web pages. We used the Fetch
Agent Platform (www.fetch.com) to create
the wrappers used to extract data used in
Building Finder.

Record linkage
Integrating information from multiple

Web sites is complicated because the same
data objects can exist in inconsistent text for-
mats across sites or because a search for a
particular object can return multiple results.
This makes identifying matching objects
using an exact text match difficult. As Fig-
ure 5 shows, for a particular people query,
the Yahoo White Pages site returns a record
for Brandy Smith. When we use this person’s
address to query the property tax site, we
receive more than 15 results. We must there-
fore use more than simple text-matching

MAY/JUNE 2004 www.computer.org/intelligent 73

Figure 1. The Building Finder GUI.



techniques to determine which record refers
to the White Pages record of interest.

Active Atlas,7 our record-linkage system,
compares objects’ shared attributes to iden-
tify matching objects. Some attributes are
more important in determining whether a
mapping should exist between two objects.
Previous object-identification methods re-
quired manually constructing object identifi-
cation or mapping rules for determining map-
pings between objects. This manual process
is time-consuming and error-prone. Through
limited user input, Active Atlas learns to tai-
lor mapping rules to a specific application
domain. In a single site, entities (people,
places, countries, companies, and so on) are
usually named in a consistent fashion. Across

sites, however, the same entities might have
different names. Other researchers have also
developed approaches for solving the record-
linkage problem.8

We begin by selecting a primary source for
an entity’s name and then provide a mapping
from that source to every other source that
uses a different naming scheme. One way to
do this is to create a mapping table that spec-
ifies, for each entry in a data source, the name
of the equivalent entity in another data source.
Alternatively, if the mapping is computable,
we can represent it using a mapping func-
tion—that is, a program that converts one form
into the other form. We’ve developed a semi-
automatic method for building mapping tables
and functions by analyzing the underlying

data in advance. The method attempts to pair
each entity in one source with a correspond-
ing entity (or entities) in another source.
Essentially, it uses information-retrieval tech-
niques (wrappers) to provide an initial map-
ping, and then applies machine-learning tech-
niques to improve the mapping. 

The initial mapping matches entities from
two sources on the basis of their textual sim-
ilarity. In the subsequent learning phase, the
system learns two types of rules to help
improve or verify the initial mapping. Trans-
formation weights identify textual transfor-
mations such as acronyms, abbreviations, and
phrase orderings common in the domain. For
instance, the system can learn that “Rep” is
commonly used as an abbreviation for
“Republic,” that one source typically uses
acronyms, or that one source represents per-
son names as “LastName, FirstName,”
whereas another uses “FirstName LastName.”
The system also learns mapping rules for
comparing entities along multiple attributes.

We’ve used the underlying technologies
developed for Active Atlas to augment The-
seus,9 our execution platform for information
agents (discussed later), with the ability to
consolidate information referring to the same
entity from two different data sources. It per-
forms this linkage in a streaming, dataflow-
style execution that’s both fast and efficient.

In Building Finder, the mediator must con-
solidate data from various sources—the
property tax and Yahoo White Pages sites—
referring to the same house or street. Using
Theseus as the underlying execution engine
gives the mediator access to the consolida-
tion operator. The availability of such an
operator lets the mediator replace all join
instances in its generated plans with a con-
solidation step. This step performs a “smart
join” between the two sites. In using multi-
ple attributes present in each site, the con-
solidation operator links records referring to
the same entity and thus integrates data more
accurately.

The adaptive nature of the technologies
used for consolidation makes Building
Finder flexible and facilitates insertion of
new data sources. To expand application sup-
port for areas beyond El Segundo, we would
provide the mediator with access to Tigerline
data on additional counties in California or
the US. To integrate these new sources, the
system would simply undergo a learning
process to generate new mapping rules cor-
responding to each unique site. This is much
easier than tailoring the entire application to
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Figure 2. RDF Data Query Language (RDQL) query and RDF output for the corresponding
form input.



work with and understand the new sites.
We are also researching methods for

improving record linkage using secondary
sources.10 In this research, we present an
approach to accurately and automatically con-
solidate data from various data sources using
a state-of-the-art object consolidation system
in conjunction with a mediator system. The
mediator system automatically determines
which secondary sources to query if the
object-consolidation system can’t confidently
determine whether two records refer to the
same entity. In turn, the object-consolidation
system uses this additional information to
improve the accuracy of the data set consoli-
dation. For example, the system could use a
secondary source providing additional infor-
mation on geographic coordinates for a given
address (a geocoder) to improve the consoli-
dation of data from the property tax and Yahoo
White Pages sites. With the system developed
by Martin Michalowski, Snehal Thakkar, and
Craig A. Knoblock,10 for example, we could
better link people to properties based on
addresses using geocoder information. Such
an approach would reduce uncertainty when
classifying two addresses as being the same.

Mediator
The mediator system’s goal is to provide

unified access to various data sources. Build-
ing Finder uses the Prometheus mediator11

to integrate satellite imagery from Microsoft
TerraService, road vector data from US Cen-
sus Tigerline files, and house information
from white page directories. The user either
sends a query through the user interface, as
Figure 6 shows, or submits an RDQL query.
The mediator passes the results back to the
user interface.

As Figure 7 shows, the Prometheus medi-
ator has three parts:

• A data model
• A query reformulation component
• A query execution component using the

Datalog to Theseus converter

The data model consists of information
about various data sources as well as rela-
tionships between the data sources and
domain predicates. Building Finder uses the
domain predicates street, image, and build-
ing. Users can send queries in terms of these
domain predicates.

Figure 8 shows the Building Finder
application domain model. The domain
predicate building is the consolidation of
information from the Los Angeles County
property tax data source and the white
pages data source. The white pages data
source provides the person’s name, address,
and phone number, while the property tax
source provides the person’s name and
address and the property’s lot size. The
white pages data source gives information
only for people listed in the directory. In
the future, we’ll add new data sources to
the domain model to cover the entire con-
tinental US.

The mediator accepts queries on any com-
bination of domain predicates. On receiving
a query, the mediator merges it with the
domain model to generate a datalog program
that can answer the user query. The media-
tor then executes the generated program to
find the results of the user query using the
Theseus execution engine. For example, a
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Figure 3. Extracting data from the Yahoo White Pages.

<html>Name:<b>A Smith</b>Address:<b>El Segundo, CA</b>…

<html>Name:<b>Alfred Smith</b>Address: <b>311 W Palm Ave El Segundo, CA</b>…

Figure 4. A mapping pattern in HTML pages.



user can send a request for information about
houses in an area with coordinates (33.34,
–118.54) to (33.37, –118.59). The datalog
converter receives this request in RDQL for-
mat from the user interface and converts it to
the following datalog query:

Q(name, address, phone, lat, lon) :-
Houses(toplat, toplon, botlat, botlon, 

name, address, phone, lat, lon) ^ 
toplat = 33.37 ^ botlat = 33.34 ^ 
toplon = -118.54 ^ botlon = -118.59.

When it receives this query from the data-
log converter, the mediator uses its domain
model to generate a Theseus plan to obtain
the house information from the property tax
and white pages Web sites. It then passes the
generated plan to the Theseus execution
engine.

Efficient query execution
A typical information-gathering plan

might involve accessing and integrating data
from many sources. However, unpredictable

network latencies and varying remote source
capabilities can significantly increase the
total time required to execute such a plan.
Moreover, many sources cannot be queried
until a previous query has been answered. In
most traditional approaches, integration
plans consist of partial orderings of opera-
tors (that is, functions) and are executed
based on the given order.

In Building Finder, Theseus9 provides effi-
cient execution of mediator-created informa-
tion-gathering plans. Other methods of effi-
cient query execution are also available.12,13

We chose Theseus because it is a streaming
dataflow execution system that uses both hor-
izontal parallelism and vertical parallelism.

In horizontal parallelism, execution is
decentralized, with independent operators
executing at the same time. In vertical paral-
lelism, operators “fire” when any part of an
input data becomes available and output
tuples to other operators in a pipeline fash-
ion. Theseus has an array of operators geared
toward information-gathering plans—for
example, xwrapper executes a wrapper, xquery

parses XML files using XML Query Lan-
guage (XQuery), xmltorel converts an XML
document into a relation, consolidate combines
data using record linkage, and dbquery re-
trieves data from the database—in addition
to relational algebra operations such as union,
join, select, and project.

Figure 9 illustrates an information-
gathering plan corresponding to the Build-
ing Finder query for information about
houses (see the “Mediator” section). This
plan retrieves data from the ptax and ywp wrap-
pers, parses the XML output, translates the
XML output into a relation, and consolidates
and filters the data from the property tax Web
site and Yahoo White Pages. The mediator
sends Theseus an integration plan and all
necessary inputs. Theseus uses the inputs to
query the property tax and Yahoo White
Pages Web sites in parallel. Because the area
of interest can include more than one house,
both Web sites might return several records.
Theseus streams records from both data
sources to the consolidate operator.

To put this in perspective, assume it takes
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Figure 5. Potential matches between the Yahoo White Pages and property tax sites.
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30 seconds to make a request to each Web
site. After the initial request, obtaining one
record from each data source takes five sec-
onds. If both data sources return 10 records
in a sequential implementation, obtaining
records from both data sources would take
160 seconds; using Theseus, which queries
sources in parallel, we can obtain the same
number of records in 80 seconds. Further-
more, Theseus could return results for the
first record from both sources in 40 seconds.
Theseus further reduces total execution time
because it streams resulting tuples from one
operator in the plan to the next as soon as
they are made available. Therefore, the The-
seus execution engine greatly improves user
query response time.

Semantic Web representation 
and query languages

RDQL is used for extracting information
from RDF graphs. Our Building Finder
application uses both formalisms. It presents
queries to the application as RDQL queries,
which the mediator subsequently processes
and executes. The application uses an inter-
nal RDQL to datalog converter to interpret
and process the query. On completing the
query, the module converts the XML results
constructed by the mediator to RDF and
returns them to the user.

This type of approach makes Building
Finder usable by both human users interact-
ing with the GUI and computer agents using
RDQL and RDF to interact with the appli-
cation on behalf of human users. It also lets
the application give meaning to the results
and use semantics present in RDQL to inter-
pret input queries. Building Finder can com-
pose query results using personally devel-
oped ontologies describing buildings, images,
and streets in conjunction with RDF. This
lets computer agents further infer and rea-
son about the results and use the additional
semantic knowledge to process the results or
pose more queries.

Advantages of our approach
Our mediator approach to data integration

has several advantages over the data ware-
housing approach often used in Semantic
Web applications (for example, RDF stores).
Because the system accesses data only in
response to user queries, the data is always
fresh. Approaches that extract and store data
locally are suitable for data that varies slowly
but return stale values for sources that change
faster than the warehouse update cycle. 
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Figure 7. Mediator architecture.

Building(ctrlat, ctrlon, scale, width, height, name, address, city, state, phone, zip, lat, lon) :-
findCorners(ctrlat, ctrlon, scale, width, height, botlat, toplat, botlon, toplon) ^
whitepages(name, address, city, state, zip, phone) ^
geocoder(address, city, state, zip, lat, lon) ^
lat > botlat ^
lat < toplat ^ 
lon > botlon ^ 
lon < toplon

Building(ctrlat, ctrlon, scale, width, height, ““, address, city, state, ““, zip, lat, lon) :-
findCorners(ctrlat, ctrlon, scale, width, height, botlat, toplat, botlon, toplon) ^
propertytax(address, city, state, zip, lotsize) ^
geocoder(address, city, state, zip, lat, lon) ^
lat > botlat ^ 
lat < toplat ^ 
lon > botlon ^ 
lon < toplon

Street(ctrlat, ctrlon, scale, width, height, streetname, fraddl, toaddl, fraddr, toaddr, frlat, frlong, tolat, tolong) :-
findCorners(ctrlat, ctrlon, scale, width, height, botlat, toplat, botlon, toplon) ^
tigerlines(streetname, fraddl, toaddl, fraddr, toaddr, frlat, frlong, tolat, tolong) ^
frlat > botlat ^ 
frlat < toplat ^ 
frlon > botlon ^ 
frlon < toplon

Image(ctrlat, ctrlon, scale, width, height, showHouses, showStreets, imageurl) :-
terraserverImage(ctrlat, ctrlon, scale, width, height, showHouses, showStreets, imageurl)

Figure 8. Building Finder domain model.



Moreover, the data available on the Web
will likely grow faster than a warehouse’s
ability to host it. The mediator only retrieves
data relevant to user queries, making it more
scalable than warehouse-based approaches. 

Finally, the mediator approach is much more
adaptable than a warehouse. Users will change
their preferred worldview as their applications
and data needs evolve and new sources become
available. Changing the mediator’s ontology
and the source descriptions is significantly eas-
ier than rebuilding a warehouse.

The technologies showcased in the
Building Finder have several impor-

tant practical applications, such as disaster
management and e-commerce. One of the
most important tasks of a disaster-manage-
ment system is finding information about the
affected area, including street names, build-
ings, and residents. Building Finder can pro-
vide such information to Semantic Web-
enabled disaster-management systems. Real
estate applications could also use Building
Finder to obtain information about proper-
ties and their surroundings.

We plan to explore several extensions to
the core technologies of the Building Finder,
such as richer models for the mediator. We
currently integrate our sources using datalog
rules, but we’re interested in using object-
oriented features such as reasoning about
classes as is done in RDF or OWL. In addi-
tion, although we describe our integration
model in a global-as-view style, we also want
to use local-as-view models.14 We also plan
to integrate more RDF and RDQL sources as
they become available.
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