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Abstract

For agents to act on behalf of users, they will have to query the vast amounts of tex-

tual data on the internet. However, much of this text cannot be queried because it is

neither grammatical nor formally structured enough to support traditional information

extraction approaches to annotation. Examples of such text, called “posts,” include item

descriptions on Ebay or internet classifieds like Craig’s list. This work describes an ap-

proach to annotating posts by combining record linkage with information extraction. This

approach leverages collections of known entities, called “reference sets,” by first aligning

a post to a member of a reference set, and then exploiting this matched member during

information extraction. This thesis compares this extraction approach to more traditional

information extraction methods that rely on structural and grammatical characteristics,

and it shows that this approach outperforms traditional methods on this type of data.
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Chapter 1

Introduction

The envisioned future of the internet involves morphing the current World Wide Web into

a vast network of semantically annotated documents called the Semantic Web. Part of

this vision includes agents working on the behalf of users, autonomously performing tasks

such as booking hotels and making appointments. These agents perform their tasks by

deriving knowledge from the semantic annotation included as mark-up in the documents.

For instance, an agent could query a number of data sources to find the lowest price for

a given hotel and then book a reservation.

However, the ability to query data sources derives from the ability to annotate the

sources, and annotating certain data sources is a difficult process. Specifically, semantic

annotation usually relies on information extraction techniques to identify the attributes in

the text for labeling. Information extraction, in turn, relies on grammatical and structural

characteristics of the text to identify the attributes to extract. Yet, there are many data

sources on the internet that are useful to query, but the textual data contained in them

makes annotation difficult. In these cases the text is not structured enough for wrapper

extraction technologies such as Stalker [25] or RoadRunner [12]. Nor is it grammatical
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enough to exploit Natural Language Processing (NLP) based extraction techniques such

as those used in Whisk [28] or Rapier [5]. With such textual data traditional information

extraction techniques for annotation are not applicable because of the lack of structure.

The ungrammatical and unstructured textual data of these sources are called “posts.”

Examples of “posts” include the text of EBay posts, internet classifieds like Craig’s list,

bulletin boards such as Bidding For Travel,1 or even the summary text below the hyper-

links returned after querying Google. Figure 1.1 shows an example post from Bidding

For Travel, along with the desired semantic annotation added to this post to make it

queryable.

Figure 1.1: A post from Bidding For Travel

The lack of grammar and structure in posts can be overcome by incorporating knowl-

edge into information extraction. This extra knowledge, called “reference sets,” consists

1www.biddingfortravel.com
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of collections of known entities with the associated, common attributes. A reference set

can be an online (or offline) set of reference documents, such as the CIA World Fact

Book.2 It can also be an online (or offline) database, such as the Comics Price Guide.3

With the Semantic Web one can envision building reference sets from the numerous on-

tologies that already exist. Using standardized ontologies to build reference sets allows a

consensus agreement upon reference set values, which implies higher reliability for these

reference sets over others that might exist as one expert’s opinion. Continuing with the

hotel example from Figure 1.1, assume there is an ontology of U.S. hotels used to con-

struct a reference set with the following attributes: city, state, star rating, hotel name,

area name, etc.

To use reference sets for semantic annotation this work exploits the attributes in the

reference set to determine the attributes from the post that can be extracted. To do this,

the first step finds the best matching member of the reference set for the post. This is

called the “record linkage” or “alignment” step. This record linkage step provides the

reference set values to look for in the post. During the information extraction step that

follows, the parts of the post are extracted that best match the attribute values from the

reference set member chosen during the record linkage step. Once extracted, the parts of

the post are labeled with the attribute type (schema label) of the reference set attribute

they match.

Reference sets are further exploited by including annotation for the values that come

from the matching reference set member during the record linkage step. Since attribute

2http://www.cia.gov/cia/publications/factbook/
3www.comicspriceguide.com
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values differ across posts, these reference attributes provide a set of standard values

for querying the dataset. Also, by including attributes from the matching reference set

member, the alignment can provide annotation for attributes that were not included by

the user in the post.

In addition to annotation from the reference set, this technique also annotates at-

tributes in the post that are identifiable, but not provided by the reference sets. Examples

of such attributes include prices or dates. In many cases, such attributes would compose

huge reference sets. Thus it is easier to employ more traditional extraction methods since

these types of attributes have consistent characteristics that can be exploited.

As a running example, consider Figure 1.2 which illustrates the approach of this thesis

on the circled post of Figure 1.1. For purposes of exposition, the reference set shown only

has 2 attributes: hotel name and hotel area. The example post matches the reference set

member with the hotel name of “Holiday Inn Select” and the hotel area of “University

Center.” Using this match the algorithm labels the tokens “univ. ctr.” of the post as

the “Hotel Area,” since they match the hotel area attribute of the matching reference set

record. Similarly, “holiday inn sel.” is labeled as the Hotel Name. More generally, the

technique annotates all of the attributes in the post that match those of the reference

set. Figure 1.2 also shows the annotation of a price and the annotation that comes

from the attributes of the reference set, shown as “Ref hotel...” This thesis extends my

previous work on annotating ungrammatical and unstructured sources [24] by providing

additional details about the algorithms and presenting more experimental results. The

overall approach has two steps, the alignment step and the extraction step. Chapters

2 and 3 present each of these steps in detail. Chapter 4 focuses on the experimental
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Figure 1.2: Annotation Algorithm

evaluation of the alignment and extraction steps detailed in Chapters 2 and 3. Beyond

the experimental performance there are other items worth noting. Chapter 5 presents

these issues as the Discussion. Chapter 6 describes the related work in the field and

Chapter 7 finishes the thesis with my conclusions and future directions.
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Chapter 2

Aligning Posts to a Reference Set

To exploit the reference set attributes for annotation, the system needs to first decide

which member of the reference set best matches the post. This alignment not only pro-

vides the set of reference set attributes that are leveraged for the information extraction

step, but it also annotates the post with the reference set attributes, which allows for

querying the data with standard values.

Since it is infeasible to compare the post against all members of the reference set, the

alignment step first constructs a set of candidate matches from the reference set. This

candidate generation is called “blocking.” The goal of blocking is to efficiently whittle

down the set of possible matches, while not eliminating any true matches. Blocking is

an active field of research [2], and the technique used in this thesis defines a candidate

as any member of the reference set that has a common subsequence of letters, called an

n-gram, with the post.

From this set of candidates one can find the member of the reference set that best

matches the current post. That is, one data source’s record (the post) must align to a

record from the other data source (the reference set candidates). This alignment is called
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record linkage [14]. However, the record linkage problem presented in this thesis differs

Figure 2.1: The traditional record linkage problem

and is not well studied. Traditional record linkage matches a record from one data source

to a record from another data source by relating their respective, decomposed attributes.

For instance, using the example from Figure 1.2, and assuming decomposed attributes,

the hotel name from the post is compared to the hotel names of the reference set. This

is also done for the hotel areas. The record from the reference set that best matches

the post based on the similarities between the attributes would be considered the match.

This is represented in Figure 2.1. Yet, the attributes of the posts are embedded within

a single piece of text and not yet identified. This text is compared to the reference set,

which is already decomposed into attributes and which does not have the extraneous
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Figure 2.2: The problem of matching a post to the reference set

tokens present in the post. Figure 2.2 depicts this problem. With this type of matching

traditional record linkage approaches do not apply.

Instead, the alignment step compares the post to all of the attributes of the reference

set concatenated together. Since the post is compared to a whole record from the reference

set (in the sense that it has all of the attributes), this comparison is at the “record level”

and it approximately reflects how similar all of the embedded attributes of the post are

to all of the attributes of the candidate match. This mimics the idea of traditional

record linkage, that comparing all of the fields determines the similarity at the record

level. However, by using only the record level similarity it is possible for two candidates

to generate the same record level similarity while differing on individual attributes. If

one of these attributes is more discriminative than the other, there needs to be some

way to reflect that. For example, consider Figure 2.3. In the figure, the two candidates

share the same hotel name with the post. However, the first candidate has an area in

8



Figure 2.3: Two records with equal record level but different field level similarities

common with the post while the second candidate has a star rating in common. Since

both candidates share the same name, and both have another attribute in common, it is

possible that they generate the same record level comparison. Yet, a hotel area should be

more discriminative than a star rating, since many more hotels share the same star rating

than the same hotel area. This difference in individual attributes needs to be reflected.

To discriminate between attributes, the alignment step borrows the idea from tra-

ditional record linkage that incorporating the individual comparisons between each at-

tribute from each data source is the best way to determine a match. That is, just the

record level information is not enough to discriminate matches, field level comparisons

9



must be exploited as well. To do “field level” comparisons the alignment step compares

the post to each individual attribute of the reference set.

These record and field level comparisons are represented by a vector of different

similarity functions called RL scores. By incorporating different similarity functions,

RL scores reflects the different types of similarity that exist between text. Hence, for the

record level comparison, the alignment step generates the RL scores vector between the

post and all of the attributes concatenated together. To generate field level comparisons,

the alignment step calculates the RL scores between the post and each of the individual

attributes of the reference set. All of these RL scores vectors are then stored in a vec-

tor called VRL. Once populated, VRL represents the record and field level similarities

between a post and a member of the reference set.

In the example reference set from Figure 1.2, the schema has 2 attributes <Hotel

Name, Hotel Area>. Assuming the current candidate is <“Hyatt”, “PIT Airport”>,

then the VRL looks like:

VRL=<RL scores(post, “Hyatt”),
RL scores(post, “PIT Airport”),
RL scores(post, “Hyatt PIT Airport”)>

Or more generally:

VRL=<RL scores(post, attribute1),
RL scores(post, attribute2),
. . . ,
RL scores(post, attributen),
RL scores(post, attribute1 attribute2 . . . attributen)>

The RL scores vector is meant to include notions of the many ways that exist to define

the similarity between the textual values of the data sources. It might the case that one

attribute differs from another in a few misplaced, missing or changed letters. This sort
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of similarity identifies two attributes that are similar, but misspelled, and is called “edit

distance.” Another type of textual similarity looks at the tokens of the attributes and

defines similarity based upon the number of tokens shared between the attributes. This

“token level” similarity is not robust to spelling mistakes, but it puts no emphasis on the

order of the tokens, where as edit distance requires that the order of the tokens match for

the attributes to be similar. Lastly, there are cases where one attribute may sound like

another, even if they are both spelled differently, or one attribute may share a common

root word with another attribute, which implies a “stemmed” similarity. These last two

examples are neither token nor edit distance based similarities.

To capture all of these different similarity types the RL scores vector is built up of

3 vectors that reflect the each of the different similarity types discussed above. Hence,

RL scores is:

RL scores(post, attribute)=<token scores(post, attribute),
edit scores(post, attribute),
other scores(post, attribute)>

The vector token scores comprises token level similarity scores. One similarity score

included in this vector is the Jensen-Shannon distance between sets of tokens [11]. Jensen-

Shannon similarity defines the score between the tokens of two strings, S and T, by

defining a distribution of tokens over the strings, called PS and PT respectively. These

distributions are then used to calculate the similarity between S and T. Before calculating

Jensen-Shannon distance, one must define the Kullback-Leibler (KL) divergence which

reflects the measure of dissimilarity between two probability mass functions. Given two
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probability functions p(x) and q(x) over some quantity x, the KL divergence between p

and q is:

KL(p||q) =
∑
x

p(x) log
p(x)
q(x)

Another necessary term to define, Q(w), describes the average probability of a token

w in the distributions of S and T. That is:

Q(w) =
(PS(w) + PT (w))

2

With these definitions, the Jensen-Shannon distance between S and T is defined as:

Jensen− Shannon(S, T ) =
(KL(PS ||Q) + KL(PT ||Q))

2

In words, Jensen-Shannon distance is a way to combine the probabilities of common

tokens occurring in S and T to generate a sense of similarity between the strings. How-

ever, S and T are too sparse of a language model to learn good probability distributions

over token occurrence, so smoothing must be incorporated to account for tokens unseen

in S and T. This smoothing is akin to including prior knowledge about token occurrence

into the probabilities PS and PT which can be accomplished using a Dirichlet prior, for

example. For this purpose, the vector token scores includes a Jensen-Shannon score with

distributions PS and PT estimated using a Dirichlet prior with α set to 1. Also included

in token scores is another Jensen-Shannon score with the probabilities smoothed using

a Jelenik-Mercer mixture model [34]. The Jelenik-Mercer mixture model is a linear in-

terpolation between the maximum-likelihood probability of a token in the string and the
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probability of the token occurring in the corpus of strings, called the collection model.

The interpolation is controlled by the mixture coefficient λ, which in this case was set to

0.5, so that each piece of the interpolation was weighted equally.

The token scores also includes the Jaccard similarity between strings S and T [11].

If one considers S and T as a bag of tokens, then Jaccard similarity is the ratio between

the number of tokens in common between S and T over the cardinality of the union of

tokens in S and T :

Jaccard(S, T ) =
|S ∩ T |
|S ∪ T |

With all of the scores included, the token scores vector takes the form:

token scores(post, attribute)=<Jensen-Shannon-Dirichlet(post, attribute),
Jensen-Shannon-JM-Mixture(post, attribute),
Jaccard(post, attribute)>

The vector edit scores consists of the edit distance scores which are comparisons be-

tween strings at the character level defined by operations that turn one string into another.

For instance, the edit scores vector includes Levenstein distance, which returns the min-

imum number of operations to turn string S into string T. To generate this minimum

number, Levenstein distance associates a cost with each operation, and returns the set of

operations that minimizes the total cost. The operation costs are as follows:

Copy character of S into T = 0
Insert single character into T = 1
Delete single character from S = 1
Substitute single character = 1

One extension to the Levenstein distance is the Smith-Waterman distance [27], which

also appears in edit scores. Like Levenstein distance, Smith-Waterman is an edit-distance

because it generates a similarity score based upon the number of operations needed to
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transform string S into string T. However, in the Smith-Waterman algorithm the associ-

ated operation costs are not fixed, but are chosen values, and the algorithm maximizes

the total cost of the operations. One of the chosen values is a distance function, d, be-

tween two characters that may be chosen arbitrarily to reflect a relationship between the

characters. For instance, in comparing DNA strands, d might reflect amino acid substi-

tutability. This distance can have different values depending on whether the operation

is a copy or a substitution. Perhaps copy receives a positive cost while substitution re-

ceives a negative one. The other chosen value, denoted G, is the gap cost that penalizes

inserting or deleting characters. Since G is a penalty, its value is negative which leads

to the possibility of negative total operational costs up to a certain point in the set of

operations. To account for this a “start over” operation is included which sets all negative

total costs to 0. Hence, the Smith-Waterman finds the maximized set of operations with

the following associated costs:

Copy/Substitute character of S into T = d
Insert single character into T = -G
Delete single character from S = -G
Start over = 0

The last score in the vector edit scores is the Jaro-Winkler similarity [33], which is

an extension of the Jaro metric [17]. While not a strict edit-distance, because it does not

regard operations of transformations, the Jaro-Winkler metric is a useful determinant

of string similarity. There are two definitions necessary to computer the Jaro metric.

A character from S is said to be “in common” with a character from T if the character

from S has the same value as the character from T, and falls within a small neighborhood

of indexes around the letter in T. With this definition, S’ becomes all of the characters
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from S “in common” with T, and vice versa for T’. Now, the “transposition” between

s’∈S’ and t’∈T’ is the index i such that s’ 6=t’. That is to say, i represents an index in

the “in common” strings S’ and T’ where the letters do not match. Based on these

transpositions, TransS′,T ′ is defined as half of the number of transpositions between S’

and T’. Using these definitions, Jaro metric is:

Jaro(S, T ) =
1
3
·
( |S′|
|S|

+
|T ′|
|T |

+
|S′| − TransS′,T ′

|S′|

)

The extension of Jaro to Jaro-Winkler distance adjusts the weights such that when

strings share a match from the first letter for a specified prefix length (i.e. they share a

common prefix), the similarity is higher than it would be with just a Jaro metric. The

underlying assumption is that certain attributes are more likely similar if they share a

certain prefix. This works well for proper nouns, as many attribute values are, but could

be problematic for arbitrary words that might share a prefix, such as “commotion” and

“communion.” For the calculation, the prefix length l is defined as the length of the

longest common prefix. The calculation defines that if l is less than four, it is set to four.

The Jaro-Winkler equation is defined as:

Jaro−Winkler(S, T ) = Jaro(S, T ) + (l · 0.1 · (1− Jaro(S, T ))

With all of the character level metrics, the edit scores vector is defined as:

edit scores(post, attribute)=<Levenstein(post, attribute),
Smith-Waterman(post, attribute),
Jaro-Winkler(post, attribute)>

15



All of the similarities in the edit scores and token scores vector are defined in the Sec-

ondString package [11] which was used for the experimental implementation as described

in Chapter 4.

Lastly, the vector other scores captures the two types of similarity that did not fit into

either the token level or edit distance similarity vector. This vector includes two types

of string similarities. The first is the Soundex score between the post and the attribute.

Soundex uses the phonetics of a token as a basis for determining the similarity. That is,

misspelled words that sound the same will receive a high Soundex score for similarity.

The other similarity is based upon the Porter stemming algorithm [26], which removes

the suffixes from strings so that the root words can be compared for similarity. This

helps alleviate possible errors introduced by the prefix assumption introduced by the

Jaro-Winkler metric, since the stems are scored rather than the prefixes. Including both

of these scores, the other scores vector becomes:

other scores(post, attribute)=<Porter-Stemmer(post, attribute),
Soundex(post, attribute)>

Figure 2.4 shows the full composition of VRL, with all of the constituent similarity

scores shown.

Once a VRL is constructed for each of the candidates, the alignment step then per-

forms a binary rescoring on each VRL to further help determine the best match amongst

the candidates. This rescoring helps determine the best possible match for the post by

separating out the best candidate as much as possible. Since there might be a few can-

didates with similarly close values, and only one of them is a best match, the rescoring

emphasizes the best match by downgrading the close matches so that they have the same
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Figure 2.4: The full vector of similarity scores used for record linkage

element values as the more obvious non-matches, while boosting the difference in score

with the best candidate’s elements.

To rescore the vectors of candidate set C, the rescoring method iterates through the

elements xi of all VRL∈C, and the VRL(s) that contain the maximum value for xi map

this xi to 1, while all of the other VRL(s) map xi to 0. Mathematically, the rescoring

method is:

∀VRLj ∈ C, j = 0... |C|

∀xi ∈ VRLj , i = 0...
∣∣∣VRLj

∣∣∣
f(xi, VRLj ) =


1, xi = max(∀xt ∈ VRLs , VRLs ∈ C, t = i, s = 0... |C|)

0, otherwise

For example, suppose C contains 2 candidates, VRL1 and VRL2 :

VRL1 = <.999,1.2,...,0.45,0.22>

17



VRL2 = <.888,0.0,...,0.65,0.22>

After rescoring they become:

VRL1 = <1,1,...,0,1>

VRL2 = <0,0,...,1,1>

After rescoring, the alignment step passes each VRL to a Support Vector Machine

(SVM) [18] trained to label them as matches or non-matches. The best match is the

candidate that the SVM classifies as a match, with the maximally positive score for

the decision function. If more than one candidate share the same maximum score from

the decision function, then they are thrown out as matches. This enforces a strict 1-1

mapping between posts and members of the reference set. However, a 1-n relationship

can be captured by relaxing this restriction. To do this the algorithm keeps either the

first candidate with the maximal decision score, or chooses one randomly from the set of

candidates with the maximum decision score.

When the match for a post is found, the attributes of the matching reference set

member are added as annotation to the post by including the values of the reference set

attributes along with tags that reflect the schema of the reference set. This is shown

in Figure 1.2, by the attributes Ref hotelName and Ref hotelArea. Beyond providing a

standardized set of values to query the posts, there are other implications of including

this annotation that are examined in the Discussion, in Chapter 5.
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Chapter 3

Extracting Data from Posts

The algorithm infuses information extraction with extra knowledge, rather than relying

on possibly inconsistent characteristics. To garner this extra knowledge, the approach

exploits the idea of reference sets by using the attributes from the matching reference set

member as a basis for identifying similar attributes in the post. Then, the algorithm can

label these extracted values from the post with the schema from the reference set, thus

adding annotation based on the extracted values.

To begin the extraction process, the post is broken into tokens. Using the circled

post from Figure 1.1 as an example, set of tokens becomes, {“$25”, “winning”, “bid”,...}.

Each of these tokens is then scored against each attribute of the record from the reference

set that was deemed the match.

To score the tokens, the extraction process builds a vector of scores, VIE . Like the VRL

vector of the alignment step, VIE is composed of vectors which represent the similarities

between the token and the attributes of the reference set. However, the composition of

VIE is slightly different than VRL. It contains no comparison to the concatenation of all

of the attributes, and the vectors that compose VIE are different from those that compose
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VRL. Specifically, the vectors that form VIE are called IE scores, and are similar to the

RL scores that compose VRL, except they do not contain the token scores component,

since each IE scores only uses one token from the post at a time.

The RL scores vector:

RL scores(post, attribute)=<token scores(post, attribute),
edit scores(post, attribute),
other scores(post, attribute)>

becomes,

IE scores(token, attribute)=<edit scores(token, attribute),
other scores(token, attribute)>

The other main difference between VIE and VRL is that VIE contains a unique vector

that contains user defined functions, such as regular expressions, to capture attributes

that are not easily represented by reference sets, such as prices or dates. These attribute

types generally exhibit consistent characteristics that allow them to be extracted, and

they are usually infeasible to represent in reference sets. This makes traditional extraction

methods a good choice for these attributes. This vector is called common scores because

the types of characteristics used to extract these attributes are common enough between

them to be used for extraction.

Using the example from Figure 1.2, the reference set match is the tuple {“Holiday

Inn Select”,“University Center”}. This match generates the following VIE for the token

“univ.” of the post:

VIE=<common scores(“univ.”),
IE scores(“univ.”,“Holiday Inn Select”),
IE scores(“univ.”,“University Center”)>

More generally, for a given token, VIE looks like:
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VIE=<common scores(token),
IE scores(token, attribute1),
IE scores(token, attribute2)
. . . ,
IE scores(token, attributen)>

Each VIE is then passed to a multiclass SVM [30] trained to give it an attribute type

label, such as hotel name, hotel area, or price. Intuitively, similar attribute types should

have similar VIE vectors. The hotel names should generally have high scores against the

hotel name attribute of the reference set, and small scores against the other attributes.

Note that since each VIE is not a member of a cluster where the winner takes all, there

is no binary rescoring.

Since there are many irrelevant tokens in the post that should not be annotated, the

SVM learns that any VIE that does associate with a learned attribute type should be

labeled as “junk”, which can then be ignored. Without the benefits of a reference set,

recognizing junk is a difficult task because the characteristics of the text in the posts are

unreliable. For example, if extraction relies solely on capitalization and token location,

the junk phrase “Great Deal” might be annotated as an attribute. Many traditional

extraction systems that work in the domain of ungrammatical and unstructured text,

such as addresses and bibliographies, assume that each token of the text must be classified

as something, an assumption that cannot be made with posts.

However, labeling each token in isolation introduces the possibility that a junk token

will receive an incorrect class label. For example, if a junk token has enough matching

letters, it might be labeled as a hotel area. This leads to noisy tokens within the whole

hotel area annotation. Therefore, labeling tokens individually gives an approximation of

the data to be extracted.
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The extraction approach can overcome the problems of labeling the tokens in isolation

by comparing the whole extracted field to its analogue reference set attribute. Once all

of the tokens from a post are processed, whole attributes are built and compared to the

corresponding attributes from the reference set. This allows removal of the tokens that

introduce noise in the extracted attribute.

The removal of noisy tokens from an extracted attribute starts with generating two

baseline scores between the extracted attribute and the reference set attribute. One

is a Jaccard similarity, to reflect the token level similarity between the two attributes.

However, since there are many misspellings and such, an edit-distance based similarity

metric, the Jaro-Winkler metric, is also used. These baselines demonstrate how accurately

the system extracted/classified the tokens in isolation. Using the circled post from Figure

1.1, assume the phrase “holiday inn sel. univ. ctr.” was “holiday inn sel. in univ. ctr.”.

In this case, the system might extract “holiday inn sel. in” as the hotel name. In isolation,

the token “in” could be the “inn” of a hotel name. Comparing this extracted hotel name

to the reference attribute, “Holiday Inn Select,” generates a Jaccard similarity of 0.4 and

a Jaro-Winkler score of 0.87.

Next, the cleaning method goes through the extracted attribute, removing one token

at a time and calculating new Jaccard and Jaro-Winkler similarities. If both new scores

are higher than the baselines, that token becomes a removal candidate. Once all of

the tokens are processed in this way, the removal candidate with the highest scores is

removed, and the whole process is repeated. The scores derived using the removed token

then become the new baseline to compare against. The process ends when there are no

more tokens that yield improved scores over the baselines.
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In the example, the cleaning method finds that “in” is a removal candidate since

removing this token from the extracted hotel name yields a Jaccard score of 0.5 and a

Jaro-Winkler score of 0.92, which are both higher than the baseline scores. Since it has the

highest scores after trying each token in the iteration, it is removed and the baseline scores

update. Then, since none of the remaining tokens provide improved scores, the process

terminates, yielding a more accurate attribute value. This process is shown graphically

in Figure 3.1, and the pseudocode for the algorithm is shown in Figure 3.2.

Figure 3.1: Improving extraction accuracy with reference set attributes

Aside from increasing the accuracy of extraction, this approach can also disambiguate

possible attribute labels. For instance, a token might be both a hotel name and a hotel

area, but not both at the same time. The token “airport,” for example, could be part of
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Algorithm 3.0.1: CleanAttribute(E,R)

comment: Clean extracted attribute E using reference set attribute R

RemovalCandidates C ← null
JaroWinklerBaseline ← JaroWinkler(E,R)
JaccardBaseline ← Jaccard(E,R)
for each token t ∈ E

do



Xt ← RemoveToken(t, E)
JaroWinklerXt ← JaroWinkler(Xt, R)
JaccardXt ← Jaccard(Xt, R)

if


JaroWinklerXt>JaroWinklerBaseline

and
JaccardXt>JaccardBaseline

then
{
C ← C ∪ t

if

{
C = null
exit

else

{
E ← RemoveMaxCandidate(C)
CleanAttribute(E,R)

Figure 3.2: Algorithm to clean a whole extracted attribute
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a hotel name or a hotel area. In this case, the extraction process could label it as both

attribute types, and the above approach would remove the token from the attribute that

it is not. However, the current implementation assigns only one label per token, so this

disambiguation technique was not tested.

The whole extraction process takes a token of the text, creates the VIE and passes

this to the SVM which generates a label for the token. Then each field is cleaned up and

added as semantic annotation for the post. This produces the output shown at the end

of Figure 1.2. The whole procedure is produced graphically in Figure 3.3.

Figure 3.3: Extraction process for attributes
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Chapter 4

Results

A system named Phoebus was built to experimentally validate the overall algorithm

for semantic annotation. Specifically, Phoebus tests the technique’s accuracy in both

the alignment step and the extraction step. The experimental data, comes from three

domains of posts: hotels, comic books, and cars.

The data from the hotel domain contains the attributes hotel name, hotel area, star

rating, price and dates, which are extracted for annotation. This data comes from the

Bidding For Travel website1 which is a forum where users share successful bids for Price-

line on items such as airline tickets and hotel rates. The experimental data is limited

to postings about hotel rates in Sacramento, San Diego and Pittsburgh, which compose

a data set with 1125 posts. The reference set comes from the Bidding For Travel ho-

tel guides, which are special posts listing all of the hotels ever posted about in a given

area. These special posts provide hotel names, hotel areas and star ratings, which are

the reference set attributes. This reference set contains 132 records.

1www.biddingfortravel.com
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The experimental data for the comic domain comes from posts on EBay. To generate

this data set, Ebay was searched by the keywords “Incredible Hulk” and “Fantastic Four”

within the comic books for sale portion of the website (Although, this returned some

items that are not comics, such as t–shirts and some sets of comics not limited to those

searched for, thus making the problem more difficult.) The returned records contain the

attributes comic title, issue number, price, condition, publisher, publication year and the

description, which are extracted for annotation. (Note: the description is a few word

description commonly associated with a comic book, such as 1st appearance the Rhino.)

The total number of posts in this data set is 776. The comic domain reference set uses

data from the Comics Price Guide,2 which lists all of the Incredible Hulk and Fantastic

Four comics, as well as all of the possible comic book conditions. This yields two reference

sets, one for the conditions and one for the comics. The conditions reference set has 20

members. The Comic reference set has the attributes title, issue number, description,

and publisher and contains 918 records.

The cars data consists of posts made to Craig’s list3 regarding cars for sale. This

dataset came from the first 10 pages of posts on the cars-for-sale pages for the cities

of Los Angeles, San Francisco and New York City. Unfortunately, the reference set did

not cover all of the cars mentioned in the posts, so those posts that referred to missing

members of the reference set were removed. This is one limitation of the algorithm; there

needs to be a reference member for the approach to work. However, this problem is easily

overcome by incorporating multiple reference sets for full coverage. If a post did not

2http://www.comicspriceguide.com/
3www.craigslist.com
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refer to any reference set member, for example, a seller of automotive services or CarFax

reports, it was not removed from the reference set. This resulted in 855 posts, which were

annotated with the car make, the car model, the car trim, the year and the price. The

reference set for this domain came from the Edmunds website.4 The reference set contains

Acura, Honda, Hyundai, Isuzu, Lexus, Mazda, Mitsubishi, Nissan, Subaru, Suzuki and

Toyota cars and Sport-Utility-Vehicles from 1990 to 2003. This data set contains the

attributes car make, car model, trim and year and has 3171 records.

There are two small experimental differences with the cars domain from the other two.

The blocking method for the other two domains generated candidates based on common

n-grams. In the cars domain this produced huge numbers of candidates, invalidating

this as a blocking method for this data. Instead, Phoebus generated candidates using

common tokens between the post and just the model and year attributes of the reference

set, rather than all of the attributes. This reduced the number of candidates for each

post by an order of magnitude, which proved a much better blocking technique.

In fact, blocking with unstructured and ungrammatical text is an interesting problem.

Much like with record linkage, the lack of decomposed attributes and the extraneous junk

tokens make blocking using more sophisticated methods difficult. This is why simple

blocking was done using the set or subset of tokens with common tokens or n-grams.

Also, if such an annotation scheme is to annotate posts in real time as users enter them,

the blocking method must also be fast. Real-time blocking has not been considered much

in lieu of blocking methods that spend lots of time preprocessing the data so as to block

4www.edmunds.com
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as efficiently as possible. Real-time blocking on data without decomposed attributes and

with junk tokens is an area of future research.

Also, a strict 1-1 relationship between the post and reference set was enforced for

the other two domains, but not the cars domain. As described in Chapter 2, Phoebus

relaxed 1-1 relationship to form a 1-n relationship between the posts and the reference

set. Since many of the records do not contain enough attributes to discriminate a single

best reference member, such as posts that contain just a model and a year, any reference

set member with the matching year and model could be accurately used for extraction.

Also, the more restrictive blocking scheme eliminates most of the posts with no matches

because they do not generate any candidates. So this relaxation on the 1-to-1 mapping

does not introduce problems in that regard, as it might have in the other domains, where

the more relaxed blocking methods might errantly link a post that relates to no member

of the reference set to a few candidates.

For the experiments, posts in each domain are split into two folds, one for training

and one for testing, where the training fold is 30% of the total posts, and the testing fold

is the remaining 70%. The experiments are performed 10 times and the average results

for these 10 trials are reported.
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4.0.1 Alignment Results

Since this alignment approach hinges on leveraging reference sets, it becomes necessary

to show the alignment step performs well. To measure this accuracy, the experiments

employ the usual record linkage statistics:

Precision =
#CorrectMatches

#TotalMatchesMade

Recall =
#CorrectMatches

#PossibleMatches

F −Measure =
2 ∗ Precision ∗Recall

Precison + Recall

The record linkage approach in this thesis is compared to WHIRL [10]. WHIRL

performs record linkage by performing soft-joins using vector-based cosine similarities

between the attributes. Other record linkage systems require decomposed attributes for

matching which is not the case with the posts. WHIRL serves as the benchmark as it

does not have this requirement. To mirror the alignment task of Phoebus, the experiment

supplies WHIRL with two tables: the test set of posts (70% of the posts) and the reference

set with the attributes concatenated together to approximate a record level match. The

concatenation is also used because when matching on each individual attribute, it is not

obvious how to combine the matching attributes to construct a whole matching reference

set member.

To perform the record linkage, WHIRL does soft-joins across the tables, which pro-

duces a list of matches, ordered by descending similarity score. For each post that has
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matches from the join, the reference set member with the highest similarity score is called

its match.

The record linkage results for both Phoebus and WHIRL are shown in Table 4.1 and

all results are statistically significant using a two-tailed paired t-test with α=0.05. Phoe-

bus outperforms WHIRL because it uses many similarity types to distinguish matches.

Also, since Phoebus uses both a record level and attribute level similarities, it is able to

distinguish between records that differ in more discriminative attributes.

Prec. Recall F-measure
Hotel

Phoebus 93.60 91.79 92.68
WHIRL 83.52 83.61 83.13
Comic
Phoebus 93.24 84.48 88.64
WHIRL 73.89 81.63 77.57
Cars

Phoebus 93.15 99.57 96.53
WHIRL 75.18 40.46 51.86

Table 4.1: Record linkage results

4.0.2 Extraction Results

The extraction algorithm is also experimentally validated and compared against two other

information extraction methods.

First, the experiments compare Phoebus against Conditional Random Fields (CRF)

[19]. A Conditional Random Field is a probabilistic model that can label and segment

data. In labeling tasks, such as Part-of-Speech tagging, CRFs outperform Hidden Markov
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Models and Maximum-Entropy Markov Models and present a strong comparison repre-

senting these types of probabilistic graphical models [19]. CRFs have also been used

effectively for information extraction. For instance, CRFs have been used to combine

information extraction and coreference resolution with good results [32]. These exper-

iments use the Simple Tagger implementation of CRFs from the MALLET[22] suite of

text processing tools.

Second, the experiments also compare Phoebus to Natural Language Processing (NLP)

based extraction techniques. Since the posts are ungrammatical and have unreliable lexi-

cal characteristics, these NLP based systems are not expected to do as well on this type of

data. The Amilcare [8] system, which uses shallow NLP for extraction, has been shown to

outperform other symbolic systems in extraction tasks, and is used as the other system to

compare against. For the experiments, Amilcare receives the reference data as gazetteers.

Both Simple Tagger and Amilcare are used with default settings.

One component of the extraction vector VIE is the vector common scores, which in-

cludes user defined functions, such as regular expressions. Since these are the only domain

specific functions used in the algorithm, the common scores for each domain must be spec-

ified. For the hotel domain, the common scores includes the functions matchPriceRegex

and matchDateRegex. Each of these functions gives a positive score if a token matches a

price or date regular expression, and 0 otherwise. For the comic domain, common scores

contains the functions matchPriceRegex and matchYearRegex, which also give positive

scores when a token matches the regular expression. In the cars domain, common scores

uses the function matchPriceRegex.
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The extraction results are presented using Precision, Recall and F-Measure as defined

above. Tables 4.2, 4.3 and 4.4 show the results of correctly labeling the tokens within the

posts with the correct attribute label for the Hotel, Comic and Cars domains, respectively.

Attributes in italics are attributes that exist in the reference set. The column Freq shows

the average number of tokens that have the associated label.

Table 4.5 shows the results reported for all possible tokens, which is a weighted av-

erage, since some attribute types are more frequent than others. Also included in Table

4.5 are “field level” summary results. Field level results regard a piece of extracted infor-

mation as correctly labeled only if all of the tokens that should be present are, and there

are no extraneous tokens. In this sense, it is a harsh, all or nothing metric, but it is a

good measure of how useful a technique would really be.

The F-Measures were tested for statistical significance using a two-tailed paired t-test

with α=0.05. In Table 4.2 the only F-Measure difference that was not significant was

the Star attribute between Phoebus and Simple Tagger. In Table 4.3 the F-Measures

for Price were not significant between Phoebus and Simple Tagger and between Phoebus

and Amilcare. In Table 4.4 the Recall for Make was not significant between Phoebus and

Amilcare, the Recall for Year was not significant between Phoebus and Simple Tagger,

and the Precision for Price was not significant between Phoebus and Simple Tagger. In

Table 4.5 all differences in F-Measure proved statistically significant.

Phoebus outperforms the other systems on almost all attributes, and for all summary

results. The results are most striking in the cars domain, where some of the attributes,

such as trim and model were very difficult for the systems that lacked the extra knowledge

provided by the reference set.
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Hotel
Prec. Recall F-Measure Freq

Area Phoebus 89.25 87.5 88.28 809.7
Simple Tagger 92.28 81.24 86.39
Amilcare 74.20 78.16 76.04

Date Phoebus 87.45 90.62 88.99 751.9
Simple Tagger 70.23 81.58 75.47
Amilcare 93.27 81.74 86.94

Name Phoebus 94.23 91.85 93.02 1873.9
Simple Tagger 93.28 93.82 93.54
Amilcare 83.61 90.49 86.90

Price Phoebus 98.68 92.58 95.53 850.1
Simple Tagger 75.93 85.93 80.61
Amilcare 89.66 82.68 85.86

Star Phoebus 97.94 96.61 97.84 766.4
Simple Tagger 97.16 97.52 97.34
Amilcare 96.50 92.26 94.27

Table 4.2: Extraction results: Hotel domain

Comic
Prec. Recall F-Measure Freq

Condition Phoebus 91.80 84.56 88.01 410.3
Simple Tagger 78.11 77.76 77.80
Amilcare 79.18 67.74 72.80

Descript. Phoebus 69.21 51.50 59.00 504.0
Simple Tagger 62.25 79.85 69.86
Amilcare 55.14 58.46 56.39

Issue Phoebus 93.73 86.18 89.79 669.9
Simple Tagger 86.97 85.99 86.43
Amilcare 88.58 77.68 82.67

Price Phoebus 80.00 60.27 68.46 10.7
Simple Tagger 84.44 44.24 55.77
Amilcare 60.00 34.75 43.54

Publisher Phoebus 83.81 95.08 89.07 61.1
Simple Tagger 88.54 78.31 82.83
Amilcare 90.82 70.48 79.73

Title Phoebus 97.06 89.90 93.34 1191.1
Simple Tagger 97.54 96.63 97.07
Amilcare 96.32 93.77 94.98

Year Phoebus 98.81 77.60 84.92 120.9
Simple Tagger 87.07 51.05 64.24
Amilcare 86.82 72.47 78.79

Table 4.3: Extraction results: Comic domain
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Cars
Prec. Recall F-Measure Freq

Make Phoebus 99.96 97.53 98.73 459.4
Simple Tagger 95.66 86.01 90.56
Amilcare 92.34 96.82 94.51

Model Phoebus 98.35 94.70 96.49 514.2
Simple Tagger 94.25 79.57 86.28
Amilcare 83.71 76.18 79.73

Trim Phoebus 91.85 73.36 81.54 482.6
Simple Tagger 84.31 66.68 74.25
Amilcare 66.98 58.47 62.33

Year Phoebus 97.68 92.10 94.79 474.1
Simple Tagger 79.91 91.47 85.27
Amilcare 92.73 85.96 89.18

Price Phoebus 97.24 97.12 97.18 489.4
Simple Tagger 98.19 83.91 90.49
Amilcare 90.90 91.11 90.93

Table 4.4: Extraction results: Cars domain

Hotel
Token level Field level

Prec. Recall F-Mes. Prec. Recall F-Mes.
Phoebus 93.60 91.79 92.68 87.44 85.59 86.51
Simple Tagger 86.49 89.13 87.79 79.19 77.23 78.20
Amilcare 86.12 86.14 86.11 85.04 78.94 81.88

Comic
Token level Field level

Prec. Recall F-Mes. Prec. Recall F-Mes.
Phoebus 93.24 84.48 88.64 81.73 80.84 81.28
Simple Tagger 84.41 86.04 85.43 78.05 74.02 75.98
Amilcare 87.66 81.22 84.29 90.40 72.56 80.50

Cars
Token level Field level

Prec. Recall F-Mes. Prec. Recall F-Mes.
Phoebus 97.20 92.22 94.65 92.67 90.63 91.64
Simple Tagger 89.80 81.49 85.44 86.49 80.79 83.54
Amilcare 85.73 81.53 83.58 87.02 79.28 82.92

Table 4.5: Summary extraction results
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There were three attributes where Phoebus was outperformed, and two of these war-

rant remarks. (The hotel name was so similar it is ignored.) On Comic titles, Phoebus

had a much lower recall because it was unable to extract parts of titles that were not in

the reference set. Consider the post, “The incredible hulk and Wolverine #1 Wendigo”.

In this post, Phoebus extracts “The incredible hulk,” but the actual title is “The incred-

ible hulk and Wolverine.” In this case, the limited reference set hindered Phoebus, but

this could be corrected by including more reference set data, such as other comic book

price guides.

The Comic description is the other attribute where Simple Tagger outperformed Phoe-

bus. Simple Tagger learned that for the most part, there is an internal structure to de-

scriptions, such that they are almost never broken up in the middle. For instance, many

descriptions go from the token “1st” to a few words after, with nothing interrupting them

in the middle. Simple Tagger, then, would label all of these tokens as a description. How-

ever, lots of times it labeled too many. This way, it had a very high recall for description,

by labeling so much data, but it suffered in other categories by labeling things such as

conditions as descriptions too.

Phoebus had the highest level of precision for Comic descriptions, but it had a very low

recall because it ignored many of the description tokens. Part of this problem stemmed

from classifying tokens individually. Since many of the description tokens were difficult

to classify from a single token perspective, they were ignored as junk.

The overall performance of Phoebus validates this approach to semantic annotation.

By infusing information extraction with the outside knowledge of reference sets, Phoebus
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is able to perform well across three different domains, each representative of a differ-

ent type of source that would contain posts: the auction sites, internet classifieds and

forum/bulletin boards.
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Chapter 5

Discussion

One drawback when using supervised learning systems is the cost to label training data.

However, the entire algorithm generalizes well and can perform well with little training

data. To validate this point, consider Phoebus trained on 10% of the posts and tested

on the other 90% and compare these results to those when the system is trained with

30% of the data. Tables 5.1 and 5.2 present the token and field level summary extraction

results for both training set sizes. In all domains, the results are similar when the system

is trained with only 10% of the data as compared to training with 30%. As mentioned

previously, the hotel domain contains 1125 posts, the comic domain contains 776 posts

and the cars domain has 855 posts.

Prec. Recall F-measure
Hotel (30%) 93.60 91.79 92.68
Hotel (10%) 93.66 90.93 92.27
Comic (30%) 93.24 84.48 88.64
Comic (10%) 91.41 83.63 87.34
Cars (30%) 97.20 92.22 94.65
Cars (10%) 96.51 91.82 94.11

Table 5.1: Token level summary extraction results trained with 10% and 30% of the data
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Prec. Recall F-measure
Hotel (30%) 87.44 85.59 86.51
Hotel (10%) 86.52 84.54 85.52
Comic (30%) 81.73 80.84 81.28
Comic (10%) 79.94 76.71 78.29
Cars (30%) 92.67 90.63 91.64
Cars (10%) 92.08 90.31 91.19

Table 5.2: Field level summary extraction results trained with 10% and 30% of the data

Since the record linkage approach returns the reference set attributes as annotation,

this annotation requires validation. To do this, there needs to be a way to link the results

from performing record linkage to extraction results. Note one can consider the fact that

a correct match during record linkage is the same as correctly identifying those attributes

from the reference set in the post, at the field level. In the ongoing example from Figure

1.2, when the record linkage step matches the post to the reference member with a hotel

name of “Holiday Inn Select”, it is like extracting this hotel name from the post. Thus,

one can consider the record linkage results to be field level extraction results for the

attributes in the reference set.

Using the reference set attributes as annotation has some interesting implications.

For instance, the attributes from the reference set provide a standardized set of values

for querying the data. Also, returning reference set attributes for types not found in

the post provides information that might have been missing previously. As an example,

a post might leave out the star rating. Yet, now there exists one from the reference

set record upon which to query. Another interesting implication arises as a solution for

the cases where extraction is hard. None of the systems extracted the comic description

well. However, by including the reference set description, the record linkage results reflect
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how effectively the approach extracted (and thus labeled), a description. This yields an

improvement of over 20% for precision, and almost 10% for recall.

It may seem that using the reference set attributes for annotation is enough and that

extraction is unnecessary, but this is not the case. For one thing, one may want to see

the actual values entered for different attributes. For instance, a user might have interest

in discovering the most common spelling mistake or abbreviation for a attribute. Also,

there are cases when the extraction results outperform the record linkage results as seen

with the hotel name and star rating. This happens because even if a post is matched to

an incorrect member of the reference set, that incorrect member is most likely very close

to the correct match, and so it can be used to correctly extract much of the information.

As an example, there might be hotels with the same star rating and hotel name, but

with a different area. If this area is not included in the post or included in a convoluted

way the record linkage step might not get a correct match. However, the reference set

member could still be used to extract the hotel name and star rating.

Lastly, the more discriminative information passed to the SVM, the better it will

perform. Assume the only required extracted attributes are the price and date from hotel

posts, and the rest of the annotation came from the reference set. The SVM still benefits

in training it to extract the attributes of the reference set, because the SVM would then

know that by classifying a certain piece of information as a certain attribute, it is not

another piece of information. It is just as important to recognize what a token is not. For

example, consider a reference set hotel named “The $41 Inn.” Then when post matches

this reference set member, and the SVM sees the token “$41,” it knows that it is most
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likely a hotel name. If the SVM were not trained to extract all of the attributes, this

would be classified as a price, since the SVM has no notion of a hotel name.

Extraction on all of the attributes also helps the system to classify (and ignore) tokens

that are “junk”. Labeling something as junk is much more descriptive if it is labeled junk

out of many possible class labels that could share lexical characteristics. This helps to

improve the extraction results on items that are not in the reference set, as evidenced in

the results.

On the topic of reference sets, it is important to note that the algorithm is not tied

to a single reference set. The algorithm extends to include multiple reference sets by

iterating the process for each reference set used.

Consider the following two cases. First, suppose a user wants to extract conference

names and cities and she has individual lists of each. If the approach were tied to using

one reference set that would require constructing a reference set that contains the power

set of cities crossed with conference names. This approach would not scale for many

attributes from distinct sources. However, if these lists are used as two reference sets,

one for each attribute, the algorithm can run once with the conference name data, and

once with a reference set of cities. This iterative exploitation of the reference sets allows

for n reference set attributes to be added without a combinatorial explosion.

The next interesting case happens when a post contains more than one of the same

attribute. For example, a user needs to extract two cities from some post. If one reference

set is used, then it would include the cross product of all cities. However, using a single

reference set of city names can be done by slightly modifying the algorithm. The new

algorithm makes a first pass with the city reference set. During this pass, the record
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linkage match will either be one of the cities that matches best, or a tie between them.

In the case of a tie, just choose the first match. Using this reference city the system can

then extract the city from the post, and remove it from the post. Then the system simply

runs the process again, which will catch the second city, using the same, single reference

set. This could be repeated as many times as needed.

One issue that arises with reference sets is the discrepancy between user’s knowledge

and the domain experts who generally create the reference sets. In the cars domain,

for instance, users will interchangeably use the attribute values “hatchback,” “liftback,”

and “wagon.” The reference set never includes the term “liftback” which suggests it is a

synonym for hatchback used in common speech, but not in Edmund’s automobile jargon.

The term “wagon” is used by Edmunds, but it is not used for some of the cars that users

describe as “hatchbacks.” This implies there is a slight difference in meaning between

the two, according to the reference set authors.

Two issues arise from these discrepancies. The first is the users interchanging the

words can cause some problems for the extraction and for the record linkage, but this

could be overcome by incorporating some sort of thesaurus into the algorithm. During

record linkage, a thesaurus could expand certain attribute values used for matching, for

example including “hatchback” and “liftback” when the reference set attribute includes

the term “wagon.” However, there are some more subtle issues here. It is mostly not the

case that a “hatchback” is called a “wagon” but it does happen that a “wagon” is called

a “hatchback.” The frequency of replacement needs to taken into consideration so that

errant matches are not created. How to automate this would be a line of future research.

The other issue arises from the assumption that Edmunds is correct to define one car as
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a “wagon” which has a different meaning from classifying it as a “hatchback.” In fact,

Edmunds classifies the Mazda Protege5 as a “wagon,” while Kelly Blue Book1 classifies it

as a “hatchback.” This seems to invalidate the idea that “wagon” is different in meaning

from “hatchback.” They appear to be simple synonyms, but this would remain unknown

without the outside knowledge of Kelly Blue Book. More generally, one assumes that

the reference set is a correct set of standardized values, but this is not an absolute truth.

That is why the most meaningful reference sets are those that can be constructed from

agreed-upon ontologies from the Semantic Web. For instance, a reference set derived from

an ontology for cars created by all of the biggest automotive businesses should alleviate

many of the issues in meaning, and a thesaurus scheme could work out the discrepancies

introduced by the users, rather than the reference sets.

1www.kbb.com
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Chapter 6

Related Work

This research is motivated by the goal that the cost of annotating documents for the

Semantic Web should be free, that is, automatic and invisible to users [16]. Many re-

searchers have followed this path, attempting to automatically mark up documents for

the Semantic Web, as proposed here [7, 13, 15, 31]. However, these systems rely on lexical

information, such as part-of-speech tagging or shallow Natural Language Processing to

do their extraction/annotation (e.g. Amilcare [8]). This is not an option when the data

is ungrammatical, like the post data. In a similar vein, there are systems such as ADEL

[21] which rely on the structure to identify and annotate records in web pages. Again,

the failure of the posts to exhibit structure makes this approach inappropriate. So, while

there is a fair amount of work in automatic labeling, there is not much emphasis on

techniques that could do this on text that is unstructured and ungrammatical.

While the idea of record linkage is not new [14] and is well studied even now [3], most

of the focus for this work matches one set of records to another set of records based on

their decomposed attributes. There is little work on matching data sets where one record

is a single string composed of the other data set’s attributes to match on, as in the case
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with posts and reference sets. The WHIRL system [10] allows for record linkage without

decomposed attributes, but as shown in Section 4.1 Phoebus outperforms WHIRL, since

WHIRL relies solely on the vector-based cosine similarity between the attributes, while

Phoebus exploits a larger set of features to represent both field and record level similarity.

Using the reference set’s attributes as normalized values is similar to the idea of data

cleaning. However, most of the data cleaning algorithms assume that there are tuple-to-

tuple transformations [20, 6]. That is, there is some function that maps the attributes of

one tuple to the attributes of another. This approach would not work on ungrammatical

and unstructured data, where all of the attributes are embedded within the post, which

maps to a set of attributes from the reference set.

Information extraction can semantically annotate data, which is why the experiments

compare the technique of this thesis to other IE approaches, such as the Simple Tagger

Conditional Random Field [22]. Other IE approaches, such as Datamold [4] and CRAM

[1], segment whole records (like bibliographies) into attributes. However, both of these

systems require that every token of a record receive a label, which is not possible with

posts that are filled with irrelevant tokens. CRAM is also similar in its use of reference

sets for extraction. However, they assume that the reference set members already match

the data for extraction, while Phoebus does this record linkage automatically. Another IE

approach similar to ours performs named entity recognition using a dictionary component

[9]. However, this technique requires that entire segments have the same class label, while

the extraction approach of this thesis can handle the case where an attribute is broken

up in the middle by another attribute, say a hotel name interrupted by a hotel area.
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Chapter 7

Conclusion

This thesis presented an algorithm for semantically annotating text that is ungrammatical

and unstructured. This technique provides much more utility to data sources that are full

of information, but cannot support structured queries. Using this approach, Ebay agents

could monitor the auctions looking for the best deals, or a user could find the average

price of a four star hotel in San Diego. This approach to semantic annotation is necessary

as society transitions into the Semantic Web, where information needs annotation for

software systems to use it, but users are unwilling to do the extra work to provide the

required annotation.

In the future, this technique could link with a mediator [29] framework for automat-

ically acquiring reference sets. This is similar to automatically incorporating secondary

sources for record linkage [23]. How to automatically formulate a query to retrieve the

correct domain reference set is a direction of future research. With a mediator framework

in place, Phoebus could incorporate as many reference sets as needed for full coverage of

possible attribute values and attribute types.
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Unsupervised approaches to record linkage and extraction are also topics of future

research. By including unsupervised record linkage and extraction with a mediator com-

ponent, the approach would be entirely self-contained, making semantic annotation of

posts as simple as starting the process. Also, the current implementation only gives one

class label per token. Ideally Phoebus would give a token all possible labels, and then

remove the extraneous tokens when the systems cleans up the attributes, as described in

Section 3. This disambiguation should lead to much higher accuracy during extraction.

As other future lines of work, it seems appropriate to investigate the inclusion of

thesauri for terms in the attributes, with the frequency of replacement of the terms taken

into consideration. Also technologies that automatically construct the reference sets (and

eventually thesauri) from the numerous ontologies that exist on the Semantic Web is a

desired research path.

The long term goal for this work involves automating the entire process. If the record

linkage and extraction methods could become unsupervised, a line of future work as well,

then the system could automatically generate and incorporate the reference sets, and then

apply them to automatically annotate the data source. This would be an ideal approach

for making the Semantic Web more useful with no user involvement.
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