
International Journal of Document Analysis and Recognition (IJDAR) manuscript No.
(will be inserted by the editor)

Matthew Michelson · Craig A. Knoblock

Unsupervised Information Extraction from Unstructured,
Ungrammatical Data Sources on the World Wide Web

Received: March 2007 / Accepted: August 2007

Abstract Information extraction from unstructured, un-
grammatical data such as classified listings is difficult
because traditional structural and grammatical extrac-
tion methods do not apply. Previous work has exploited
reference sets to aid such extraction, but it did so using
supervised machine learning. In this paper, we present
an unsupervised approach that both selects the relevant
reference set(s) automatically and then uses it for un-
supervised extraction. We validate our approach with
experimental results that show our unsupervised extrac-
tion is competitive with supervised machine learning ap-
proaches, including the previous supervised approach that
exploits reference sets.

Keywords Information Extraction · Unsupervised ·
Semantic Annotation · Information Integration ·
Unstructured Data Sources

This research is based upon work supported in part by the
National Science Foundation under Award No. IIS-0324955,
in part by the Air Force Office of Scientific Research un-
der grant numbers FA9550-04-1-0105 and FA9550-07-1-0416,
and in part by the Defense Advanced Research Projects
Agency (DARPA), through the Department of the Inte-
rior, NBC, Acquisition Services Division, under Contract
No. NBCHD030010. The U.S. Government is authorized
to reproduce and distribute reports for Governmental pur-
poses notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person con-
nected with them.

Matthew Michelson
University of Southern California
Information Sciences Institute
Tel.: +1-310-448-8719
Fax: +1-310-822-0751
E-mail: michelso@isi.edu

Craig A. Knoblock
University of Southern California
Information Sciences Institute
Tel.: +1-310-448-8786
Fax: +1-310-822-0751
E-mail: knoblock@isi.edu

1 Introduction

The huge amounts of unstructured and ungrammatical
data on the World Wide Web could be useful if the infor-
mation contained within them could be extracted. Exam-
ples of such data sources are internet classified listings,
such as those on Craigslist,1 internet auction listings such
as those found on eBay, or internet forum postings like
those posted to the Bidding For Travel forum.2 We con-
sider all of the listings within these sources as “posts.”
Figure 1 shows example posts from Craigslist. In the cir-
cled post we want to extract 02 as the year, M3 as the
car model, and Convertible as part of the trim.

Fig. 1 Posts from Craigslist

However, information extraction from posts poses dif-
ficulties. The posts are not structured enough for wrap-
per methods, such as HLRT wrappers [11]. Neither are
the posts grammatical enough to support natural lan-
guage based techniques, such as Amilcare [5]. In previ-
ous work, the Phoebus system [17] exploited reference
sets to overcome these challenges. A reference set is a
relational data set that contains entities and their at-
tributes. An example of a reference set is a set of cars,
each with a make, model, and year. The Phoebus algo-
rithm exploits the reference set by first matching each

1 www.craigslist.org
2 www.BiddingForTravel.com

2 Matthew Michelson, Craig A. Knoblock

post to the members of the reference set, and then us-
ing the attributes from these matching members to aid
the extraction. The main benefit of Phoebus is its abil-
ity to extract attributes without any assumptions about
the structure of the text, because it does not consider
grammar or structure for extraction.

However, the Phoebus system is limited because it
requires much user input. First, the user provides the
reference set. Then, the user labels matches between the
posts and the members of the reference set. Finally, the
user labels examples of the extracted attributes. Only
after training, can the Phoebus system extract data from
unstructured, ungrammatical data sources.

This paper presents an alternative, unsupervised ap-
proach to exploiting reference sets for extraction. Using
reference sets allows for unsupervised extraction with-
out any structural assumptions on the text. Our con-
tributions replace each supervised step of the Phoebus
algorithm with an unsupervised alternative, relieving the
human dependence from all aspects of Phoebus’ extrac-
tion algorithm. This operation improves the scalability,
cost, and robustness of extraction. In our approach, first
the reference sets are selected by the system from a grow-
ing repository of many reference sets. After choosing the
reference sets, the system selects the matches using a
vector-space model and performs the extraction in an
unsupervised manner.

This work extends our previous work on unsuper-
vised semantic annotation of unstructured sources [18].
In that work we used the average values of string simi-
larities as one of the splitting criteria for finding matches
versus non-matches between the reference set and the set
of posts. In this work, we remove that restriction. Fur-
thermore, we present extensive experiments in this pa-
per investigating and justifying different heuristic choices
such as thresholds and similarity metrics. In some cases,
we are able to make generalizations about the types of
similarity metrics that should be used at different steps
in our approach. Lastly, we extend our previous work
by describing how to collect reference sets automatically
and how to use the technique presented in this paper to
automatically include the unstructured, ungrammatical
data sources in information integration systems.

Unsupervised Information Extraction (UIE) has re-
cently witnessed significant progress [3,10,21]. However,
current work on UIE relies on the redundancy of the
extractions to learn patterns in order to make further
extractions. Such patterns rely on the assumption that
similar structures will occur again to make the learned
extraction patterns useful. Initially, the approaches can
be seeded with manual rules [3], example extractions [21],
or sometimes nothing at all, relying solely on redun-
dancy [10]. Regardless of how the extraction process starts,
extractions are validated via redundancy, and they are
then used to generalize patterns for extractions.

This approach to UIE differs from ours in important
ways. First, the use of patterns makes assumptions about

the structure of the data. We cannot make any struc-
tural assumptions because our target data for extraction
is defined by its lack of structure and grammar. Sec-
ond, since these systems are not clued into what can
be extracted, they rely on redundancy for their confi-
dence in their extractions. In our case, our confidence
in the extracted values comes from their similarity to
the reference-set attributes exploited during extraction.
Lastly, the goals differ. Previous UIE systems seek to
build knowledge bases through extraction. For instance,
they aim to find all types of cars on the Web. Our extrac-
tion creates relational data, which allows us to classify
and query posts. For this reason, we believe the previous
work complements ours well because we could use their
techniques to automatically build our reference sets.

2 Unsupervised Extraction of Unstructured,
Ungrammatical Data

Our algorithm for unsupervised information extraction
of unstructured, ungrammatical data has three distinct
steps. Given a set of posts, the first step is to have the
system choose the applicable reference sets from a repos-
itory of reference sets. Once the reference sets are chosen,
the system must then match each post to members of the
reference set, which allows it to use these members’ at-
tributes as clues to aid in the extraction. Finally, the
system exploits these reference-set attributes to perform
the unsupervised extraction.

2.1 Automatically Choosing the Reference Sets

Because our repository of reference sets grows over time,
the system should choose the reference sets to exploit for
a given set of posts. The algorithm chooses the reference
sets based on the similarity between the set of posts and
the reference sets in the repository. Intuitively, the most
appropriate reference set is the one with the most useful
tokens in common with the posts. For example, if we
have a set of posts about cars, we expect a reference set
with car makes, such as Honda or Toyota, to be more
similar to the posts than a reference set of hotels.

To choose the reference sets, we treat each reference
set in the repository as a single document and the set
of posts as a single document. We calculate a similarity
score between each reference set and the set of posts.
Then, we sort the similarity scores in descending order,
and traverse this list, computing the percent difference
between the current similarity score and the next. If this
percent difference is above a threshold, and the score
of the current reference set is greater than the aver-
age similarity score for all reference sets, the algorithm
terminates. Upon termination, the algorithm returns as
matches the current reference set and all reference sets

Unsupervised Information Extraction from Unstructured, Ungrammatical Data Sources on the World Wide Web 3

that preceded it. If the algorithm traverses all of the ref-
erence sets without terminating, then no reference sets
are relevant to the posts. Table 1 shows the algorithm.

Table 1 Automatically choosing a reference set

Given posts P , threshold T , and reference set repository R
p← SingleDocument(P)
For all reference sets ref ∈ R

ri ← SingleDocument(ref)
SIM(ri, p)← Similarity(ri, p)

For all SIM(ri, p) in descending order
If PercentDiff (SIM(ri, p), SIM(ri+1, p)) > T AND
SIM(ri, p) > AV G(SIM(R, p))

Return SIM(rx, p), 1 > x > i
Return nothing (No matching reference sets)

We use the percent difference as the splitting crite-
rion between the relevant and irrelevant reference sets
because it is a relative measure. Comparing only the ac-
tual similarity values might not capture how much better
one reference set is as compared to another. Further, we
require that the score at the splitting point be higher
than the average score. This requirement is needed in
cases where the scores are so small at the end of the list
that their percent differences can suddenly increase, even
with a small difference in score. This difference does not
mean that we have found relevant reference sets, rather
it just means that the next reference set is that much
worse than the current, bad one.

By treating each reference set as a single document,
the algorithm of Table 1 scales linearly with the size of
the repository. That is, each reference set in the reposi-
tory is scored against the posts only once. Furthermore,
as the number of reference sets increases, the percent
difference still determines which reference sets are rele-
vant. If an irrelevant reference set is added to the repos-
itory, it will score low, so it will still be relatively that
much worse than the relevant one. If a new relevant set
is added, the percent difference between the new one and
the one already chosen will be small, but both of them
will still be much better than the irrelevant sets in the
repository. Thus, the percent difference remains a good
splitting point.

We do not require a specific similarity measure for
this algorithm. Instead, our experiments of Section 3
find that certain classes of similarity metrics can perform
well. So, rather than picking just one as the best we try
many different metrics and draw conclusions about what
types of similarity scores should be used and why.

2.2 Matching Posts to the Reference Set

After choosing the relevant reference sets, the algorithm
matches each post to the best matching members of the
reference set. When selecting multiple reference sets, the
matching algorithm executes iteratively, matching the

set of posts once to each chosen reference set. However,
if two chosen reference sets have the same schema, we
only select the higher ranked one to prevent redundant
matching.

To match the reference set records to the posts, we
employ a vector-space model. Using a vector-space model,
rather than machine learning, makes the algorithm un-
supervised. Furthermore, a vector-space model allows us
to use information-retrieval techniques such as inverted
indexes, which are fast and scalable.

In our model, we treat each post as a query and each
record of the reference set as a document, and we use
a token-based similarity to define their likeness. Again,
we do not tie this part of the algorithm to a specific
similarity metric because we find a class of token-based
similarity metrics works well, which we justify in our
experiments.

However, for our algorithm we modify the similarity
metrics we use. Our modification considers two tokens as
matching if their Jaro-Winkler [25] similarity is greater
than a threshold. For example, consider the classic Dice
similarity, defined over a post p and a record of the ref-
erence set r, as:

Dice(p, r) =
2 ∗ (p ∩ r)
|p|+ |r|

If the threshold is 0.95, two tokens are put into the
intersection of the modified Dice similarity if those two
tokens have a Jaro-Winkler similarity above 0.95. This
Jaro-Winkler modification captures tokens that might
be misspelled or abbreviated, which is common in posts.
The underlying assumption of the Jaro-Winkler metric
is that certain attributes are more likely similar if they
share a certain prefix. This works particularly well for
proper nouns, which many reference set attributes are,
such as “Honda Accord” cars. Using our modified simi-
larity metric, we compare each post, pi, to each member
of the reference set and return the reference set records
with the maximum score, called rmaxi

. In our experi-
ments, we vary this threshold to test its effect on the
performance of matching the posts. We also justify us-
ing the Jaro-Winkler metric to modify the Dice similar-
ity, rather than another edit distance metric.

However, because more than one reference set record
can have a maximum similarity score with a post (rmaxi

is a set), an ambiguity problem exists with the attributes
provided by the reference set records. For example, con-
sider a post “Civic 2001 for sale, look!” If we have the fol-
lowing 3 matching reference records: {HONDA, CIVIC,
4 Dr LX, 2001}, {HONDA, CIVIC, 2 Dr LX, 2001} and
{HONDA, CIVIC, EX, 2001}, then we have an ambi-
guity problem with the trim. We can confidently assign
HONDA as the make, CIVIC as the model, and 2001
as the year, because all of the matching records agree
on these attributes. We say that these attributes are “in
agreement.” Yet, there is disagreement on the trim be-
cause we cannot determine which value is best for this

4 Matthew Michelson, Craig A. Knoblock

attribute. All the reference records are equally accept-
able from the vector-space perspective, but they differ
in value for this attribute. Therefore, we remove from
our annotation all attributes that do not agree across
all matching reference set records (e.g., the trim in our
example). Once this process executes, we have all of the
attributes from the reference set that we can use for ex-
traction. The full algorithm is shown in Table 2.

Table 2 Vector-space approach to finding attributes in
agreement

Given posts P and reference set R
For all pi ∈ P

rmaxi ← MAX(SIM (pi,R))
Remove attributes not in agreement from rmaxi

Selecting all the reference records with the maxi-
mum score, without pruning possible false positives, in-
troduces noisy matches. These false positives occur be-
cause posts with small similarity scores still ‘match’ cer-
tain reference set records. For instance, the post “We
pick up your used car” matches the Renault Le Car,
Lincoln Town Car, and Isuzu Rodeo Pick-up, albeit with
small similarity scores. However, since none of these at-
tributes are in agreement, this post gets no annotation.
Therefore, by using only the attributes in agreement, we
essentially eliminate these false positive matches because
no annotation will be returned for this post. That is, be-
cause no annotation is returned for such posts, it is as
if there are no matching records for it. In this manner,
by using only the attributes “in agreement,” we separate
the true matches from the false positives.

Once we have matched the posts to a reference set,
we can query the posts structurally, as we would a data-
base. This is a tremendous advantage over the traditional
keyword search approach to searching unstructured, un-
grammatical text. For example, keyword search cannot
return records for which an attribute is missing, whereas
our approach can. If a post were “2001 Accord for sale,”
and the keyword search was Honda, this record would
not be returned. However, after matching posts to the
reference set, if we select all records where the matched-
reference-set attribute is “Honda” this record would be
returned. Another benefit of matching the posts is that
aggregate queries are possible. This mechanism is not
supported by keyword search.

Perhaps one of the most useful aspects of matching
posts to the reference set is that we can include the posts
in an information-integration system (e.g., [14,24]). In
particular, our approach is well suited for Local-as-View
(LAV) information integration systems [13], which allow
for easy inclusion of new sources by defining their “source
description” as a view over known domain relations. For
example, let us say we have a reference set of cars from
Edmunds car buying guide for the years 1990-2005, in

our repository. If we include this source in an LAV inte-
gration system, the source description is:

Edmunds(make, model, year, trim) :-
Cars(make, model, year, trim) ∧
year ≥ 1995 ∧ year ≤ 2005

Now, let us assume a set of posts comes in and we
match them to the records of this Edmunds source. We
had no idea previously how to include this source in our
integration system, but after matching we can use the
same source description of the matching reference set,
along with a variable to output the “post” attribute, to
define a source description of our unstructured, ungram-
matical source. We can do this because we are appending
records from the unstructured source with the attributes
in agreement from the reference set matches. So, the new
source description becomes:

UnstructuredSource(post, make, model, year, trim) :-
Cars(make, model, year, trim) ∧
year ≥ 1995 ∧ year ≤ 2005

In this manner, we can collect and include new sources
of unstructured, ungrammatical text in LAV information
integration systems without human intervention.

2.3 Unsupervised Extraction

Sometimes a user wants to see the actual extracted val-
ues for a given attribute, rather than the reference set
attribute from the matching record. Therefore, once the
system retrieves the attributes in agreement from the
reference set matches, it exploits these attributes for in-
formation extraction. First, for each post, each token is
compared to each of the attributes in agreement from the
matches. The token is labeled as the attribute for which
it has the maximum Jaro-Winkler similarity. We label a
token as ‘junk’ if it receives a score of zero against all
reference-set attributes.

However, this initial labeling generates noise because
the attributes are labeled in isolation. To remedy this, we
use our modified Dice similarity, and generate a baseline
score between the extracted field and the reference-set
field. Then, we go through the extracted attribute, re-
moving one token at a time, and calculate a new Dice
similarity value. If this new score is higher than the base-
line, the removed token is a candidate for permanent
removal. Once all tokens are processed in this way, the
candidate for removal that yielded the highest new score
is removed. Then, we update the baseline to the new
score, and repeat the process. When none of the tokens
yield improved scores when removed, this process termi-
nates. This cleaning is shown in Table 3. For this part of
the algorithm, we use the modified Dice since our exper-
iments in the annotation section show this to be one of

Unsupervised Information Extraction from Unstructured, Ungrammatical Data Sources on the World Wide Web 5

the best performing similarity metrics. Note, our unsu-
pervised extraction is O(‖p‖2) per post, where ‖p‖ is the
number of tokens in the post, because, at worst, all to-
kens are initially labeled, and then each one is removed,
one at a time. However, because most posts are relatively
short, this running time is acceptable.

The whole multi-pass procedure for unsupervised ex-
traction is shown in Figure 2. By exploiting reference
sets, we perform unsupervised information extraction
without assumptions regarding repeated structure in the
data.

Table 3 Cleaning an extracted attribute

CLEAN-ATTRIBUTE(extracted attribute E, reference set attribute A)
ExtCands ← {}
baseline ← DICE(E,A)
For all tokens ei ∈ E

score ← DICE(E/ei,A)
IF score > baseline

ExtCands ← ExtCands ∪ ei

IF ExtCands is empty
return E

ELSE
select ci ∈ ExtCands that yieds max score
CLEAN-ATTRIBUTE(E/ci,A)

Fig. 2 Unsupervised extraction with reference sets

3 Experimental Results

This section presents results for our unsupervised ap-
proach to selecting a reference set, finding the attributes
in agreement, and exploiting these attributes for extrac-
tion. Before examining the results, we describe the ref-
erence sets and posts used in testing.

3.1 Reference Sets

We use six reference sets, most of which have been used in
the past. First, we use the Hotels reference set from [17],
which consists of 132 hotels each with a star rating, a

hotel name, and a local area. Another reference set from
the same paper is the Comics reference set, which has
918 Fantastic Four and Incredible Hulk comics from the
Comic Books Price guide, each with a title, issue num-
ber, and publisher. We also use two restaurant reference
sets, which were both used previously for record link-
age [2]. One we call Fodors, which contains 534 restau-
rant records, each with a name, address, city, and cuisine.
The other is Zagat, with 330 records.

We also have two reference sets of cars. The first,
called Cars, contains 20,076 cars from the Edmunds Car
Buying Guide for 1990-2005. The attributes in this set
are the make, model, year, and trim. We supplement
this reference set with cars from before 1990, taken from
the auto-accessories company, Super Lamb Auto. This
supplemental list contains 6,930 cars from before 1990.
We call this combined set of 27,006 records the Cars
reference set. The other reference set of cars also has
the attributes make, model, year, and trim. However,
it is a subset of the cars covered by Cars. This data
set comes from the Kelly Blue Book car pricing service
containing 2,777 records for Japanese and Korean cars
from 1990-2003. We call this set KBBCars. This data set
has also been used in the record linkage community [20].
A summary of the reference sets is given in Table 4.

3.2 Post Sets

We chose sets of posts to test different cases that exist for
finding the appropriate reference sets. One set of posts
matches only a single reference set in our collection. It
contains 1,125 posts from the forum Bidding For Travel.
These posts, called BFT, match only the Hotels reference
set. This data set was used previously in [17].

Because our approach can also select multiple rele-
vant reference sets, we use a set of posts that matches
both reference sets of cars. This set, which we call Craig’s
Cars, contains 2,568 car posts from Craigslist classifieds.
Note that while there may be multiple, appropriate ref-
erence sets, they also might have an internal ranking. In
this case we expect that both the Cars and KBBCars
reference sets are selected, but Cars should be ranked
first.

Lastly, we must examine whether the algorithm sug-
gests that no relevant reference sets exist in our reposi-
tory. To test this feature, we collected 1,099 posts about
boats from Craigslist, called Craig’s Boats. Boats are
similar enough to cars to make this task non-trivial, be-
cause boats and cars are both made by Honda, for ex-
ample, so that keyword appears in both sets of posts.
However, boats also differ from each of the reference sets
so that no reference set should be selected. All three sets
of posts are summarized in Table 5.

6 Matthew Michelson, Craig A. Knoblock

Table 4 Reference Set Descriptions

Name Source Website Attributes Records
Fodors Fodors Travel Guide www.fodors.com name, address, city, cuisine 534
Zagat Zagat Restaurant Guide www.zagat.com name, address, city, cuisine 330
Comics Comics Price Guide www.comicspriceguide.com title, issue, publisher 918
Hotels Bidding For Travel www.biddingfortravel.com star rating, name, local area 132
Cars Edmunds and www.edmunds.com and make, model, trim, year 27,006

Super Lamb Auto www.superlambauto.com
KBBCars Kelly Blue Book Car Prices www.kbb.com make, model, trim, year 2,777

Table 5 Posts Set Descriptions

Name Source Website Reference Set Match Records
BFT Bidding For Travel www.biddingfortravel.com Hotels 1,125
Craig’s Cars Craigs List Cars www.craigslist.org Cars, KBBCars 2,568
Craig’s Boats Craigs List Boats www.craigslist.org 1,099

3.3 Results

As stated previously, our algorithm for choosing the ref-
erence sets is not tied to a particular similarity function.
Rather, we apply the algorithm using many different sim-
ilarity metrics and draw conclusions about which ones
work best and why. This gives us an idea of what types
of metrics we can plug in and have the algorithm perform
accurately. Note that for the following metrics: Jensen-
Shannon distance, Jaro-Winkler similarity, TF/IDF, and
Jaro-Winkler TF/IDF, we use the SecondString pack-
age’s implementation [6].

The first metric we use is the Jensen-Shannon dis-
tance (JSD) [15]. This information-theoretic metric quan-
tifies the difference in probability distributions between
the tokens in the reference set and those in the set of
posts. Because JSD requires probability distributions,
we define our distributions as the likelihood of tokens
occurring in each document.

Table 6 shows our results for choosing relevant ref-
erence sets using JSD. The reference set names in bold
reflect those that are chosen as appropriate. (This means
Craig’s Boats should have no bold names.) The scores in
bold are the similarity scores for the chosen reference
sets. The percent difference in bold is the point at which
the algorithm breaks out and returns the appropriate
reference sets. In particular, using JSD we successfully
identify the multiple cases where we might have a single
appropriate reference set, multiple reference sets, or no
reference set. Note that, in all experiments we maintain
the percent difference splitting threshold at 0.6.

The next metric we use is cosine similarity using
TF/IDF for the weights. These results are shown in Ta-
ble 7. Similarly to JSD, TF/IDF is able to identify all of
the cases correctly. However, in choosing both car refer-
ence sets for the Craig’s Cars posts, TF/IDF incorrectly
determines the internal ranking, placing KBBCars ahead
of Cars. This is probably due to the IDF weights that are
calculated for the reference sets. Although we treat the
set of posts and the reference set as a single document
for comparison, the IDF weights are based on individual

Table 6 Using Jensen-Shannon distance as similarity mea-
sure

BFT Posts Craig’s Cars
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.622 2.172 Cars 0.520 0.161
Fodors 0.196 0.050 KBBCars 0.447 1.193
Cars 0.187 0.248 Fodors 0.204 0.144
KBBCars 0.150 0.101 Zagat 0.178 0.365
Zagat 0.136 0.161 Hotels 0.131 0.153
Comics 0.117 Comics 0.113
Average 0.234 Average 0.266

Craig’s Boats
Ref. Set Score % Diff.
Cars 0.251 0.513
Fodors 0.166 0.144
KBBCars 0.145 0.088
Comics 0.133 0.025
Zagat 0.130 0.544
Hotels 0.084
Average 0.152

records in the reference set. Therefore, since Cars is a
superset of KBBCars, certain tokens are weighted more
in KBBCars than in Cars, resulting in higher matching
scores. These results also justify the need for a double
stopping criterion. It is not sufficient to only consider
the percent difference as an indicator of relative superi-
ority amongst the reference sets. The scores must also
be compared to an average to ensure that the algorithm
does not errantly choose a bad reference set simply be-
cause it is relatively better than an even worse one. The
last two rows of the Craig’s Boats posts and the BFT
Posts in Table 7 show this behavior.

We also tried a simpler bag-of-words metric that does
not use any sort of token probabilities or weights. To do
this, we use the Jaccard similarity, which is defined as
the tokens in common divided by the union of the token
sets. That is, given token set S and token set T , Jaccard
is:

Jaccard(S, T) =
S ∩ T

S ∪ T
(1)

The results using the Jaccard similarity are shown
in Table 8. One of the most surprising aspects of these

Unsupervised Information Extraction from Unstructured, Ungrammatical Data Sources on the World Wide Web 7

Table 7 Using TF/IDF as the similarity measure

BFT Posts Craig’s Cars
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.500 1.743 KBBCars 0.122 0.239
Fodors 0.182 0.318 Cars 0.099 1.129
Comics 0.134 0.029 Zagat 0.046 0.045
Zagat 0.134 0.330 Fodors 0.044 0.093
Cars 0.100 1.893 Comics 0.041 0.442
KBBCars 0.035 Hotels 0.028
Average 0.182 Average 0.063

Craig’s Boats
Ref. Set Score % Diff.
Cars 0.200 0.189
Comics 0.168 0.220
Fodors 0.138 0.296
Zagat 0.107 0.015
KBBCars 0.105 0.866
Hotels 0.056
Average 0.129

results is that the Jaccard similarity actually does pretty
well. It gets all but one of the cases correct. It is able
to link the BFT Posts to the Hotels set only and it is
able to determine that no reference set is appropriate for
the Craig’s Boats posts. However, with the Craig’s Cars
posts, it is only able to determine one of the reference
sets. It ranks the Fodors and Zagat restaurants ahead
of KBBCars because the restaurants have city names in
common with some of the classified car listings. However,
it is unable to determine that city name tokens are not
as important as car makes and models. This is a problem
if, for instance, the post is small and it contains a few
more city name tokens than car tokens.

Table 8 Using Jaccard as the similarity measure

BFT Posts Craig’s Cars
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.272 1.489 Cars 0.207 1.339
Comics 0.109 0.166 Fodors 0.088 0.126
Fodors 0.094 0.004 Zagat 0.078 0.005
Zagat 0.093 0.640 KBBCars 0.078 0.089
Cars 0.057 0.520 Comics 0.072 2.536
KBBCars 0.037 Hotels 0.020
Average 0.110 Average 0.091

Craig’s Boats
Ref. Set Score % Diff.
Cars 0.129 0.366
Comics 0.095 0.347
Fodors 0.070 0.112
Zagat 0.063 0.261
KBBCars 0.050 1.917
Hotels 0.017
Average 0.071

Lastly, we investigate whether requiring that tokens
match strictly, as in the above metrics, is more useful
than a soft matching technique that considers tokens
matching based on string similarities. To test this idea we
use a modified version of TF/IDF where tokens are con-
sidered a match when their Jaro-Winkler score is greater
than 0.9. These results are shown in Table 9. This met-
ric is able to correctly retrieve the reference set for the

BFT Posts, and for the Craig’s Boats posts this met-
ric chooses no appropriate reference set. However, for
the Craig’s Boats case, this metric is close to returning
many incorrect reference sets since with the Zagat refer-
ence set the score is very close to the average while the
percent difference is huge. The largest failure is with the
Craig’s Cars posts. For this set of posts the ordering of
the reference sets is correct because the Cars and KB-
BCars have the highest scores, but no reference set is
chosen because the percent difference is never above the
threshold with a similarity score above the averge. The
percent differences are low because of the soft nature of
the token matching. For example, the Comics contains
many matches because the issue number of the comics,
such as #99, #199, #299, etc. match an abbreviated car
year in a post such as ’99. So, the similarity scores be-
tween the cars and comics reference sets are close. From
these sets of results we see that it is better to have strict
token matches, although they may be less frequent. The
strict nature of the matches ensures that the tokens par-
ticular to a reference set are used for matches, which
helps differentiate reference sets.

Table 9 Using Jaro-Winkler TF/IDF as the similarity mea-
sure

BFT Posts Craig’s Cars
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.593 1.232 Cars 0.699 0.174
Fodors 0.266 0.173 KBBCars 0.595 0.174
Zagat 0.227 0.110 Comics 0.505 0.050
Cars 0.204 0.068 Fodors 0.481 0.107
Comics 0.191 0.777 Zagat 0.435 0.948
KBBCars 0.108 Hotels 0.223
Average 0.265 Average 0.490

Craig’s Boats
Ref. Set Score % Diff.
Cars 0.469 0.096
Comics 0.428 0.106
Fodors 0.387 0.110
KBBCars 0.349 0.082
Zagat 0.322 1.212
Hotels 0.146
Average 0.350

The performance of each metric is shown in Table 10.
We see each metric and whether or not it correctly iden-
tified the reference set(s) for that set of posts. In the
case of Craig’s Boats, we consider it correct if no refer-
ence set is chosen. The last column shows whether the
method was able to also rank the chosen reference sets
correctly for the Craig’s Cars posts.

Table 10 A summary of each method choosing reference sets

Method BFT Craig’s Boats Craig’s Cars Craig’s Cars rank
JSD

√ √ √ √

TF/IDF
√ √ √

X
J-W TF/IDF

√ √
X X

Jaccard
√ √

X X

8 Matthew Michelson, Craig A. Knoblock

Based on these sets of results, we draw some con-
clusions about which metrics should be used and why.
Comparing the Jaccard similarity results to the success
of both JSD and TF/IDF, we see that it is necessary to
include some notion of importance regarding the match-
ing tokens. The results argue that probability distribu-
tions of the tokens as defined in JSD are a better met-
ric, since TF/IDF can be overly sensitive, i.e., ignoring
tokens that may be important, even though they are fre-
quent. This claim is also justified by the fact that using
JSD we do not run into the situation where we need to
use the average stopping criterion, although we do with
TF/IDF. However, since JSD and TF/IDF both do well,
we can say that if a similarity metric can differentiate
important tokens from those that are not, then it can
be used successfully in our algorithm to choose reference
sets. This is why we do not tie this algorithm to any
particular metric, since many could work. Another in-
teresting aspect of these results is the poor performance
of TF/IDF using the Jaro-Winkler modification. It seems
that boosting the number of tokens that match by using
a less strict token matching method actually harms the
ability to differentiate between reference sets. This sug-
gests that the tokens that define reference sets need to be
emphasized by matching them exactly. Lastly, across dif-
ferent domains and even across different similarity met-
rics, we see our chosen threshold of 0.6 is appropriate for
the cases where the algorithm chooses the correct refer-
ence set. In all of the cases where the correct reference
set(s) is chosen, this threshold is exceeded.

Once the relevant reference sets are chosen, we use
them to find the attributes in agreement for the differ-
ent sets of posts, because we use these attributes during
extraction. For the set of posts with reference sets (i.e.,
BFT and Craig’s Cars), we compare the attributes in
agreement found by the vector-space model to the at-
tributes in agreement for the true matches between the
posts and the reference set. To evaluate the annotation,
we use the traditional measures of precision, recall, and
F-measure (i.e., the harmonic mean between precision
and recall). A correct match occurs when the attributes
match between the true matches and the predictions of
the vector-space model. As stated previously, we tried
multiple modified token-similarity metrics to draw con-
clusions about what types of metrics work and why.

Table 11 shows our results using the modified Dice
similarity for the BFT and Craig’s Cars posts, varying
the Jaro-Winkler token-match threshold from 0.85 to
0.99. That is, above this threshold two tokens will be
considered a match for the modified Dice. In both cases
we see an improvement in F-measure as the threshold in-
creases. This is because more relevant tokens are being
included when the threshold increases. If the threshold is
low then many irrelevant tokens are considered matches,
so the algorithm makes incorrect record level matches.
For instance, as the threshold becomes low, the results
for the year attribute drop steeply because often the dif-

ference in years is a single digit, which would often yield
errantly matching tokens for a low threshold string simi-
larity. Since errant matches are ignored (because they are
not “in agreement”) the scores are low. Note, however,
that once the threshold becomes too high, at 0.99, the
results start to decrease. This is because now the edit-
distance is too restrictive so it is not capturing some of
the possible matching tokens that might be slightly mis-
spelled.

The only attribute where the F-measure increases at
0.99 versus 0.95 is the year attribute of the cars. In this
case, the recall slightly increases at 0.99, but the preci-
sions are almost the same, yielding a higher F-measure
for 0.99. This is due to more year values being “in agree-
ment” with the higher threshold since there will be less
variation in terms of which reference set values can match
for this attribute, so those that do will likely be in agree-
ment. For an example where 0.95 includes years that are
not in agreement with high Jaro-Winkler scores, consider
a post with the token “19964” which might be a price or a
year. If the reference set record’s year attribute is “1994,”
the Jaro-Winkler score between “19964” and “1994” is
0.953. If the reference set record’s year is “1996” the
Jaro-Winkler score is 0.96. In both cases, a threshold of
0.95 includes both years, so if this post matches two ref-
erence set records with the same make, model and trim,
but differing years of 1994 and 1996, then the year is dis-
carded because it is not in agreement. We almost see the
same behavior with the trim attribute as well. This is
because with both of these attributes, a single difference
in a character, say “LX” versus “DX” for a trim (or a
digit for the year) yields a completely different attribute,
which can then become not “in agreement.”

Table 12 shows our results using the modified Jac-
card similarity. As with the Dice similarity, the modi-
fication is such that two tokens are put into the inter-
section of the Jaccard similarity if their Jaro-Winkler is
above the threshold. The most striking result is that the
scores match exactly to those using the Dice similarity.
The Dice similarity and Jaccard similarity can be used
interchangeably. Further investigation revealed that the
actual similarity scores between the posts and their refer-
ence set matches are different, which should be the case,
but the resulting attributes that are “in agreement” are
the same using either metric. Therefore, they yield the
same annotation from the matches.

Table 13 shows results using the Jaro-Winkler TF/IDF
similarity measure. Similarly to the other metrics, for
the BFT domain we see an improvement in F-measure
as the threshold increases, until the threshold peaks at
0.95 after which it decreases in accuracy. However, with
the Cars domain the modified TF/IDF seems to perform
the best with a threshold of 0.99.

From these results, across all metrics, a threshold of
0.95 performs the best for the BFT domain. In the Cars
domain, the 0.95 threshold works best for the modified
Dice and Jaccard, and at this threshold both methods

Unsupervised Information Extraction from Unstructured, Ungrammatical Data Sources on the World Wide Web 9

Table 11 Annotation results using modified Dice similarity

BFT posts
Threshold Attribute Recall Precision F-Measure
0.85 Hotel name 76.46 78.13 77.29

Star rating 80.74 77.86 79.27
Local area 88.04 85.46 86.73

0.9 Hotel name 88.23 88.49 88.36
Star rating 91.73 87.64 89.64
Local area 93.09 89.36 91.19

0.95 Hotel name 88.42 88.51 88.47
Star rating 92.32 87.79 90.00
Local area 93.97 89.44 91.65

0.99 Hotel name 87.84 88.36 88.10
Star rating 92.02 87.76 89.84
Local area 93.39 89.39 91.34

Craig’s Cars posts
Threshold Attribute Recall Precision F-Measure
0.85 make 81.57 77.64 79.55

model 57.61 61.15 59.33
trim 38.76 29.80 33.70
year 2.38 8.14 3.68

0.9 make 88.41 82.82 85.52
model 76.28 77.16 76.72
trim 65.57 48.12 55.51
year 69.45 82.88 75.58

0.95 make 93.96 86.35 89.99
model 82.62 81.35 81.98
trim 71.62 51.95 60.22
year 78.86 91.01 84.50

0.99 make 93.51 86.33 89.78
model 81.29 81.25 81.27
trim 71.75 51.85 60.20
year 79.14 90.94 84.63

Table 12 Annotation results using modified Jaccard simi-
larity

BFT posts
Threshold Attribute Recall Precision F-Measure
0.85 Hotel name 76.46 78.13 77.29

Star rating 80.74 77.86 79.27
Local area 88.04 85.46 86.73

0.9 Hotel name 88.23 88.49 88.36
Star rating 91.73 87.64 89.64
Local area 93.09 89.36 91.19

0.95 Hotel name 88.42 88.51 88.47
Star rating 92.32 87.79 90.00
Local area 93.97 89.44 91.65

0.99 Hotel name 87.84 88.36 88.10
Star rating 92.02 87.76 89.84
Local area 93.39 89.39 91.34

Craig’s Cars posts
Threshold Attribute Recall Precision F-Measure
0.85 make 81.57 77.64 79.55

model 57.61 61.15 59.33
trim 38.76 29.80 33.70
year 2.38 8.14 3.68

0.9 make 88.41 82.82 85.52
model 76.28 77.16 76.72
trim 65.57 48.12 55.51
year 69.45 82.88 75.58

0.95 make 93.96 86.35 89.99
model 82.62 81.35 81.98
trim 71.62 51.95 60.22
year 78.86 91.01 84.50

0.99 make 93.51 86.33 89.78
model 81.29 81.25 81.27
trim 71.75 51.85 60.20
year 79.14 90.94 84.63

outperform the TF/IDF metric, even when its thresh-
old is at its best at 0.99. Therefore, the most meaningful
comparisons between the different metrics can be made
at the threshold 0.95. In the BFT domain, the modified
TF/IDF outperforms the Dice and Jaccard metrics, until

this threshold of 0.95. At this threshold level, the Jaccard
and Dice metrics outperform the TF/IDF metric on the
two harder attributes, the hotel name and the hotel area.
In the Cars domain, the TF/IDF metric is outperformed
at every threshold level, except on the year attribute.
Interestingly, at the lowest threshold levels TF/IDF per-
forms terribly because the tokens that match in the com-
putation have very low IDF scores since they match so
many other tokens in the corpus, resulting in very low
TF/IDF scores. If the scores are low, then many records
will be returned and almost no attributes will ever be in
agreement, yielding very few correct annotations.

Table 13 Annotation results using modified TF/IDF simi-
larity

BFT posts
Threshold Attribute Recall Precision F-Measure
0.85 Hotel name 85.89 78.91 82.25

Star rating 92.32 84.81 88.40
Local area 94.55 86.86 90.54

0.9 Hotel name 90.76 83.83 87.16
Star rating 95.33 88.05 91.55
Local area 94.36 87.15 90.61

0.95 Hotel name 90.47 83.63 86.92
Star rating 97.18 89.84 93.36
Local area 94.55 87.41 90.84

0.99 Hotel name 89.69 82.91 86.17
Star rating 96.89 89.57 93.08
Local area 93.68 86.60 90.00

Craig’s Cars posts
Threshold Attribute Recall Precision F-Measure
0.85 make 51.14 44.51 47.60

model 41.93 35.54 38.47
trim 43.10 15.50 22.80
year 35.58 29.18 32.06

0.9 make 67.07 58.53 62.51
model 61.79 52.48 56.76
trim 67.81 22.90 34.24
year 58.48 48.24 52.87

0.95 make 88.55 77.30 82.54
model 84.55 71.84 77.68
trim 81.21 26.86 40.37
year 76.29 62.78 68.88

0.99 make 88.90 77.65 82.90
model 84.74 72.02 77.86
trim 80.29 26.52 39.87
year 76.67 63.12 69.24

These three sets of results allows us to draw some
conclusions about the utility of different metrics for our
vector-space matching task. The biggest difference be-
tween the TF/IDF metric and the other two is that the
TF/IDF metric uses term weights computed from the
set of tokens in the reference set. The key insight of
IDF weights are their ability to discern meaningful to-
kens from non-meaningful ones based on the frequency.
The assumption is that more meaningful tokens occur
less frequently. However, almost all tokens in a reference
set are meaningful, and it is sometimes the case that
very meaningful tokens in a reference set occur very of-
ten. The most glaring instances of this occur with the
make and year attributes in the Cars reference set used
for the Craig’s Cars posts. Makes such as “Honda” oc-
cur quite frequently in the data set, and given that for
20,076 car records the years only range from 1990 to

10 Matthew Michelson, Craig A. Knoblock

2005, the re-occurrence of the same year tokens are very,
very frequent. These attributes will be deemphasized sig-
nificantly because of their frequency. If the matching to-
ken metric ignores the year, this attribute will often not
be in agreement since multiple records of the same car
for different years will be returned. Thus, TF/IDF has
low scores for the year attribute. TF/IDF also creates
problems by overemphasizing unimportant tokens that
occur rarely. Consider the following post, “Near New
Ford Expedition XLT 4WD with Brand New 22 Wheels!!!
(Redwood City - Sale This Weekend !!!) $26850” which
TF/IDF matches to the reference set record
{VOLKSWAGEN, JETTA, 4 Dr City Sedan, 1995}. In
this case, the very rare token “City” causes an errant
match because it is weighted so heavily. In the case of
the BFT posts, since the Hotel reference set has few com-
monly occurring tokens amongst a small set of records,
this phenomena is not as observable. Since weights,
whether based on TF/IDF or probabilities, rely on fre-
quencies, such an issue will likely occur in most matching
methods that rely on the frequencies of tokens to deter-
mine their importance.

Therefore, we draw the following conclusions. In the
matching step, an edit-distance should be used to make
soft matches between the tokens of the post and the ref-
erence set records. If the Jaro-Winkler metric is used,
the threshold should be set to 0.95, since that yields the
highest improvement using the best metrics. Lastly, and
most importantly, reference sets do not adhere to the as-
sumptions made by weighting schemes, so only metrics
that do not use such schemes, such as the Dice and Jac-
card similarities, should be used, rather than TF/IDF.

Since the modified Dice and Jaccard metrics work
best using a threshold of 0.95, we now compare those
results to our previous work on the Phoebus system [17],
showing that our unsupervised approach to semantic an-
notation is competitive with a machine learning approach.
We compare against the F-measure of the record linkage
results from the Phoebus paper because that work uses
the attributes of the matching record(s) from the refer-
ence set as semantic annotation. Since the Phoebus work
only reports BFT results, we mirror the experimental
procedure for the Craig’s Cars posts, running Phoebus
10 times using 10% of the data for training. In the cars
case, we did not use 30% of the data for training because
that produced a larger number of training pairs than
Phoebus was built to handle. Table 14 reports the F-
measure of Phoebus’s record linkage as Ph. F-Mes. Note
that Ph. F-Mes is the same for all attributes within a
domain because it is the F-measure for record linkage.

Although a direct comparison between the two sys-
tems is skewed because our system is unsupervised while
Phoebus is not, the results nonetheless are intriguing.
Even though our system selected the reference sets it-
self and our vector-space model is unsupervised, our un-
supervised system remains competitive in selecting the
correct attributes to exploit for extraction.

Table 14 Results of semantic annotation using modified
Dice similarity versus Phoebus

BFT Posts
Attribute Recall Prec. F-Measure Ph. F-Mes.

Hotel Name 88.42 88.51 88.47 92.68
Star Rating 92.31 87.79 90.00 92.68
Local Area 93.97 89.44 91.65 92.68

Craig’s Cars Posts
Make 93.96 86.35 89.99 77.04
Model 82.62 81.35 81.98 77.04
Trim 71.62 51.95 60.22 77.04
Year 78.86 91.01 84.50 77.04

While the above results show our unsupervised ap-
proach is competitive with supervised approaches, we
still need to justify our use of the Jaro-Winkler. Ear-
lier we stated that the Jaro-Winkler metric emphasizes
matching proper nouns, rather than more common words,
because it considers the prefix of words to be an im-
portant indicator of matching. This is in contrast to
traditional edit distances that define a transformation
over a whole string, which are better for generic words
where the prefix might not indicate matching. Table 15
compares using Dice similarity modified with the Jaro-
Winkler metric to Dice modified with the Smith-Waterman
distance [23]. (Smith-Waterman is a classic edit distance
originally developed to align DNA sequences.) As with
the Jaro-Winkler score, if two tokens have a Smith-
Waterman distance above 0.95 they are considered a
match in the modified Dice similarity. As the table shows,
the Jaro-Winkler Dice score outperforms the Smith-
Waterman variant. Since many of the reference set at-
tributes are proper nouns, the Jaro-Winkler is better
suited for matching, which is especially apparent when
using the Cars reference set.

Table 15 Modified Dice using Jaro-Winkler versus Smith-
Waterman

BFT posts
Method Attribute Recall Precision F-Measure
Jaro-Winkler Hotel name 88.42 88.51 88.47

Star rating 92.32 87.79 90.00
Local area 93.97 89.44 91.65

Smith-Waterman Hotel name 67.80 69.56 68.67
Star rating 75.39 73.88 74.63
Local area 84.34 81.72 83.01

Craig’s Cars posts
Method Attribute Recall Precision F-Measure
Jaro-Winkler make 93.96 86.35 89.99

model 82.62 81.35 81.98
trim 71.62 51.95 60.22
year 78.86 91.01 84.50

Smith-Waterman make 24.12 27.18 25.56
model 14.71 18.82 16.52
trim 11.17 5.81 7.64
year 29.17 52.30 37.45

Lastly, Table 16 shows our field-level results for per-
forming information extraction exploiting the attributes
in agreement. For field-level results, an extraction is cor-
rect if and only if all of the tokens that compose that field
in the post are correctly labeled, without extra tokens.

Unsupervised Information Extraction from Unstructured, Ungrammatical Data Sources on the World Wide Web 11

Our results are shown as UIE. We compare our results to
those obtained using three supervised systems: the Phoe-
bus system, Conditional Random Fields as implemented
in MALLET [16], and Amilcare [5], which relies strongly
on NLP. We train MALLET and Amilcare on 30% of
the data for BFT and Craig’s Cars posts. We present
the precision, recall, and F-measure for the extractions
in Table 16.

Table 16 Extraction results

Craig’s Cars Posts
Attribute Recall Prec. F-Mes.
Make UIE 95.99 100.00 97.95

MALLET 85.68 95.69 90.39
Phoebus 98.21 99.93 99.06
Amilcare 97.58 91.76 94.57

Model UIE 83.02 95.01 88.61
MALLET 78.76 91.21 84.52
Phoebus 92.61 96.97 94.59
Amilcare 78.44 84.31 81.24

Trim UIE 39.52 66.94 49.70
MALLET 55.94 66.49 60.57
Phoebus 63.12 70.15 66.43
Amilcare 27.21 53.99 35.94

Year UIE 76.28 99.80 86.47
MALLET 91.12 76.78 83.31
Phoebus 88.48 98.24 93.08
Amilcare 86.32 91.92 88.97

BFT Posts
Attribute Recall Prec. F-Mes.
Star Rating UIE 83.94 99.44 91.03

MALLET 97.16 96.55 96.85
Phoebus 97.39 97.01 97.20
Amilcare 95.58 97.35 96.46

Hotel Name UIE 70.09 77.16 73.46
MALLET 74.43 84.86 79.29
Phoebus 77.27 75.18 76.21
Amilcare 58.96 67.44 62.91

Local Area UIE 62.23 85.36 71.98
MALLET 78.62 83.58 80.52
Phoebus 83.73 84.76 84.22
Amilcare 64.78 71.59 68.01

As with the semantic annotation results, the com-
parison between systems is not direct, yet again our un-
supervised approach remains competitive. In fact, over
the seven attributes, our UIE results have the lowest F-
Measure only once, for the star rating of a hotel post.
Interestingly, our approach has the highest precision for
four of the attributes, but for three of those four, it also
has the lowest recall. These results suggest that if we can
increase the discovery of the extractions, we can increase
the recall, and get even better results. For example, one
of the attributes with the highest precision but lowest
recall is the hotel area. In this attribute, we often see
acronyms such as “AP” for airport or “DT” for down-
town. Supervised systems can be trained to identify such
cases, but our approach would need some sort of acronym
and synonym discovery method to find those. We plan to
enhance our system with such functionality in the future.

The largest differences in the F-Measure occur when
the attribute to be extracted comes from a field that
is often not in agreement. For example, in the Craig’s
Cars domain, the trim is often not in agreement, lead-
ing to poor extraction results. Nonetheless, we feel that
the cost of labeling data for the supervised systems out-

weighs the differences in accuracy from our system. As
information extraction begins to scale to huge amounts
of data on the World Wide Web, unsupervised informa-
tion extraction methods will be needed because the cost
of labeling the data will be overwhelming. We believe
these results validate such an approach.

4 Related Work

Semantic annotation is an active field of research, partic-
ularly as the popularity of the Semantic Web increases.
According to a recent survey [22], systems that perform
semantic annotation separate into three categories: rule-
based, pattern-based, and wrapper induction methods.
However, the rule-based and pattern-based methods rely
on regularity within the text, which is not the case with
posts. Also, beyond exploiting regular structure, the wrap-
per induction methods use supervised machine learning
instead of unsupervised methods.

The system closest to ours is SemTag [9], which first
identifies tokens of interest in the text, and then labels
them using the TAP taxonomy, which is similar to our
reference sets. This taxonomy is carefully crafted, which
gives it good accuracy and meaning. In contrast, our ref-
erence sets are flexible as we incorporate any that we
can automatically collect. Including new reference sets
in our repository has no effect on the data already in it
(because the reference sets are independent). Although
our data collection is not as careful as using a full taxon-
omy, we can much more easily and quickly gather many
reference sets, greatly increasing our coverage of items
we can annotate.

Further, SemTag focuses on disambiguation which
our approach avoids. If one looks up the token “Jaguar”
it might refer to a car or an animal, because SemTag dis-
ambiguates after labeling. In our case, we perform dis-
ambiguation before the labeling procedure, during the
selection of the relevant reference sets. If we had ref-
erence sets of animals and cars, and we chose cars as
the relevant one, the synonymy is avoided since animal
records are ruled out.

Selecting reference sets is similar to resource selection
in distributed information retrieval, sometimes used for
the “hidden web.” In resource selection, different servers
are chosen from a set of servers to return documents for a
given query. Craswell, Bailey, and Hawking [8] compare
three popular approaches to resource selection. However,
these retrieval techniques execute probe queries to esti-
mate the resource’s data coverage and its effectiveness at
returning relevant documents. Then, these coverage and
effectiveness statistics are used to select and merge the
appropriate resources for a query. This overhead is un-
necessary for our task. Because we have full access to all
of our reference sets in our repository, we already know
the full data coverage, and do not need to estimate our

12 Matthew Michelson, Craig A. Knoblock

repository’s effectiveness, because it always returns all of
our sets.

Information extraction has previously incorporated
outside information to aid extraction. For example, the
CRAM system [1] is unsupervised, and uses reference
sets. However, unlike this paper, CRAM is given the
reference set and requires that all tokens receive a la-
bel, not allowing for ‘junk’ in the text. Other work in
information extraction incorporates reference sets with
machine learning, for example the work of Cohen and
Sarawagi [7]. However, this work requires human selected
reference sets and this technique relies on supervised ma-
chine learning.

5 Conclusion

We introduce a technique for unsupervised information
extraction from unstructured, ungrammatical text. Pre-
viously, unsupervised extraction used extraction patterns
that make assumptions about the regularity of the struc-
ture in the data. We relax this assumption by exploiting
reference sets to aid the extraction. These reference sets
are chosen by the algorithm, removing the need for any
human intervention.

Furthermore, we investigate different methods for
choosing the reference sets and finding the matches be-
tween the posts and the reference sets. Experimentally
we find that the Jensen-Shannon distance is the supe-
rior metric for choosing the correct reference sets. We
also discover that when matching the posts to the ref-
erence set, modifying the similarity metric to use Jaro-
Winkler edit-distance works well. However, this is the
case only when the similarity metric does not use weight-
ing schemes such as TF/IDF.

This approach describes a full architecture for collect-
ing and exploiting reference sets for semantic annotation
and extraction, allowing Local-as-View information inte-
gration to automatically incorporate unstructured, un-
grammatical data sources which would be inaccessible
for structural queries otherwise.

In future work, we plan to investigate methods to
improve the accuracy of our extraction and matching.
For instance, using domain-specific, text transformations
such as acronyms could greatly aid the accuracy of both.
For example, in the BFT domain, it is useful for both
matching and extraction to know that “DT” is the same
as “Downtown.” In some of our other research, we have
investigated the problem of automatically discovering
such textual transformations, but in that research the
datasets are already structured, relational data [19].
Studying how to apply such a method to the case where
one set of data is unstructured and not delimited, while
the other set of data is structured and relational is a
challenge for future investigation.

We also intend to analyze how to apply our method to
larger pieces of text, such as the paragraphs associated

Fig. 3 Automatically discovering reference sets

with classified listings. This will likely involve running
an entity-extractor over the text first, to pull out the
meaningful tokens, and then concatenating these tokens
together to form a new post. In fact, we could use the
unsupervised extraction methods mentioned previously
in this paper to perform this entity extraction [3,10,21].

Lastly, one aspect to investigate is adding reference
sets to our repository automatically, thereby increasing
the coverage of sources for which we can perform extrac-
tion. The automatic collection of reference sets could be
accomplished in two ways. First, as stated previously,
we can use previous unsupervised extraction systems to
build reference sets. For instance, KnowItNow [3] can
extract all cars it can find from the Web, creating a ref-
erence set in this manner. Another approach to creating
reference sets exploits research on information source dis-
covery and modeling. By combining previous research on
labeling the outputs of Web Services [12] with research
on modeling the information service provided by Web
Services [4] an agent can model the information provided
by a source. This combination would allow an agent to
define a schema using the Service’s inputs and its out-
puts. Then, modeling the source can classify the source’s
provided data, therefore creating a new reference set. For
example, consider a Web Service takes as input a year
and provides all car makes, models, trim and colors for
that year. First, the schema is defined based on classi-
fying the inputs and outputs. Then a reference set of
records is created by supplying all years and retrieving
all car records. Then, a source modeler defines this set
of records as cars, and it is included as a new reference
set in the repository. The architecture shown in Figure
3 shows how agents can automatically create reference
sets by combining the approaches outlined above, using
both the unsupervised extraction methods and source
modeling methods.

Unsupervised Information Extraction from Unstructured, Ungrammatical Data Sources on the World Wide Web 13

References

1. Agichtein, E., Ganti, V.: Mining reference tables for au-
tomatic text segmentation. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 20-29. ACM Press (2004)

2. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection
using learnable string similarity measures. In: Proceed-
ings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 39-48. ACM
Press (2003)

3. Cafarella, M.J., Downey, D., Soderland, S., Etzioni, O.:
KnowItNow: Fast, scalable information extraction from
the web. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 563-570.
Association for Computational Linguistics (2005)

4. Carman, M.J., Knoblock, C.A.: Learning semantic de-
scriptions of web information sources. In: Proceedings
of the International Joint Conference on Artificial Intel-
ligence, pp. 2695-2700. (2007)

5. Ciravegna, F.: Adaptive information extraction from text
by rule induction and generalisation. In: Proceedings of
the International Joint Conference on Artificial Intelli-
gence, pp. 1251-1256 (2001)

6. Cohen, W., Ravikumar, P., Feinberg, S.: A comparison
of string metrics for matching names and records. In:
Proceedings of the ACM SIGKDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, pp.
13-18. (2003)

7. Cohen, W., Sarawagi, S.: Exploiting dictionaries in
named entity extraction: combining semi-markov extrac-
tion processes and data integration methods. In: Pro-
ceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 89-98.
ACM Press (2004)

8. Craswell, N., Bailey, P., Hawking, D.: Server selection on
the world wide web. In: Proceedings of the Conference
on Digital Libraries, pp. 37-46. ACM Press (2000)

9. Dill, S., Gibson, N., Gruhl, D., Guha, R., Jhingran,
A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tom-
lin, J.A., Zien, J.Y.: Semtag and seeker: Bootstrapping
the semantic web via automated semantic annotation. In:
Proceedings of the International World Wide Web Con-
ference, pp. 178-186. ACM Press (2003)

10. Hassan, H., Hassan, A., Emam, O.: Unsupervised in-
formation extraction approach using graph mutual rein-
forcement. In: Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pp. 501-
508. Association for Computational Linguistics (2006)

11. Kushmerick, N., Weld, D.S., Doorenbos, R.: Wrapper in-
duction for information extraction. In: Proceedings of the
International Joint Conference on Artificial Intelligence,
pp. 729-737. (1997)

12. Lerman, K., Plangrasopchok, A., Knoblock, C. A.: Auto-
matically labeling the inputs and outputs of web services.
In: Proceedings of the National Conference on Artificial
Intelligence, pp. 1363-1368. AAAI Press (2006)

13. Levy, A.: Logic-based techniques in data integration. In:
J. Minker (ed.) Logic Based Artificial Intelligence, pp.
575-595. Kluwer Academic Publishers (2000)

14. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying het-
erogeneous information sources using source descriptions.
In: Proceedings of the International Conference on Very
Large Data Bases, pp. 251-262. Morgan Kaufmann Pub-
lishers Inc. (1996)

15. Lin, J.: Divergence measures based on the shannon en-
tropy. IEEE Transactions on Information Theory 37(1),
pp. 145-151. (1991)

16. McCallum, A.: Mallet: A machine learning for language
toolkit (2002). http://mallet.cs.umass.edu

17. Michelson, M., Knoblock, C.A.: Semantic annotation of
unstructured and ungrammatical text. In: Proceedings
of the International Joint Conference on Artificial Intel-
ligence, pp. 1091-1098. (2005)

18. Michelson, M., Knoblock, C.A.: An automatic approach
to semantic annotation of unstructured, ungrammatical
sources: A first look. In: Proceedings of the IJCAI Work-
shop on Analytics for Noisy Unstructured Text Data, pp.
123-130. (2007)

19. Michelson, M., Knoblock, C.A.: Mining heterogeneous
transformations for record linkage. In: Proceedings of
the International Workshop on Information Integration
on the Web, pp. 68-73. AAAI Press (2007)

20. Minton, S.N., Nanjo, C., Knoblock, C.A., Michalowski,
M., Michelson, M.: A heterogeneous field matching
method for record linkage. In: Proceedings of the IEEE
International Conference on Data Mining, pp. 314-321.
IEEE Computer Society (2005)

21. Paşca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.:
Organizing and searching the world wide web of facts -
step one: the one-million fact extraction challenge. In:
Proceedings of the National Conference on Artificial In-
telligence, pp. 1400-1405. AAAI Press (2006)

22. Reeve, L., Han, H.: Survey of semantic annotation plat-
forms. In: Proceedings of ACM Symposium on Applied
Computing, pp. 1634-1638. ACM Press (2005)

23. Smith, T.F., Waterman, M.S.: Identification of common
molecular subsequences. Journal of Molecular Biology
147, 195-197 (1981)

24. Thakkar, S., Ambite, J.L., Knoblock, C.A.: Composing,
optimizing, and executing plans for bioinformatics web
services. The International Journal on Very Large Data
Bases, Special Issue on Data Management, Analysis, and
Mining for the Life Sciences 14(3), 330-353 (2005)

25. Winkler, W.E.: The state of record linkage and current
research problems. Tech. rep., U.S. Census Bureau (1999)

