
Beginning to Understand Unstructured, Ungrammatical Text: An Information
Integration Approach

Matthew Michelson and Craig A. Knoblock ∗

University of Southern California
Information Sciences Institute,

4676 Admiralty Way
Marina del Rey, CA 90292 USA
{michelso,knoblock}@isi.edu

Abstract

As information agents become pervasive, they will need to
read and understand the vast amount of information on the
World Wide Web. One such valuable source of information
is unstructured and ungrammatical text that appears in data
sources such as online auctions or internet classifieds. One
way to begin to understand this text is to figure out the en-
tities that the text references. This can be thought of as the
semantic annotation problem, where the goal is to extract the
attributes embedded within the text and then annotate the text
with these extracted attributes. If enough attributes can be
extracted, then the entity referenced in the text can be de-
termined. For example, if we have a used car for sale in a
classified ad, and we can identify the make, model and year
within the post, we can identify the car for sale. However, in-
formation extraction is difficult because the text does not con-
tain reliable structural or grammatical clues. In this paper we
present an unsupervised approach to semantically annotating
such unstructured and ungrammatical text with the intention
that this will help in the problem of machine understanding
on the Web. Furthermore, we define an architecture that al-
lows for better understanding over time. We present exper-
iments to show our annotation approach is competitive with
the state-of-the-art which uses supervised machine learning,
even though our technique is fully unsupervised.

Introduction
Understanding unstructured and ungrammatical text such as
auction listings from EBay or classified listings from Craig’s
List1 requires deciding what entity is being described. For
example, consider the used car classifieds shown in Fig-
ure 1. We decide what type of car is for sale by determin-
ing attributes that define it such as the car make, model and
year. In this sense, the understanding can be thought of as

∗This research is based upon work supported in part by the Na-
tional Science Foundation under award number IIS-0324955, and
in part by the Air Force Office of Scientific Research under grant
number FA9550-04-1-0105. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of any of the above organizations or any
person connected with them.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1www.craigslist.org

semantic annotation, since we are annotating each piece of
text, called a “post,” with the attributes that define the entity.
For instance, Figure 2 shows a semantically annotated post.
Once we semantically annotate a set of posts, we can query
them structurally and expand an agent’s knowledge through
the understanding (via annotation) of the posts.

Figure 1: Posts from Craig’s List.

Figure 2: A semantically annotated post

However, for very large scale understanding of posts we
must come up with an algorithm that scales in both the abil-
ity to semantically annotate the data and the coverage of
what can be annotated. To scale the annotation we have de-
veloped an unsupervised method that builds upon previous
work of exploiting “reference sets” for semantic annotation
(Michelson & Knoblock 2005). Furthermore, we argue for
an architecture that automatically expands the coverage of
what can be annotated by collecting new reference sets from
the web and plugging them into our approach for semantic
annotation.

First we must define a reference set and its uses. A refer-
ence set is a collection of known entities and their attributes.
For example, a reference set of cars might come from a
semi-structured data source such as the Edmunds car buy-

ing guide,2 from which we can extract the make, model, trim
and year for all cars from 1990 to the current year. However,
there is no restriction on the forms a reference set could take.
It can be a structured or semi-structured source. The key is
that it can be thought of as a relational set of data with a
defined schema and consistent attribute values.

Although our previous work (Michelson & Knoblock
2005) uses reference sets, our new approach differs sub-
stantially. Previously we used supervised machine learning,
while this paper employs an information retrieval approach
instead, making the annotation unsupervised. Second, in the
previous work the reference sets were provided to the sys-
tem a priori. In this work the reference sets are selected
automatically from a dynamic repository of reference sets.
This way, as new reference sets are added to the repository
they can extend the coverage of the annotation without user
involvement. So, overall the process of semantically anno-
tating posts breaks into three main pieces. First we select
the reference sets to use. Next we exploit these reference
sets during annotation. Lastly, we automatically discover,
model and include new reference sets, expanding the system
to understand posts it could not previously.

Automatically Choosing the Reference Sets
The first step is to choose the relevant reference set. Since
our repository of reference sets grows over time, we want
the system to choose the reference sets automatically, im-
proving our annotation over time. To do this, we choose
the reference sets based on the similarity between the set of
posts and the reference sets in the repository.

Intuitively, the most appropriate reference set is that
which has the most useful tokens in common with the posts.
We assume that if there is enough overlap between the posts
and the reference set, then they probably refer to the same
types of entities. For example, if we have a set of posts
about cars, we expect a reference set with car makes, such
as Honda or Toyota, to be more similar to the posts than a
reference set of hotels.

To choose the reference sets, we treat all of the records
in a reference set as a single document and we treat the full
set of posts as a single document. Then we compute the
similarity between these two documents. Next we select the
reference sets that have the highest relative scores as the rel-
evant reference sets.

When selecting the highest relative score we first we sort
the similarity scores in descending order. Then we traverse
this list, computing the percent difference between the cur-
rent similarity score and the next. If this percent difference
is above some threshold, and the score of the current refer-
ence set is greater than the average similarity score for all
reference sets, the algorithm terminates. Upon termination,
the algorithm returns the current reference set and all refer-
ence sets that preceded it as matching reference sets. If the
algorithm traverses all of the reference sets without terminat-
ing, then no reference sets are relevant to the posts. Table 1
shows the algorithm.

2www.edmunds.com

We assume that the correct reference sets are relatively
that much better than the irrelevant ones. This motivates
the percent difference as the splitting criterion between the
relevant and irrelevant reference sets. Just comparing the
actual similarity values might not capture how much better
one reference set is compared to another.

Given postsP , thresholdT , and reference set repositoryR
p← SingleDocument(P)
For all reference setsref ∈ R

ri ← SingleDocument(ref)
SIM(ri, p)← Similarity(ri, p)

For allSIM(ri, p) in descending order
If PercentDiff(SIM(ri, p), SIM(ri+1, p)) > T AND
SIM(ri, p) > AV G(SIM(rn, p)),∀n ∈ |R|

Return allSIM(rx, p), 1 > x > i
Return nothing (No matching reference sets)

Table 1: Automatically choosing a reference set

Although the algorithm does not impose any particular
similarity measure, we use the Jensen-Shannon distance
(JSD) (Lin 1991) between the reference set and the set of
posts. The Jensen-Shannon metric is an information the-
oretic measure that quantifies the difference in probability
distributions. Since JSD requires probability distributions,
we define our distributions as the likelihood of tokens oc-
curring in each document.

There are a few other points that require clarification
about this algorithm. For one, this algorithm requires the
setting of a threshold to be completely automatic. In this
light, we do not employ any machine learning to learn this
threshold, although that could be done. Instead, we simply
set it to a “reasonable” value, by which we mean one that
is neither very high and very specific, nor very low passing
almost anything through. Our experiments show that a value
of 0.6 works well across domains.

Also, we employ the heuristic for terminating that both
the percent difference is above the thresholdand the score
is above the average. We do this since toward the end of the
sorted list of similarities the numbers start to get small so
that the percent differences might suddenly increase. How-
ever, this does not mean that these are good, matching ref-
erence sets. It’s just that the next reference set is that much
worse than the current, bad one.

Matching Posts to the Reference Set
Once we choose the relevant reference sets, the algorithm
then matches each post to the best matching members of
the reference set, using these reference set member’s schema
and attributes as values for semantic annotation. In the case
of selecting multiple reference sets, the matching posts algo-
rithm runs iteratively, matching the set of posts once to each
chosen reference set. However, if two chosen reference sets
have the same schema, we only select the one ranked higher
in terms of relevance to prevent redundant matching.

To match the reference set records to the posts, we employ

a vector space model. A vector space model, rather than ma-
chine learning, makes the algorithm unsupervised and scal-
able. If we envision semantic annotation of unstructured and
ungrammatical data on the scale of the World Wide Web,
then these two characteristics are necessary.

To match posts to the records of the reference set, we treat
each post as a query and each record of the reference set as
its own document. We define the similarity between the post
and a reference set record using the Dice similarity. Let us
call our postp and a record of the reference setr, where both
p andr are sets of tokens. Dice similarity is defined as:

Dice(p, r) =
2 ∗ (p ∩ r)
|p|+ |r|

We slightly change the classic Dice similarity in that we
treat two tokens as belonging to the intersection betweenp
andr if the Jaro-Winkler similarity between them is greater
than or equal to 0.95. This ensures that we capture tokens
that might be misspelled or abbreviated as matches, since
misspellings are common in posts. Using this definition of
Dice similarity, we compare each post,pi to each member
of the reference set, and we return the reference set matches
that have the maximal similarity, calledrmaxi

. For each
post, we also store the matches found inRmax which is a
collection of matches for the whole set of posts. This way,
we can compute the average Dice similarity scores for the
matches, which we will use later in the algorithm.

Once all of the posts are scored, we must separate the
true matches from the false positives. One major differ-
ence between machine learning for matching and informa-
tion retrieval is that machine learning can explicitly denote
a non-match, while information retrieval always returns the
maximally similar document, if it exists. When matching
posts, this means many false positives might be matched.
For example, if we have a post “Some car is for sale and
very cheap” then machine learning could determine it would
match nothing, but a vector space model might assign some
member of the reference set as a match, albeit with a very
low similarity score. To prune these false positives, we cal-
culate the average similarity score for allrmaxi

∈ Rmax.
Then we remove thermaxi

that are less than this average,
removing those matches for those postspi.

One final step remains for the semantic annotation. It is
possible for more than one reference set record to have a
maximum similarity score with post (rmaxi is a set). This
means we have a problem with ambiguity with the annota-
tion provided by the reference set records. For example, con-
sider a post “Civic 2001 for sale, look!” Now, assume our
reference set has 3 records, each with a make, model, trim,
and year. Record 1 might be{HONDA, CIVIC, 4 Dr LX,
2001}, record 2 might be{HONDA, CIVIC, 2 Dr LX, 2001}
and record 3 might be{HONDA, CIVIC, EX, 2001}. If all
3 of these records have the maximum similarity to our post,
then we have a problem with some ambiguous attributes.

We can confidently assign HONDA as the make, CIVIC
as the model and 2001 as the year, since all of the matching
records agree on these attributes. We call these attributes
in agreement. However, there is disagreement on the trim
because we can not determine which value is best for this

attribute, based on the matches from the reference set, since
all values are equally valid from the vector space perspec-
tive. So, we leave this attribute out of the annotation. This
is a reasonable approach since in many real world posts, not
all of the detailed attributes are specific. For example, the
first post of Figure 1 shows a Ford Thunderbird, but nothing
else, so we can not make a claim about its trim or even its
year. So the final step is to remove all attributes from our
annotation that do not agree across all matching reference
set records. Our vector space approach to unsupervised an-
notation is shown in Table 2.

Given postsP and reference setR
Rmax ← {}
For allpi ∈ P

rmaxi ← MAX(DICE (pi,R))
Rmax ← Rmax ∪ rmaxi

For allpi ∈ P
Prunermaxi

if DICE(rmaxi
) < AVG(DICE(Rmax)

Remove attributes notin agreementfrom rmaxi

Table 2: Our Vector Space approach to automatic semantic
annotation

One aspect of this approach that requires some discussion
is the use of Dice similarity. While it has been used in the
past for information retrieval, we choose the Dice similarity
based on a few additional reasons. Once choice would be
to use TF-IDF weighting with cosine similarity. However,
we found that in reference sets, matching at such a fine level
of individual records to a post, the weighting schemes will
overemphasize unimportant tokens, while discounting the
important ones. For example, in a reference set of cars, the
token Honda will occur much more frequently than Sedan.
In this case, a reference set record might incorrectly match
a post simply because it matches on Sedan, rather than the
more important token Honda. Dice, on the other hand, does
not exploit frequency based weights.

The other similarity measure we could use would be the
Jaccard similarity, which uses the intersection of the tokens
divided by their union. However, Jaccard penalizes having
only a small number of common tokens, which could be
a problem when matching to posts since often times posts
contain just a few important tokens for matching, such as
“Civic 2001.” Since Jaccard contains a union in the denom-
inator, the denominator is affected by the size of the inter-
section, since union is the sum of the sizes of the sets mi-
nus the intersection. So, if many tokens are in common,
the denominator is shrunk, resulting in a higher score, but if
there are only a few in common, the denominator is barely
affected. Meanwhile, using Dice similarity the number of
tokens in common does not affect the denominator. So, if
only a few tokens are in common, Dice boosts this number
in the numerator by 2 while leaving the denominator unna-
fected. Meanwhile, Jaccard does not boost the numerator
and barely affects the denominator. So, with only a few to-
kens, Dice gets a higher score than Jaccard.

Figure 3: An architecture for expanding the coverage of an-
notation

Extending the Coverage
For our approach to scale to the size of the Web, our repos-
itory of reference sets must cover as many different entities
as possible. For this to happen, we need a mechanism to
discover, model and integrate new sources of data into the
repository so we can improve our ability to understand posts
by improving our coverage in the repository.

We propose hooking our semantic annotation algorithm to
systems that can automatically discover and understand web
sources by semantically modeling what the services do and
what their attributes are(Carman 2006; Lerman, Plangrasop-
chok, & Knoblock 2006). However, just discovering and
modeling new sources is not enough. We must also connect
our annotation approach to a system that can manage, inte-
grate and connect them to the repository, such as a mediator
system, e.g. (Thakkar, Ambite, & Knoblock 2005). Interest-
ing pieces of future work are using the mediator to combine
different sources into more useful reference sets and decid-
ing which reference sets could be ignored since sources such
as weather providers would not be useful for semantic anno-
tation.

In this approach, shown in Figure 3, new sources are con-
stantly discovered, modeled, and integrated into the reposi-
tory of reference sets, allowing for expanded coverage of the
semantic annotation. This way, the understanding of posts
improves over time as the repository of reference sets im-
proves over time.

Experimental Results
This section presents results for our unsupervised approach
to selecting a reference set and semantically annotating each
post. However, before we examine the results of our exper-
iments, we describe the reference sets and sets of posts we
will use in testing. All data sources, whether posts or refer-
ence sets, were collected from data sources that exist on the
World Wide Web.

Reference Sets

For our experiments we use four different reference sets,
crossing multiple domains. Most of these reference sets

have been used in the past in either the information extrac-
tion literature or record linkage literature. The first reference
set is theHotelsreference set which consists of 132 hotels in
the Sacramento, San Diego and Pittsburgh areas culled from
the Bidding For Travel website’s Hotel List. These records
contain a star rating, a hotel name and a local area and were
used previously as a reference set in (Michelson & Knoblock
2005).

Another reference set comes from the restaurant domain
and previous work on record linkage (Bilenko & Mooney
2003). We call this reference setFodors, which consists of
534 restaurants, each having a name, address, city and cui-
sine as the attributes.

Next, we have two reference sets containing informa-
tion about cars. The first, calledCars, contains all of the
cars from the Edmunds Car Buying Guide from 1990-2005.
From this data set we extracted the make, model, year and
trim for all cars from 1990 to 2005, resulting in 20,076
records. We supplement this reference set with cars from
before 1990, taken from the auto-accessories company, Su-
per Lamb Auto. This supplemental list contains 6,930 cars
from before 1990, each having a make, model year and trim.
We consider this combined reference set of 27,006 records
as theCarsreference set.

Our last reference set is about cars having make, model,
year and trim as its attributes as well. However, it is a sub-
set of the cars covered by theCars reference set. This data
set comes from the Kelly Blue Book car pricing service con-
taining 2,777 records for Japanese and Korean makes from
1990-2003. We call this setKBBCars. This data set has also
been used in the record linkage community (Mintonet al.
2005).

Post Sets

The set of posts for our experiments show the different cases
that exist for finding the appropriate reference sets. One set
of our posts matches only a single reference set in our collec-
tion. It contains 1,125 posts from the internet forum Bidding
For Travel. These posts, calledBFT match theHotelsrefer-
ence set only. This data set was used previously in (Michel-
son & Knoblock 2005).

Our approach can also select multiple relevant reference
sets. So we use a set of posts that matches both car ref-
erence sets. This set contains 2,568 posts about cars from
the internet classifieds Craig’s List. We call this set of posts
Craigs List. Note, however, that while there may be multiple
reference sets that are appropriate, they also might have an
internal ranking. As an example of this, we expect that the
Craigs Listposts selects both theCarsandKBBCarsrefer-
ence sets, butCarsshould be ranked first.

Lastly, we need to check whether the algorithm can sug-
gest that there is no relevant reference set in our reposi-
tory. To test this idea, we collected 1,099 posts about boats
from Craig’s List, calledBoats. Intuitively boats are similar
enough to cars to make this a non-trivial test, since boats and
cars are both made by Honda, for example, so that keyword
appears in both sets of posts. However, boats are also differ-
ent enough from all the reference sets that there should not
be an appropriate reference set selected.

Results for Choosing Relevant Reference Sets
In this section we provide results to show the algorithm suc-
cessfully performs on multiple cases and across multiple do-
mains. For all experiments we keep the threshold at 0.6.
We expect that the last appropriate reference set should be
roughly 60% better than the first inappropriate one.

Table 3 shows our results using the Jensen-Shannon dis-
tance (JSD) which validate our approach to automatically
choosing relevant reference sets. The reference set names
in bold reflect those that are chosen as appropriate. (This
means boats should have no bold names). The scores in
bold are the similarity scores for the chosen reference sets,
and the percent difference in bold is the point at which the
algorithm breaks out and returns the appropriate reference
sets. In particular, JSD successfully identifies the multiple
cases where we might have a single appropriate reference
set, multiple reference sets, or no reference set. Also, the re-
sults show that across domains using the intuitive and simple
threshold of 0.6 works well.

The results also justify the need of including a double
stopping criteria for the algorithm. It is not enough to just
consider the percent difference as an indicator of relative su-
periority amongst the reference sets. The scores must also
be compared to an average to make sure that the algorithm is
not errantly supplying a bad reference set as appropriate just
because it is relatively better than an even worse one. For
an example of this, consider the last two rows of theBoats
posts in Table 3.

BFT Posts Craig’s List
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.622 2.172 Cars 0.520 0.161
Fodors 0.196 0.050 KBBCars 0.447 1.193
Cars 0.187 0.248 Fodors 0.204 0.561
KBBCars 0.150 Hotels 0.131
Average 0.234 Average 0.326

Boat Posts
Ref. Set Score % Diff.
Cars 0.251 0.513
Fodors 0.166 0.144
KBBCars 0.145 0.723
Hotels 0.084
Average 0.162

Table 3: Results using Jensen-Shannon distance

Results for Semantic Annotation
Once the relevant reference sets are chosen, we use our vec-
tor space model of semantic annotation for each post, and
in this section we present results showing that our approach
to semantic annotation is valid. To do this, we take the true
matches between the posts and the reference sets, and for
each set of true matches for each post, we use the attributes
in agreement, as stated above. Then we compare these to
the attributes in agreement for our matches chosen using our
vector space model. We present only results for the BFT and
Craig’s List posts, since Boats have no relevant reference set.

To evaluate the semantic annotation, we use the traditional
information extraction measures of precision, recall and f-
measure, the harmonic mean between precision and recall.

We define a correct match for an attribute when the attributes
in agreement predicted by the vector space model matches
that from the true matches. In some sense these are field
level extraction results. In many extraction experiments, just
finding a token in common between the truly extracted at-
tribute and the predicted is counted as a match, but in our
case, we are considering matches only where the whole at-
tribute matches (all of the tokens), which is a stricter rubric,
and more truly indicates the accuracy for searching based on
the extracted attributes. The results are shown in Table 4.

We compare our results to those from (Michelson &
Knoblock 2005), for the BFT Posts to show our automatic
approach is competitive with a machine learning approach.
For this we use the F-measure record linkage results from
our previous paper, since in that work we used the match-
ing reference set record’s attributes as normalized semantic
annotation. This allows us to compare our new semantic
annotation using the attributes in agreement to our old anno-
tation stemming from the record matching. Table 4 reports
our old record linkage F-measure asPrev. F-Mes.

BFT Posts
Attribute Recall Prec. F-Measure Prev. F-Mes.

Hotel Name 88.23 89.36 88.79 92.68
Star Rating 92.02 89.25 90.61 92.68
Local Area 93.77 90.52 92.17 92.68

Craig’s List Posts
Make 93.96 86.35 89.99 N/A
Model 82.62 81.35 81.98 N/A
Trim 71.62 51.95 60.22 N/A
Year 78.86 91.01 84.50 N/A

Table 4: Semantic Annotation Results

However, a direct comparison between the two results is
slightly skewed because our system is unsupervised, where
as the old system is not. So previously we only reported on
70% of the data used for testing, while this paper uses 100%
of the posts. Nonetheless, we believe these are encouraging
results given that the new approach is fully automatic in both
the selection of reference sets and the matching, while our
previous approach requires a user to provide both the correct
reference set and labeled training data.

One interesting difference between the two approaches
is in disambiguating false positives, which leads to some
problems with the vector space model. When we used ma-
chine learning we could learn directly that some candidate
matches are true matches while others are false positives,
especially given that certain matching attributes are more
indicative of a match than others. For example, matching
on a car model is probably better at indicating a match than
matching on a car make. This allowed us to be sure that
the reference set attributes for a match were correct, since
we were confident of the match, so there was not a problem
with attributes not being in agreement. However, with the
vector space model, we have a disambiguation problem be-
cause certain reference set records that score the same for a
given post are all equally as likely to be a match, especially
since we have no notion of certain attributes being more in-
dicative than others. Clearly this is a limitation with our

approach and it requires us to either select the intersection
or the union of the attributes for all returned reference set
attributes. We select the intersection because we want to
limit the false positives for given attributes, but this leads to
problems, especially with attributes that are short and am-
biguous. For example, the trim attribute in Craig’s List Cars
is a short pieces of text, usually just a few letters. So, in
some cases, different sets of a few letters in a post could
match multiple reference set trims, even though only one is
correct, so these attributes are not in agreement and get re-
moved, hindering their accuracy. Overcoming this issue is
something we plan to investigate in the future.

Related Work
Performing semantic annotation automatically is a well stud-
ied field of research, especially as researchers develop the
Semantic Web. According to a recent survey (Reeve & Han
2005), systems that perform automatic semantic annotation
break into 3 categories: rule based, pattern based, and wrap-
per induction based methods. However, the rule based and
pattern based methods rely on regularity within the text,
which is not the case with posts. Also, the wrapper induc-
tion methods use supervised machine learning instead of un-
supervised methods.

The most similar system to ours is the SemTag (Dillet al.
2003) system, which first identifies tokens of interest in the
text, and then labels them using the TAP taxonomy, which
is similar to our exploitation of reference sets.

However, there are a few key differences between this ap-
proach and ours. First, the noisy nature of the posts does
not allow for an exact lookup of the tokens in the reference
set. So our approach emphasizes this aspect as a contribu-
tion, while SemTag’s focus is more on disambiguating the
possible labels. Second, their disambiguation comes about
because of synonymy that our approach avoids entirely. In
their paper they mention the token Jaguar might mention
a car or an animal, since they disambiguate after labeling.
In our case, we perform disambiguation before the labeling
procedure, during the selection of the relevant reference sets.
If we had a reference set of animals and one of cars, and we
chose cars as the relevant reference set, then we would not
have this type of synonymy since animal labels would not
be an option.

Lastly, our approaches differ in their outside knowledge.
SemTag uses a well defined, carefully crafted taxonomy.
This gives their reference set good accuracy and well de-
fined labels with lots of meaning. Our approach is just to
incorporate any reference sets that we can collect automat-
ically from the web. Including new reference sets in our
repository has no effect on the data already in it (since the
reference sets are independent). So our approach to data col-
lection is not as careful as using a full taxonomy, but we can
much more easily and quickly gather lots and lots of refer-
ence data, greatly increasing our coverage of items we can
annotate.

Another unsupervised system that we might compare our
research to is the KnowItNow system (Cafarellaet al. 2005),
which extracts entities from online sources automatically.
However, a direct comparison is not appropriate because

our focus is on unstructured posts, while they are extract-
ing entities seeded by patterns and using natural language,
so the domain of text is different. However, our approach
to expanding our coverage by discovering and incorporat-
ing new reference sets is somewhat similar to KnowItNow
in that the goal is to discover and incorporate new informa-
tion automatically. In fact, the two approaches complement
each other very well for automatically constructing refer-
ence sets and extracting data from different types of sources.
We could use the source modeling component for discover-
ing structured reference sets from sources such as Web Ser-
vices, while we could use KnowItNow to build reference
sets from semi-structured web pages.

Conclusion
In this paper we present a system for understanding unstruc-
tured and ungrammatical text via unsupervised semantic an-
notation. Our annotation method exploits reference sets,
which are automatically chosen, and can be continuously
harvested, showing that the coverage, and thus annotation,
can improve over time.

References
Bilenko, M., and Mooney, R. J. 2003. Adaptive dupli-
cate detection using learnable string similarity measures.
In Proceedings KDD.
Cafarella, M. J.; Downey, D.; Soderland, S.; and Etzioni,
O. 2005. Knowitnow: Fast, scalable information extraction
from the web. InProceedings of HLT-EMNLP.
Carman, M. J. 2006.Learning Semantic Definitions of
Information Sources on the Internet. Ph.D. Dissertation,
University of Trento.
Dill, S.; Gibson, N.; Gruhl, D.; Guha, R.; Jhingran, A.;
Kanungo, T.; Rajagopalan, S.; Tomkins, A.; Tomlin, J. A.;
and Zien, J. Y. 2003. Semtag and seeker: Bootstrapping
the semantic web via automated semantic annotation. In
Proceedings of WWW.
Lerman, K.; Plangrasopchok, A.; and Knoblock, C. A.
2006. Automatically labeling the inputs and outputs of web
services. InProceedings of AAAI.
Lin, J. 1991. Divergence measures based on the shan-
non entropy. IEEE Transactions on Information Theory
37(1):145–151.
Michelson, M., and Knoblock, C. A. 2005. Semantic an-
notation of unstructured and ungrammatical text. InPro-
ceedings of IJCAI.
Minton, S. N.; Nanjo, C.; Knoblock, C. A.; Michalowski,
M.; and Michelson, M. 2005. A heterogeneous field match-
ing method for record linkage. InProceedings of ICDM.
Reeve, L., and Han, H. 2005. Survey of semantic anno-
tation platforms. InProceedings of ACM Symposium on
Applied Computing.
Thakkar, S.; Ambite, J. L.; and Knoblock, C. A. 2005.
Composing, optimizing, and executing plans for bioinfor-
matics web services.The VLDB Journal, Special Issue on
Data Management, Analysis, and Mining for the Life Sci-
ences14(3):330–353.

