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Abstract. This paper presents an automatic approach to mining col-
lections of maps from the Web. Our method harvests images from the
Web and then classifies them as maps or non-maps by comparing them
to previously classified map and non-map images using methods from
Content-Based Image Retrieval (CBIR). Our approach outperforms the
accuracy of the previous approach by 20% in F1-measure. Further, our
method is more scalable and less costly than previous approaches that
rely on more traditional machine learning techniques.

1 Introduction

As more and more information comes online, disciplines ranging from medicine
to geography benefit from the proliferation of freely available data. For example,
in the field of geography, huge repositories of maps can be built by harvesting
maps from all of the images on the Web. Once harvested, these maps can then
be aligned to known geographic sources in a process known as “georeferencing”
[1–3]. Previous work georeferences maps to satellite images by first automati-
cally extracting the roads and intersections from the map image [4–6], and then
using those roads and intersections to automatically align the map to the satel-
lite image in a process known as conflation [1, 2]. Once georeferenced, the map
collection can be queried using the same spatial queries used on the satellite
images, such as queries by region, latitude/longitude, street name, etc. Further,
not only are the maps returned for the given query, but they can be put in con-
text by overlaying the map images on top of the satellite image. An example of
a conflated map with a satellite image is given in Figure 1.
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Fig. 1. A bus map for Washington, DC conflated with a satellite image of the city.

In this paper we focus on the first of these problems, automatically harvesting
maps from the freely available images on the Web. However, given that there
is no filter for publishing on the Web, a major challenge exists in separating
the map images from the other types of images. Manually sifting through the
images is both tedious and costly, especially given the huge amounts of data
that must be examined. In this paper we address the problem of automatically
separating geographic maps from other images collected on the World Wide Web.
An autonomous approach not only eases the cost associated with identifying
maps, but it also provides an easy and scalable approach to growing a collection
of maps over time. Once collected, such maps are useful for data integration,
intelligence analysis and geographic information systems. While we focus on the
particular task of identifying maps, we believe the approach is general enough
to work for other specific image types, such as medical images.

More specifically, we start with a collection of images harvested from the
Web and our goal is to sort the images into maps and other images. Rather than
collecting the images ourselves, which is costly, we leverage the image-search
databases of large companies such as Microsoft, Yahoo!, and Google who index
and collect millions of images from all over the Web. Since these databases are
refreshed frequently with new content, this allows us to collect new maps over
time without having to spider the Web itself. Using such image databases, we
can collect the search results and classify each returned image as a map or non-
map, storing the newly classified maps in a map server. These stored maps can
then be georeferenced for future querying. Figure 2 shows this process.

As shown in Figure 2, we exploit two repositories, one of maps and one of
non-maps, to do our classification. While the specifics of our classifier are given
in Section 2, intuitively, if an image to be classified is more similar to the maps
in our repository than the non-maps, then it is more likely a map itself. That
is, using techniques from Content-Based Image Retrieval (CBIR), we select the
most similar images from the repositories for a given map and use those returned
images to decide if the input image is a map or not. We find that our CBIR
method is both more scalable than machine learning methods (as justified in



Fig. 2. A software system for automatically collecting maps from the Web.

Section 2), and it is also more accurate (as shown in the experiments of Section
3). This is the basis of our contribution: a method to sort images into maps that
is scalable, robust, autonomous and accurate.

The rest of this paper is organized as follows. We describe the details of our
CBIR map classifier in Section 2. We then describe our experiments and justify
our approach in Section 3. We next present related work in Section 4, and we
finish with our conclusions and future research in Section 5.

2 Automatically Classifying Maps

The focus of this paper is the classification of maps from images harvested from
the Web. In this paper we broadly define a map as any digital image which
contains “map like” characteristics such as lines, intersections and labels. The
important aspect for our task is that we remain consistent in our definition of
maps versus non-maps.

Our map classifier exploits techniques from Content-Based Image Retrieval
(CBIR).1 CBIR is essentially the image equivalent to traditional text based Web
search. Instead of finding the most similar Web pages for a given set of query
terms, in CBIR the most similar images from a set are returned for a given query
1 See [7] for an excellent survey of the topic



Fig. 3. An example of Content-Based Image Retrieval

image. For example, consider Figure 3. In this figure, the query image comes into
the system and the top three most similar images are returned. This is the basis
of our classifier.

To exploit CBIR for classification, we use a voting, k-Nearest Neighbor clas-
sifier [8]. We first use CBIR to find the nine most similar images (neighbors)
from the combined set of images in the map and non-map repositories. The
similarity measure in our CBIR method is based on Water-Filling features [9].
Water-filling uses the edge maps of an image to quantify measures such as edge
complexity (based on forking), edge lengths, etc. These Water-Filling features
are well suited for images with clear edge structures [9], such as maps. Further,
by using edge-based features we make our classifier color invariant.

We then employ a simple majority voting mechanism [8]. If the majority of
returned images are maps, we classify the query image as a map. If the majority
of returned images are non-maps, we classify the query image as a non-map. This
simple algorithm is shown in Figure 4. Therefore, although it may be the case
that other images on the Web will have clear edge structures (such as diagrams),
since our technique relies not only on the edge features themselves, but also on
the similarity to the edge features of the images in our map repository, such
images will be filtered out. The accuracy of our experimental results indeed
show this to be the case.

We choose a CBIR based k-Nearest Neighbor classifier over more traditional
machine learning methods for the following reasons. First, CBIR similarity meth-



Fig. 4. A k-Nearest Neighbor map classifier using CBIR.

ods allow us to exploit image similarities without explicitly modeling them. For
instance, hydrography maps are similar to other hydrography maps and urban
city maps are more similar to urban city maps but these types of maps may
be quite different from each other. By using CBIR methods, these similarities
can be exploited without modeling them explicitly because the returned images
encompass the image similarities implicitly (that is why they are returned as
similar). If we use traditional machine learning methods, such as Support Vec-
tor Machines, we have two options to capture these different types of image
similarity. On the one hand, we can train a model for each class of map, then if
an incoming image matches any of these map classes, we know it is a map (since
each class composes the image similarities). That is, we can take the hydography
maps and learn a model of what a hydrography map should be. We can then
take the urban city map and learn an urban city map model.

There are several problems with trying to learn a model for each type of
map. For one, the number of such classes is not known in advance. Therefore,
a user will have to make a decision as to which maps constitute a class and
hope he or she made the correct choices to lead to accurate classification. Along
these lines, the user must make decisions as to the granularity of the classes (is
an urban-hydrographical map its own class?), which can further complicate the
creation of classes. Also, learning a new model may be a non-trivial process both



in the work and time required. So, if a new class is discovered or needed, this
can become a prohibitively costly problem.

Instead, rather than modeling all of the different types of image similarities
in distinct classes, one could try to learn a single model that encompasses all of
these different types of similarities. However, since different types of map images
can vary wildly, trying to generalize to cover all of these different similarities leads
to a learned model that does not discriminate well (as shown in our experiments).

The other reason we chose CBIR instead of machine learning has to do with
robustness and scalability. We can exploit huge repositories in our method, which
is not the case using machine learning. In machine learning, learning models
from massive amounts of data can take so long that it is not practical. CBIR
techniques, however, are built on methods from information retrieval which the
major search engines have shown to be fast and robust in very large, practical
settings. Further, we can freely tweak the size and composition of our repository
to test the effect (something we do in the experiments to test this idea). Using
machine learning, we have to retrain a model each time we tweak the repository
(training data). In situations where training is costly, this is not a good solution.
Therefore, by using CBIR methods we can grow the repository over time without
retraining which allows for a scalable and autonomous solution to classifying
maps and building good map repositories. In our experiments, we show the
effects of growing the repository on the accuracy of classification.

3 Experiments

We collected 1,704 map images and 3,462 non-map images for our experiment.
We used Yahoo Image Search2 to gather all of the map images and some of
the non-map images. Most of the non-map images come from the CALTECH
101 data set [10], which is a set of pictures of objects belonging to 101 different
categories. Table 1 presents the distribution of images by source. Note that we
labeled all images as maps or non-maps manually.

Our experimental collection includes not only cities in the United States,
but also international cities. Specifically, we included maps from New Dehli,
and the maps retrieved for the keywords “city maps” include maps from China,
Hungary, Israel, Ireland, France, Scotland and many other countries. Further, the
maps in our collection retrieved by city keywords (such as “Pittsburgh maps”)
include not only urban street level maps, but also county maps, highway maps,
weather maps, “metro area” maps, tourist maps (such as parks), and other types.
Therefore, our map collection is diverse and interesting.

Our CBIR-based classifier builds upon LIRE3, an open source CBIR library
written in Java,4 which we augmented to use Water-Filling features[9]. Previous
work demonstrated that Water-Filling features increase performance in the re-
trieval of images with clear edge structures [9], a condition that applies well to
2 images.search.yahoo.com
3 http://www.semanticmetadata.net/lire/
4 LIRE is part of the Calif&Emir project [11].



Table 1. Distribution of images by source

Source of image Number Number of Number of
(Keyword used) of images map images non-map images

Los Angeles Maps 378 327 51

Seattle Maps 132 87 45

Chicago Maps 480 376 104

Pittsburgh Maps 139 92 47

New York Maps 143 87 56

New Delhi Maps 188 124 64

City maps 624 611 13

NonMap (CALTECH 101) 3,082 0 3,082

ALL 5,166 1,704 3,462

maps. Since Water-Filling uses edge maps, we pre-process each image using the
Canny edge detector[12] to create the edge maps.

For our experiments, we randomly select 800 maps and 800 non-maps from
the entire set of images to build the repository for the CBIR method. Since the
repository acts as the set of labeled samples for the CBIR method, we used this
same set to train the SVM. Then we test each method on 800 randomly chosen
maps and 800 randomly chosen non-maps to test the method’s effectiveness. We
repeated this process over 10 trials.

Our experiments test two hypotheses. First, we test whether CBIR is a more
accurate classifier than the SVM by comparing both methods, using the Water-
Filling features. Second, we also test whether Water-Filling features are more
suited to map classification by comparing an SVM using Water-Filling features
to one that uses Law’s Textures [3]. By comparing an SVM using Law’s Textures,
which was used in a machine learning approach to the same problem [3], to our
CBIR-based method using Water-Filling, we can also show that not only is our
method more scalable and robust (since it does not require a training phase),
it also outperforms the previous approach. Table 2 presents our experimental
results as average precision, recall and F1-measure (the first harmonic mean
between precision and recall), the standard metrics for classification tasks.

Table 2. Performance of the CBIR and SVM methods

Method Precision Recall F1-measure

CBIR with WaterFilling 87.14 77.36 81.96

SVM with WaterFilling 88.80 56.00 68.69

SVM with Laws’ Texture 69.50 47.43 56.38

The first result to notice is that the CBIR with WaterFilling method greatly
outperforms the other two methods in F1-measure, which means it has the su-



perior map classification performance. Note that all differences, except for one,
are statistically significant, using a two-tailed t-test with α set to 0.05. The only
difference that is not statistically significant is the precision between the CBIR
with WaterFilling and the SVM with WaterFilling methods.

Note that while the precision using WaterFilling is similar (not statistically
significant) using either the SVM or the CBIR method, the recall is much im-
proved using the CBIR method, yielding the best F1-measure. This supports
our notion that CBIR generalizes to many map types better than SVM does. In
order to increase the SVM’s recall, we would need to train it for the various map
classes. As it stands, training it to learn a single “meta-map” class only results
in its classification of roughly half of the maps correctly. Meanwhile, because
the CBIR method returns the nearest neighbors, which may be of arbitrary map
types, it is able to cover many more map classes, and return a higher propor-
tion of the maps. It does this while maintaining a high level of precision, and is
therefore a more accurate classifier.

The next result to notice is that WaterFilling features are much better suited
for the map classification task. This is clear by examining the difference in preci-
sion between the SVM method using WaterFilling features and the SVM method
using Law’s Textures. Both methods have very similar recall values, generally
capturing half of the maps in the testing data, but the Law’s Textures method
does a far worse job at distinguishing noise from the true maps. As stated, since
maps have a strong-edge structure, Water-Filling can do a much better job at
distinguishing true maps from false positives.

We also analyze the effect of the size of the repository on the CBIR method’s
classification performance. Since the repository is equivalent to the training data
for the SVM method, this is analogous to studying the effect of the amount of
training data on the SVM. To do this, we repeated the above classification
experiment, this time varying the repository size (training data) by 200 maps
and 200 non-maps, starting with 200 maps and 200 non-maps up to 1,400 maps
and 1,400 non-maps. Figure 5 again compares the F1-measures for the three
methods, CBIR with WaterFilling, SVM with WaterFilling, and SVM with Law’s
Textures.

Figure 5 suggests that even with a small repository, the CBIR method out-
performs the SVM methods. Moreover, as we add more images to the repository,
the CBIR method’s F1-measure improves steadily. Again, the primary cause for
both of the SVM methods’ low F1-measure is their low recall. As we argue
above, the primary reason for the low recall is that maps vary dramatically in
their shapes and density, such that when the SVM tries to learn one model for
all of these types as maps, it converges to a set of feature values which are an
average over these maps. As a result it defines a hyperplane approximately in
the middle of the feature space resulting in lots of maps falling on the non-map
side of the plane. In fact the recall hovers around the 50% mark reaching 56%
for the most training. Note that the way to overcome this would be train an
SVM for each map type, but this is infeasible given that we do not know the
map types on the Web ahead on time.



Fig. 5. Comparison of CBIR and SVM varying the repository size

Lastly, we examine the maps misclassified by the CBIR method. Since the
precision is high, we focus on issues dealing with recall. Specifically, we delve
more deeply into false-negatives (maps that are errantly classified as non-maps),
which are the determinant for recall misses. We realized that the majority of
false-negative cases are caused when there is one more non-map than map in
the returned neighbors, which leads the system to classify the input image as
a non-map (since it has a five to four majority). In most of these cases, it is
a small set of non-map images that repeatedly get included as these neighbors
which sway the vote to an errant classification. We call these “culprit” images.
Figure 6 shows the edge-map of an example culprit image. This image is a person
in front of a stack of books. However, the edge map for the stack of books in
the background looks quite similar to an urban map (it has lots of squares and
intersections). To deal with “culprit images” we plan to use relevance feedback
techniques to find this small set of non-map images and remove them from the
repository.



(a) (b)

Fig. 6. An image where the edge map looks like a city map; Figure (a) shows the
original image, Figure (b) shows the edge map

4 Related Work

CBIR methods have been applied to various scientific disciplines ranging from
astronomy[13] to botany[14]. Much attention has been given to CBIR methods
in medicine, where they can have tremendous impact [15]. For example, in one
medical system the authors use a CBIR-based, k-Nearest Neighbor approach to
classify medical images [16]. This work also includes Water-Filling features for
the CBIR component. However, their work (and most of those above) differs
from ours in the context in which it is applied. Our system is geared toward
automatically harvesting maps from the Web, while their system is used to
classify images so that images can be queried categorically. More specifically,
these authors use many different types of features to classify their images, while
we use only water-filling in the interest of accurate classification. Further, we are
the first to use CBIR methods to automatically harvest maps from the Web.

Although we are the first to propose CBIR-based classification for map har-
vesting, other work has been proposed to automatically classify (and harvest)
maps from the Web [3]. As stated in our experiments, Desai, et. al. [3] pro-
pose machine learning methods to classify maps versus non-maps. In our exper-
iments we find this method is less effective than our CBIR based classifier. More
specifically, not only is the machine learning component not as accurate as the
CBIR-based classifier, but a machine learning method requires different models
for each map type, since our experiments show that learning a single model to
cover all maps leads to inaccurate classification.

Our experiments point to the necessity of using the correct features for CBIR.
While we choose Water-Filling, which are good for images such as maps with
strong edge maps, other methods could perhaps work as well. For instance,
authors have proposed “salient point” features based on wavelets [17]. Another
set of features based on shape similarity [18] could be well suited for our task
as well, since maps seems to share certain shapes within them. Lastly, methods
have been proposed to more efficiently store color information [19], which makes
retrieval more efficient. Although we use textures based on edge maps to make



our method color invariant, color information might help in discriminating maps.
Our CBIR-method is not tied to Water-Filling, though those features perform
well. It will be interesting future work to compare the various features and their
efficiency and accuracy for map classification.

5 Conclusion

In this paper we present an autonomous, robust and accurate method for clas-
sifying maps from images collected on the World Wide Web. We find that a
CBIR based classification method outperforms a machine learning based method,
largely because we do not have to explicitly model the different types of maps
that should be covered by the classifier. That is, by leveraging CBIR we can clas-
sify a variety of maps without having to explicitly train a classification model for
each one. Further, we find that Water-Filling features, which are shown to work
well on images with clear edge structures, work well for maps in our classifier.

However, although our method performs well, there are still areas for im-
provement. For example, some maps are misclassified when the majority vote is
borderline (for example, one image sways the classification as a map or non-map).
In this case, we can deal with the ambiguity by employing relevance feedback
techniques from information retrieval. Such relevance feedback could help us
to identify and prune away “culprit” images who consistently sway the vote in
miss-classifications. Other future work involves exploring different features such
as wavelets and shape similarities.

Nonetheless, despite the future work proposed above, our technique provides
an automatic, accurate, practical and scalable solution to the problem of creat-
ing useful image repositories from the Web. More importantly, by plugging our
method in with methods for aligning raster maps with satellite images we can
create a harvesting framework for scouring the freely available images on the
Web to build map collections for any given region in the world.
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