
Mining the Heterogeneous Transformations between Data
Sources to Aid Record Linkage

Matthew Michelson∗

Fetch Technologies
841 Apollo St., Ste. 400
El Segundo, CA 90245

mmichelson@fetch.edu

Craig A. Knoblock
Information Sciences Institute

University of Southern California
4676 Admiralty Way
Marina Del Rey, CA

knoblock@isi.edu

ABSTRACT
Heterogeneous transformations are translations between strings
that are not characterized by a single function. E.g., nick-
names, abbreviations and synonyms are heterogeneous trans-
formations while edit distances are not. Such transforma-
tions are useful for information retrieval, information ex-
traction and text understanding. They are especially use-
ful in record linkage, where the problem is to determine
whether two records refer to the same entity by examin-
ing the similarities between their fields. However, hetero-
geneous transformations are usually created manually and
without assurance they will be useful. This paper presents a
data mining approach to discover heterogeneous transforma-
tions between two data sets, without labeled training data,
which can then be used to aid record linkage. In addition
to simple transformations, our algorithm finds combinato-
rial transformations, such as synonyms and abbreviations
together. Our experiments demonstrate that our approach
can discover many types of specialized transformations, and
we show that by exploiting these transformations we can
improve record linkage accuracy. Our approach makes dis-
covering and exploiting heterogeneous transformations more
scalable and robust by lessening the domain and human de-
pendencies.

1. INTRODUCTION
∗This research is based upon work supported in part by the
Air Force Office of Scientific Research under grant number
FA9550-07-1-0416, and in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
FA8750-07- D-0185/0004. The U.S.Government is autho-
rized to reproduce and distribute reports for Governmental
purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of any of the above organizations or any person
connected with them.

Record linkage is the process of recognizing when two records
refer to the same entity. This is a substantial problem when
integrating multiple data sources. Record linkage is not a
new problem, and has been around in various forms for a
long time [4]. It sometimes goes by the names object identi-
fication [6], de-duplication [5, 10, 15] or co-reference resolu-
tion [8]. As an example, consider the two directory resources
listed in Figure 1. Each data source contains a restaurant
name and a manager’s name, and the goal is to discover
which restaurants are the same across the listings.

Figure 1: Matching Records in Two Tables

Most record linkage examines the records at the field level
and then makes an overall record level decision as to whether
or not the records match. In our example scenario of Fig-
ure 1, we want to make record level match decisions about
restaurants based on the manager and restaurant fields. For
this reason, many of the record linkage approaches use so-
phisticated machine learning approaches to making these
record level decisions based on the field level similarities [18,
14, 2, 16]. However, until recently [18, 9], most of the meth-
ods use simple techniques such as edit distance to measure
the field similarities. In the cases where record linkage does
use more complex field similarity measures such as synonym
comparisons [18, 9], the systems use hand coded, domain
specific transformations.

In this paper, we present a method to mine complex string
transformations directly from the data, which can then be
used by record linkage systems. That is, given two data

sources, the algorithm presented in this paper explicitly
mines various transformations that occur between the data
sources (such as synonyms), without needing labeled train-
ing data. These transformations can then be used to aid
record linkage by being used for field similarity measures.

In general, measuring field-level similarities between the at-
tributes is difficult because of the myriad of possible differ-
ences in the field values. Beyond the characteristics that
are easy to capture, such as spelling differences and miss-
ing or extra tokens, there are many differences that need to
be captured by more specific techniques. For example, the
two restaurant names of the first row of Figure 1 demon-
strate the need for acronym identification since one restau-
rant “California Pizza Kitchen” is represented in the other
set by its acronym “CPK.” Another frequent field level dif-
ference that occurs is abbreviation, such as “Delicatessen”
to “Deli.” Yet another is a synonym/nickname relationship
such as “Robert” is “Bobby” and “William” is “Bill” which
is shown in Figure 1. Unlike their generic counterparts,
such as edit distance, these specific field level relationships
are not defined by a generic function that works in all cases
across all field values. Thus, we group them all together
under the heading, “heterogeneous transformations.”

While work such as Minton, et. al, [9] and Tejada, Knoblock,
and Minton [18] link records together based on the common
heterogeneous transformations between the records, the trans-
formations used are provided to the algorithm a priori and
created manually. For example, in matching cars, a user
might create and supply a list of synonyms such as “hatch-
back” equals “liftback.” Beyond the cost in creating these
lists, there is no assurance that the created sets of trans-
formations will be useful for matching the records. For in-
stance, while the list creator might think “hatchback” and
“liftback” will be useful, they may only occur infrequently
within the data sources or there may be cases where they
are misleading.

By mining these transformations instead of composing them
manually, we make the use of heterogeneous transforma-
tions more robust, scalable and cost effective. Further, by
mining the transformations, rather than creating them, the
algorithm can discover multi-token, combination transfor-
mations that would be difficult to construct manually. For
instance, our algorithm discovers that “2D Coupe” and “2
Dr Hatchback” are a transformation between car trims. This
transformation combines a pseudo-synonym (hatchback equals
coupe), with an abbreviation (2D equals 2 Dr). Further,
the algorithm selects only those mined transformations that
have high mutual information, indicating that these trans-
formations provide dependency information about their co-
occurrence. In this manner, not only are the transforma-
tions created algorithmically, but they also provide a cer-
tain amount of information about whether or not they will
be useful as a pair.

Although these transformations apply well to record link-
age, they are not limited in their use to this application do-
main. Once mined, these lists of transformations could be
useful for many tasks. For instance, transformations could
be used in information retrieval as expanded thesauri that
go beyond traditional English language thesauri. Another

domain where transformations are useful is in schema map-
ping. For instance, giving a set of transformations to an
alignment system such as iMap [3] can greatly increase its
ability to find text matches within the columns which aids its
alignment. Such transformations could be also used in infor-
mation extraction to aid in disambiguating and discovering
the extractions. For instance, by combining a set of transfor-
mations with an algorithm for resolving object resolutions
[20], an extractor might be able to identify extractions it
could not previously. For instance, one article might men-
tion “CPK” and another might mention “California Pizza
Kitchen,” and both restaurant names could be extracted
and consolidated.

The rest of this paper is organized as follows. In the next
section we present the algorithm for mining heterogeneous
transformations in detail. Then we present some experi-
mental results that show we can discover these transforma-
tions and that these transformations are useful for improv-
ing record linkage. Then we present related work, and we
conclude with some final thoughts.

2. MINING TRANSFORMATIONS
Our goal is to mine transformations between the data sources,
without labeled data. More formally, our inputs consist of
two data sets, Di and Dj , along with a set of schema aligned
attributes Aij . Note that the attributes ai, aj ∈ Aij may be
a subset of the attributes in Di and Dj . From these inputs,
we produce a set of transformations T , which relate to cer-
tain values, v, for attributes aij ∈ Aij , such that the values
v(ai) ∈ Di can be substituted for v(aj) ∈ Dj . For exam-
ple, v(ai) may be “CPK” in Di which can be substituted
for “California Pizza Kitchen” for v(aj) in Dj . Formally,
we define a transformation tij ∈ T , as a function that maps
between data sources: tij(v(ai) ∈ Di) 7→ (v(aj) ∈ Dj). It
is important to note that the value functions v may operate
on subsets of the tokens in ai and aj . That is, the mapping
by transformation tij may map some tokens of ai to some
tokens of aj . This definition gives us the flexibility to de-
fine heterogeneous transformations, tij to be arbitrary string
substitutions, rather than strict programmatically defined
functions, as with edit distances. Our hypothesis space,
therefore, is the set of all possible token combinations for
all possible aligned attributes values. From this space, we
select the subsets of tokens that most likely aid in identifying
matching records between the sources.

The formal definition of our transformation mining problem:

〈Di, Dj , Aij〉 → 〈T 〉

differentiates the problem of mining heterogeneous transfor-
mations from other data mining problems. For example, in
association rule mining [1], the inputs are a single set of
transactions and the output is a set of rules relating tuples
in the input set of transactions. This differs from our prob-
lem, which considers two data sets from which to pull out
transformations mapping values in one set to the other. Our
algorithm also differs from selection algorithms. In feature
selection, a set of features is either built up from the null
set [7] or pruned down from the full set [11]. In either case,
feature selections add or remove whole features (attributes

in our case), where as in our algorithm we explicitly build up
sets of value mappings between features. In some sense, the
problem of mining transformations lies between these two
methods. On the one hand, we are finding mappings be-
tween attributes which is like mining associations between
tuples in association rule mining. On the other hand, we
are finding transformations that only apply to a subset of
attributes, as in feature selection where only subsets of at-
tributes are considered.

The overall algorithm for discovering heterogeneous trans-
formations breaks into three high level steps, as shown in
Figure 2. In the first step, we find possible matches between
the sources. This is done using the cosine similarity between
record pairs, which we refer to as possible matches. Next,
we mine the transformations from these possible matches,
since they give us a set of records with likely transforma-
tions contained within them. In the final step, which is op-
tional, a user can prune incorrect transformations that the
algorithm mines. Since we are mining transformations from
possible matches, rather than labeled training data, errant
transformations can be generated. However, we show in our
experiments that pruning these incorrect transformations is
optional because both the pruned and unpruned transfor-
mation sets aid the record linkage equally.

Note that although we do not require labeled training data,
we do assume that the schema matching has been done.
That is, we assume that each column from one source has
been registered to its matching column in the other source.
In our example of Figure 1 this means that the system knows
that the Manager column of one source maps to the Manager
column of the other source and similarly for the Restaurant
columns.

Figure 2: Algorithm for mining heterogeneous
transformations

Therefore, as a first step, our algorithm must discover the
possible matches between the data sources, from which we
can mine the transformations. The intuition here is that
likely matches between the data sources will often contain
useful transformations. However, we do not want to label
matches ahead of time because that will add an extra bur-
den to the user. So instead, we introduce a threshold TCos,
and we create our possible matches from record pairs be-
tween the data sources whose TF/IDF cosine similarity is
above a threshold TCos. Since this threshold is chosen by a

user, in our experiments we vary it and examine the results.
The algorithm for generating candidate matches is given in
Table 1.

Table 1: Selecting candidate matches
GetCandidateMatches(Dataset S, Dataset T)
Candidates ← {}
For all records s ∈ S X t ∈ T

If CosineSim(s,T) > TCos

Candidates ← Candidates ∪ (s,t)

The next step is to mine the transformations from these pos-
sible matches. Intuitively, the algorithm finds sets of tokens
that co-occur with each other within the possible matches,
but that are not exactly the same. For instance, looking
at the restaurant field of the second record in Figure 1, we
see it has “Bill’s” in common, but also has “Chop House”
in one record and “Steak Place” in the other. If this oc-
curs frequently in our possible matches, then this might be
a transformation we would want to discover to use later for
these types of restaurants. Figure 3 shows the pairs gener-
ated from the first matches shown in Figure 1. As shown,
the algorithm lines up the fields across the possible matches
and generates pairs of sets of tokens for all tokens in the
fields that are not exactly the same.

Figure 3: Generating co-occurring token pairs from
possible match pairs

Of course, while this generation process creates many possi-
ble transformations, it will create both good and bad ones.
Therefore, we need a method by which to select only the
most promising pairs of token sets. To do this we could
could consider co-occurrence in the possible matches. For
example, we might use the likelihood of co-occurrence and
keep only the transformations that are the most probable.
However, this method does not use all of the possible in-
formation provided by the transformation pairs. A more
useful metric should include not only a measure of prob-
able co-occurrence, but also a measure of dependence be-
tween each part of the transformation. For this reason, we
choose the transformations with the highest mutual informa-
tion amongst the transformations mined from the possible
match pairs. Those with high mutual information not only

occur with a high likelihood, but they also carry more infor-
mation about whether or not the transformation occurs for
that field in matches.

For this step we obtain the probabilities used in the mutual
information from our set of possible matches. Given sets of
tokens s and t, we define mutual information as:

MI(s, t) = p(s, t) ∗ log2

(
p(s, t)

p(s)p(t)

)

Once all of the co-occurring transformations in the possible
matches are scored, we select only those with a mutual in-
formation above a user chosen threshold, TMI . Like TCos,
since TMI is chosen by a user, its value is varied in the exper-
iments to examine its behavior. The algorithm for mining
the transformations from the candidate matches is shown in
Table 2.

Table 2: Mining transformations
GenerateTransformations(CandidateMatches C)
Transformations ← {}
For all record pairs (s,t) ∈ C

For all attributes a ∈ Attributes
transast ← NonMatchingTokens(as,at)
If MutualInformation(transast) > TMI

Transformations ← Transformations ∪ transast

Note that we might wrongly exclude a transformation just
because the probability of that transformation occurring is
low. An example of this would be that CPK is the same as
California Pizza Kitchen from Figure 3. This highlights one
of the limitations of our approach, namely that reasonable
but infrequent transformations will not be mined. However,
infrequent transformations, such as “CPK,” usually occur
for acronyms, and acronyms are usually specific to a certain
noun that does not necessarily reoccur in the data source.
So, pruning such overly specific transformations is not an
error.

There is one last step in our algorithm. Since our possible
matches are generated without labeled training data, our co-
sine similarity method can generate noisy possible matches.
Such noisy matches can produce errant transformations. For
instance, consider matching two data sources of hotels, with
a name, city and star rating. If there are common hotels in
large cities, such as multiple Hiltons in Los Angeles, but they
have a different star rating, this might lead the algorithm to
produce a possibly errant transformation such as “3*” is the
same as “4*.” In this step, a user can choose to prune this
transformation from the final set. Note that although this
step might require human intervention, we feel that pruning
a few errant transformations is much less costly than la-
beling many matches in order to mine the transformations.
Further, our experiments show that when aiding record link-
age, the pruned and unpruned transformation sets perform
equally well. Therefore, since the pruning has little effect
on how the transformations aid the record linkage, this step
is optional.

3. EXPERIMENTS

In this section we present experiments that show we mine
useful transformations, varying both the threshold for gener-
ating possible matches using TF/IDF (TCos) and that used
to select transformations with the highest mutual informa-
tion (TMI). We also apply these transformations to a record
linkage problem to show they help, and for the case where
they do not, we argue why this is not the fault of the algo-
rithm but a characteristic of the data to be matched. Fi-
nally, we show that pruning the errant rules has a minimal
effect on the record linkage results, so this step is optional.

Our experiments focus on three sets of data sources used
previously in the record linkage community. The first set
of data sources, called “Cars,” is used in [9] and consists of
2,777 automobile records from the Kelly Blue Book website
and 3,171 records from the Edmunds car buying site. Be-
tween these sets there are 2,909 one-to-many matches. Each
record in this set has a make, model, trim, and year. The
next data sources, called “BFT” in [9] contain 132 hotels
to be matched against 1,125 text entries from an internet
bulletin board, each manually parsed into attributes. Each
record in this set has a star rating, a local area and a hotel
name. Between these sources there are 1,028 matches. This
source is particularly noisy, containing many misspellings
and missing tokens, so it is a good test for using TF/IDF to
generate potential matches. In the interest of repeatability,
the BFT data set is freely available from our website for
experimental use.1

Our last data sources, called “Restaurants,” consist of two
tables of restaurants, which have been used in the past more
than once [2, 9]. One table, with 330 records, comes from Za-
gats and the other contains 534 records from Fodors. These
tables have 112 matches between them and each record has
a name, address, city, and cuisine. Interested participants
can also find this data set online.2

Table 3 shows some example transformations mined from
each of the experimental domains. The mined transforma-
tions include synonyms, abbreviations, acronyms and com-
binations of these. To make the transformations easier to
read, we present them as disjunctions. That is, transfor-
mations are grouped by the string from one source and we
union together the strings from the other source.

One way to interpret these mined transformations are as
“association rules” [1]. An association rule is of the form
antecedent → consequent. In our case, we can interpret each
mined transformation as a rule implying that a field from
one data source can be associated with different values for
that field in the other set. For instance, the transformation
Asian → Chinese ∪ Japanese means that, for the matches
in this set, when we see Asian for the cuisine in one record,
it might refer to Japanese or Chinese in the cuisine value of
its match.

Since we can consider the transformations as association
rules, we can use the standard association rule metrics to
evaluate the mined transformations. For these metrics, we
use the true matches between the sources to see how well

1http://www.isi.edu/integration/people/michelso/index.html
2http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz

Cars Domain
Field Kelly Blue Book Value Edmunds Trans.
Trim Coupe 2D 2 Dr Hatchback
Trim Sport Utility 4D 4 Dr 4WD SUV ∪

4 Dr STD 4WD SUV ∪
4 Dr SUV

BFT Domain
Field Text Value Hotel Trans.
local area DT Downtown
local area SD San Diego
hotel name Hol Holiday
local area Pittsburgh PIT

Restaurants Domain
Field Fodors Value Zagats Trans.
City Los Angeles Pasadena ∪ Studio City ∪

W. Hollywood
Cuisine Asian Chinese ∪ Japanese ∪

Thai ∪ Indian ∪ Seafood
Address 4th Fourth
Name and &
Name delicatessen delis ∪ deli

Table 3: Transformations mined from different do-
mains

our mined rules actually perform. The first metric we con-
sider is Support. Support is the fraction of the matches that
satisfy the transformation, out of all matches. It is defined
as:

Support =
#matches with transformations

#total matches

Support shows how well the transformations generalize to
the true matches, in terms of their coverage. However, we
also need a metric that gives a measure of how often the
transformations actually apply, given the antecedent. That
is, if we see the antecedent, such as Asian, how likely is it
that the match will have the consequent, such as Japanese or
Chinese? The metric that defines this measure is Confidence
and it is defined as:

Confidence =
#matches with transformations

#matches with antecedent

As a last metric, we consider Lift. Lift describes how much
information the antecedent gives about the consequent for
both occurring together. Therefore, Lift values above 1 are
preferred. The Lift is defined as the Confidence divided by
the Expected Confidence (EC), where EC is defined as:

EC =
#matches with consequent

#total matches

Table 4 presents the association rule metrics for our mined
transformations, varying the TF/IDF threshold (TCos) and
the mutual information threshold (TMI). For these metrics
we calculate the values using all mined transformations, and
we present the average.

Table 4 shows that we mine useful transformations for all
of the domains, without any labeled training data. In only
one case do we have an average Lift value less than 1, which
means the transformations provide good information about
their occurrence. Also, most of the confidence scores are

Cars Domain
TMI 0.2 0.1 0.05 0.025

TCos = 85 Supp. 0.80 0.80 0.53 0.44
Conf. 1.29 1.29 1.23 0.81
Lift 1.72 1.72 3.54 0.95
Rules 2 2 4 19

TCos = 65 Supp. 0.64 0.80 0.51 0.38
Conf. 1.31 1.29 1.27 0.78
Lift 2.08 1.72 4.46 1.09
Rules 1 2 5 15

TCos = 45 Supp. 0.00 0.64 0.57 0.46
Conf. 0.00 1.31 1.13 1.27
Lift 0.00 2.08 3.93 4.51
Rules 0 1 3 6

BFT Domain
TMI 0.2 0.1 0.05 0.025

TCos = 85 Supp. 0.14 0.13 0.13 0.13
Conf. 0.50 0.71 0.71 0.71
Lift 23.51 16.31 16.31 16.31
Rules 3 5 5 5

TCos = 65 Supp. 0.13 0.09 0.10 0.12
Conf. 0.99 0.25 0.29 0.27
Lift 48.24 21.88 12.67 9.64
Rules 1 10 26 41

TCos = 45 Supp. 0.13 0.11 0.16 0.11
Conf. 0.99 0.59 0.33 0.28
Lift 48.24 22.02 8.90 28.96
Rules 1 3 16 50

Restaurants Domain
TMI 0.2 0.1 0.05 0.025

TCos = 85 Supp. 0.03 0.11 0.14 0.14
Conf. 0.32 0.39 0.42 0.42
Lift 29.89 9.97 7.40 7.40
Rules 4 13 18 18

TCos = 65 Supp. 0.04 0.11 0.28 0.31
Conf. 0.71 0.54 0.66 0.61
Lift 10.00 11.63 2.36 1.86
Rules 1 12 36 45

TCos = 45 Supp. 0.04 0.04 0.31 0.38
Conf. 0.71 0.81 0.56 0.62
Lift 10.00 35.00 3.91 1.56
Rules 1 4 44 69

Table 4: Association rule metrics for the mined
transformations

high, and only a few support levels are low, and these usually
occur when we could only mine a few transformations.

Table 4 also demonstrates that a balance must be struck be-
tween the values of the metrics and the number of transfor-
mations that are mined. While the metrics may be high for
certain threshold levels, the actual mined transformations
may not be very useful for record linkage, especially given
that they are few in number and may apply so often as to
not be useful in discriminating matches from non-matches.
For instance, consider the Cars domain where TCos is 0.85
and and TMI is 0.1. In this case, only 2 transformations
are learned, “4D” is “4 Dr” and “2D” is “2 Dr.” Both of
these transformations occur frequently in the matches, yield-
ing high metrics. However, these transformations occur so
frequently, across both matches and non-matches that they
are not useful for discriminating between matches and non-
matches. Compare these transformations to the more spe-
cific transformations shown in Table 3, which seem more
useful, even though they have lower metrics. Therefore, we
should not just consider the metric values, but we should

also consider the number of transformations mined.

Lastly, varying the thresholds indicates that the results seem
more sensitive to TMI than TCos. This is expected since
TCos dictates the initial pairs we can mine from and not
which transformations get selected. Note at the low values
of TMI we mine many more transformations and the met-
rics only decrease slightly. This is better behavior for record
linkage where we want to mine many transformations, with
most of them useful rather than just a few. The results
indicate that for the high level of TCos we stagnate in min-
ing transformations across the values of TMI , since we have
many fewer record pairs to mine from, yielding just a few
repeated transformations.

In general, it seems the best way to select the thresholds is
to set TCos such that it does not limit the transformations
that could be mined, and to use a low value of TMI to make
sure the algorithm selects a fair number of possible transfor-
mations. For this reason, in our record linkage results below
we use the transformations mined with TCos of 0.65 and TMI

of 0.025. These threshold yield a large number of transfor-
mations with good metrics, and should therefore be useful
to aid the record linkage. As we show below, even though
these low thresholds yield some noisy transformations, these
do not affect the record linkage results.

For our record linkage experiments, we use a copy of the
HFM record linkage system [9] to which we supply the mined
transformations. However, unlike in that paper, due to im-
plementation issues we could not use Support Vector Ma-
chines to make the record level match decisions. Instead,
we use C4.5 decision trees [13]. We compare HFM using our
mined special transformations along with its usual transfor-
mations (Equals, Levenshtein distance, Prefix, Suffix, Con-
catenation, Abbreviation and Missing) to HFM using just
its usual transformations alone, without our mined trans-
formations. We also compare using the full set of mined
transformations to the set of user-pruned transformations.

To do the pruning, we remove all transformations that are
incorrect. In the Cars domain, we removed only 1 trans-
formation out of 8, “wagon → sedan.” For the Restaurants
domain we prune 6 out of the 26 mined transformations.
These often come from the address field and seem to be
specific to certain record pairs only, suggesting that they
slip in under the TMI threshold. For example, we prune
“2nd at 10th st. → second.” Lastly, in the BFT domain we
prune the most transformations, 28 out of 40. Nine of these
28 are the case described in Section 2, where hotel names
and locations are similar, but the star ratings are not, pro-
ducing transformations such as “3* → 4* ∪ 2* ∪ 2.5*.” A
similar case occurs 13 times, where a rare area and star
rating are the same but the hotel name is not, resulting in
transformations such as “Marriott → Coronado Del Hotel.”

The record linkage results are shown in Table 5. For the
record linkage setting, we follow most record linkage papers
[2, 9] and use 2 fold cross validation. This means we label
50% of the data for training and test on the remaining 50%.
We do this across 10 trials and present the average values.

Note that across all domains, the precision and recall differ-

Cars Domain
Recall Precision

No trans. 66.75 84.74
Full Trans. 75.12 83.73
Pruned Trans. 75.12 83.73

BFT Domain
Recall Precision

No trans. 79.17 93.82
Full Trans. 82.89 92.56
Pruned Trans. 82.47 92.87

Restaurants Domain
Recall Precision

No trans. 91.00 97.05
Full Trans. 91.01 97.79
Pruned Trans. 90.83 97.79

Table 5: Record linkage results both using and not
using the mined transformations

ences using the full set of transformations versus the pruned
set are not statistically significant using a two-tailed t-test
with α=0.05. Therefore, they are effectually the same, so
pruning the transformations becomes an optional step since
there is no difference in the record linkage utility. Even in
the BFT domain, where we pruned 28 transformations, the
decision tree learned in record linkage ignores most of the
incorrect transformations while using the correct ones com-
mon to both the pruned and unpruned sets.

For the Cars and BFT domain, we see a statistically sig-
nificant increase in the recall, while the differences in the
precisions are not statistically significant using a two-tailed
t-test with α=0.05. (Note that the F-measures are also sta-
tistically significant.) An increase in recall, without any
change to precision, means that record linkage is able to dis-
cover new matches, without harming its ability to classify
the matches it already can find. In the Cars domain, this
translates into 115 more matches using the transformations,
and in the BFT domain this represents 23 more matches.
The increase in recall is lower in the BFT domain than the
Cars domain because the noisy nature of the data not only
makes it difficult to mine the transformations, but applying
them is difficult as well, since a mined transformation might
not apply in the many misspelled cases. Nonetheless, even
on noisy data, we are able to improve the record linkage
process.

For the Restaurant domain, neither the differences in recall
nor precision are statistically significant when we include the
transformations versus not, using a two-tailed t-test with
α=0.05. This was surprising given that this domain yielded
some of the most interesting mined transformation. The
explanation for this can be found by looking at the record
linkage process. In this domain the transformations are of-
ten not used because the attributes to which they apply are
not used for deciding matches. In fact, in this domain many
of the transformations apply to the cuisine field, but the de-
cision tree, which makes accurate record level decisions, al-
most exclusively relies on the name and address field. So the
cuisine field is not needed to make correct matches since the
name and address are sufficient. Therefore, for the mined

transformations to be useful they must also apply to at-
tributes that are useful for deciding matches. Even if the
transformations are extremely useful in terms of support
and confidence, they will be ignored if the attribute they
apply to is not needed. Lastly, we would like to note that
these record linkage results have as much to do with the
HFM system as the mined transformations, which is why
we emphasize the association rule metrics. Perhaps another
record linkage system, using the transformations differently,
could improve the record linkage results even more.

4. RELATED WORK
As stated previously, we can view our mined transforma-
tions as association rules [1]. In our case, the value for an
attribute from one source is the antecedent and the val-
ues it transforms into in the other source is the consequent.
In fact, there has even been work on mining association
rules using mutual information [17]. However, the prob-
lem domain is different between mining association rules
and mining transformations. Association rules come from
a set of transactions. For instance, given a set of users and
what they purchase at the grocery store, an association rule
might be “people who bought cereal also bought milk.” In
this case, there is only one data set, and the goal is to find
the links from any subset of transactions to another. When
mining transformations, our task is to take a set of possibly
matching record pairs and within these find transformations
that will help in deciding matches during record linkage.

The use of word and phrase co-occurrence to find similar
words or phrases has been done extensively in natural lan-
guage processing (NLP). For example, Turney [19] uses word
co-occurrence based on information retrieval results to de-
fine sets of synonyms. More recently, there has been work
that takes this idea further to identify paraphrases and gen-
erate grammatical sentences by looking at co-occurring sets
of words [12]. The major difference between the work in
NLP and our work is that we do not focus on language, and
as such, we are not limited to word based transformations
such as substitutions and synonyms. The transformation
that “4D” is “4 Dr” is not really lexical, but we can still ex-
ploit co-occurrence to discover such heterogeneous transfor-
mations. Our method allows us to extend the set of hetero-
geneous transformations we can learn using co-occurrence
because we are not constrained by the need to use real lan-
guage, we only use the “language” set by the data sources.

This work is also somewhat similar to the Resolver system
[20] in that Resolver is able to consolidate synonymous men-
tions on the Web, such as “Red Planet” is the same as
“Mars.” However, the input to their system is a set of rela-
tions (extractions), such as (lacks,Mars, ozone layer) and
(lacks,Red P lanet, ozone layer) from which they consoli-
date synonyms. Our input, in contrast, are two sets of data
sources, from which we mine transformations from between
the possible matches. Again, this means we often find non-
linguistic transformations, such as “4D” is “4 Dr” whereas
their synonyms will be for nouns, since they are extractions
from language on the Web. Note, however, that as stated
in the introduction, by combining our work with a power-
ful consolidation algorithm like Resolver, we may be able to
perform even more accurate extractions.

5. CONCLUSION
In this paper we presented an algorithm for mining hetero-
geneous transformations from data sources without labeled
matches between the sources. Although the transformations
could be applied in other application domains, such as text
understanding and information retrieval, these transforma-
tions are particularly useful for record linkage. We first find
a set of possible matches based on the cosine similarity be-
tween record pairs, and then we mine transformations with
the highest mutual information amongst these pairs.

One interesting conclusion we draw from this work is that
there are actually features of the data sets that determine
whether or not the mined transformations are useful, in-
dependently of the mined transformations. In particular,
even if we mine the most useful transformations, if the at-
tributes they apply to are not used to determine record level
matches they will ultimately be ignored. For instance, in the
Restaurants domain we find that while we learn interesting
transformations for the cuisine field, this field is not needed
to make record level decisions since the name and address
fields can be used almost exclusively. In the future we will
investigate methods to determine whether or not it is worth
using the mined transformations by looking directly at the
data and concluding if the attributes will be useful for record
linkage.

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 207–216. ACM Press, 1993.

[2] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
Proceedings of ACM SIGKDD-03, pages 39 – 48. ACM
Press, 2003.

[3] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. imap: Discovering complex semantic
matches between database schemas. In Proceedings of
SIGMOD, 2004.

[4] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64:1183–1210, 1969.

[5] M. A. Hernandez and S. J. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
ACM SIGMOD Conference, 1995.

[6] T. Huang and S. J. Russell. Object identification in a
bayesian context. In IJCAI-97, pages 1276–1283, 1997.

[7] K. Kira and L. A. Rendell. The feature selection
problem: Traditional methods and a new algorithm.
In Proceedings of AAAI, pages 129–134, 1992.

[8] A. McCallum and B. Wellner. Conditional models of
identity uncertainty with application to noun
coreference. In Neural Information Processing Systems
(NIPS), 2004.

[9] S. N. Minton, C. Nanjo, C. A. Knoblock,
M. Michalowski, and M. Michelson. A heterogeneous
field matching method for record linkage. In
Proceedings of the 5th IEEE International Conference
on Data Mining (ICDM-05), 2005.

[10] A. E. Monge and C. Elkan. The field matching
problem: Algorithms and applications. In Proceedings
of ACM SIGKDD-96, pages 267–270, 1996.

[11] P. M. Narendra and K. Fukunaga. A branch and
bound algorithm for feature selection. IEEE
Transactions on Computers, C-26(9):917–922, 1977.

[12] B. Pang, K. Knight, and D. Marcu. Syntax-based
alignment of multiple translations: Extracting
paraphrases and generating new sentences. In
Proceedings of HLT-NAACL, 2003.

[13] J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[14] P. Ravikumar and W. W. Cohen. A hierarchical
graphical model for record linkage. In UAI 2004, 2004.

[15] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In Proceedings of
ACM SIGKDD-02, 2002.

[16] P. Singla and P. Domingos. Entity resolution with
markov logic. In Proceedings of the 6th IEEE
International Conference on Data Mining, 2006.

[17] B. K. Sy. Machine Learning and Data Mining in
Pattern Recognition, chapter Discovering Association
Patterns Based on Mutual Information, pages
369–378. Springer Berlin / Heidelberg, 2003.

[18] S. Tejada, C. A. Knoblock, and S. Minton. Learning
domain-independent string transformation weights for
high accuracy object identification. In Proceedings of
ACM SIGKDD-02, 2002.

[19] P. D. Turney. Mining the Web for synonyms: PMI–IR
versus LSA on TOEFL. Lecture Notes in Computer
Science, 2167:491–503, 2001.

[20] A. Yates and O. Etzioni. Unsupervised resolution of
objects and relations on the web. In Proceedings of
NAACL-HLT, 2007.

