
Exploiting Background Knowledge to Build Reference Sets
for Information Extraction∗

Matthew Michelson†

Fetch Technologies
841 Apollo St, Ste. 400

El Segundo, CA 90245 USA
mmichelson@fetch.com

Craig A. Knoblock
University of Southern California

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292 USA
knoblock@isi.edu

Abstract

Previous work on information extraction from un-
structured, ungrammatical text (e.g. classified ads)
showed that exploiting a set of background knowl-
edge, called a “reference set,” greatly improves the
precision and recall of the extractions. However,
finding a source for this reference set is often dif-
ficult, if not impossible. Further, even if a source
is found, it might not overlap well with the text for
extraction. In this paper we present an approach
to building the reference set directly from the text
itself. Our approach eliminates the need to find
the source for the reference set, and ensures better
overlap between the text and reference set. Starting
with a small amount of background knowledge, our
technique constructs tuples representing the entities
in the text to form a reference set. Our results show
that our method outperforms manually constructed
reference sets, since hand built reference sets may
not overlap with the entities in the unstructured, un-
grammatical text. We also ran experiments com-
paring our method to the supervised approach of
Conditional Random Fields (CRFs) using simple,
generic features. These results show our method
achieves an improvement in F1-measure for 6/9 at-
tributes and is competitive in performance on the
others, and this is without training data.

∗This research is based upon work supported in part by the Na-
tional Science Foundation under award number IIS-0324955; in part
by the Air Force Office of Scientific Research under grant num-
ber FA9550-07-1-0416; and in part by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract No. FA8750-07-
D-0185/0004. The United States Government is authorized to re-
produce and distribute reports for Governmental purposes not with-
standing any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of any of the above organizations
or any person connected with them.

†Work done while at USC Information Sciences Institute.

1 Introduction
The Web is full of unstructured, ungrammatical data such as
online classified ads, auction listings, and forum postings. We
call such unstructured, ungrammatical text “posts.” However,
querying posts beyond keyword search is difficult because
posts are not typically structured to support queries such as
joins, selections, and aggregations. Information extraction
can structure posts by identifying the attributes embedded
within each post. For instance, the post of Figure 1 shows
a post for a car classified, with some of the useful attributes
(such as the make, model, and trim) identified. After extrac-
tion, we can support queries such as “select all Hondas.”

Figure 1: A car post with extracted attributes

However, the structure of posts varies greatly, so infor-
mation extraction techniques that exploit the similarity of
structures in text (such as consistent HTML tags) will not
work [Kushmerick et al., 1997]. Further, posts are not
grammatical (they are largely unparsable), so natural lan-
guage processing approaches to extraction are not useful ei-
ther [Ciravegna, 2001]. Recent work on extraction from
posts instead uses “reference sets” [Michelson and Knoblock,
2007; 2008]. A reference set is a list of entities with the as-
sociated attributes. Using the car example of Figure 1, a ref-
erence set could be a full set of cars from a car information
website, such as Edmunds.com. Each reference-set tuple has
a make attribute, a model attribute, etc. To exploit a reference
set for extraction, first the algorithms find the best match for
each post from the reference set, and then that reference set
tuple provides clues for extraction.

Although previous work successfully uses reference sets,
the construction of a reference set poses problems. For exam-
ple, although in some cases it is not hard to manually create
the reference set by pulling the data from a website, some-
times it is not possible to find a single comprehensive source.

2076

For instance, finding a single source of car data to scrape is
easy. Yet, if a user needs a reference set of laptops, contain-
ing a manufacturer (Dell), a model (Latitude), and a model
number (d600), finding a single source that enumerates all of
the laptop model numbers is challenging, if not impossible.
There are websites that contain all of the Dell Latitude model
numbers, but those many not contain the list of Acer Aspire
model numbers or IBM Thinkpad model numbers. Therefore,
a user must find multiple sources to produce an exhaustive list
of laptop model numbers, and then combine the results (e.g.,
eliminating duplicates). Further, and more importantly, a user
might build a complete reference set that covers all IBM, Ap-
ple, and Dell laptops, only to discover that the auction listings
for the laptops the user wants to extract from contain only
Apple and Acer laptops. This is a coverage issue because the
reference set does not overlap well with the set of posts, since
the Acer laptops are excluded from the reference set. Cover-
age issues also occur because of the dynamic nature of online
data. For instance, a source of laptops may update their cat-
alog every few weeks to incorporate new models, rendering
the previously built reference set as incomplete.

In this paper we present a technique to construct the refer-
ence set from the posts themselves. This alleviates the need to
find sources or databases as reference sets. Further, using the
posts themselves to build the reference set deals with the cov-
erage issue since the entities in the reference set are generated
directly from the posts and so overlap by definition.

Our approach starts with a set of “seed” values. These
seeds are the smallest (and most obvious) knowledge a user
can provide for a given domain. For instance, if a user wanted
to construct a reference set of laptops, the seeds would be the
manufacturers such as IBM, Dell, Apple, etc. It is not hard to
find websites that enumerate reference sets at the most ob-
vious attribute level, such as a list of car makes or laptop
manufacturers. Using this list as starting seeds will constrain
what tuples can be constructed from the posts themselves, and
build a cleaner reference set. By using the posts themselves
to fill in the more specific values in the reference set, we still
have the benefits of coverage between the reference set and
the posts, and we eliminate the difficulty in finding multiple
sources to cover the most specific attributes.

Our results show that the reference set generated by our
seed-based technique is cleaner (and hence more accurate for
extraction) than using the same approach without the con-
straint of the seeds. Also, since our method uses the posts
themselves it has better coverage (and hence more accurate
extraction) than full, manually constructed reference sets, es-
pecially for the more specific attributes which are precisely
those that are hard to find enumerated in a single source. Al-
though we use the reference set for extraction, reference sets
can be used in a number of other tasks such as taxonomy cre-
ation, text understanding, and information retrieval.

The rest of this paper is organized as follows. Section 2 de-
scribes our method for seed-based reference set construction.
Section 3 presents our experimental results, where our tech-
nique outperforms manual reference sets for extraction, and
largely outperforms state-of-the-art machine learning for this
information extraction task. Section 4 describes related work,
and Section 5 presents our conclusions and future directions.

Figure 2: A reference set and its entity trees

2 Seed-Based Reference Set Construction
The intuition for constructing reference sets from posts is
that reference set tuples often form hierarchy-like structures,
which we call “entity trees.” Consider the simple reference
set of three cars in Figure 2. Each tuple in the reference set of
cars has two attributes, a make and a model. The model is a
more specific version of the make (i.e. an Accord is a Honda),
and so the Accord attribute value is a child node to the Honda
value. The same can be said of the Civic value, and so we
can generate an entity tree rooted on the value Honda, with
two children: Civic and Accord. The same argument applies
to turn the Ford tuple into its own entity tree. However, the
entity trees rooted on Honda and Ford are disjoint, since they
do not share any ancestors. So a reference set is really a for-
est of entity trees. So, once an algorithm constructs the set of
entity trees, it can then traverse them, outputting a tuple for
each path from root to leaf, and the union of all these tuples
creates a reference set. So, to construct a reference set from
posts, the goal is really to build entity trees from the posts.

To build entity trees we use a modified version of the
Sanderson and Croft (1999) heuristic for finding token sub-
sumptions, with the notion that if token x subsumes y, then y
is a child node under x in the entity tree that contains x. We
define the rule for subsumption given terms x and y as:1

x SUBSUMES y → P (x|y) ≥ 0.75 AND P (y|x) ≤ P (x|y)

As an example, consider the four example posts shown in
Table 1. If we consider the token pair “Honda” with “Civic”
we see that the conditional probability of Honda given Civic
(P (Honda|Civic)) is 1.0, while P (Civic|Honda) is 0.5 (since
Honda occurs in four posts while Honda occurs with Civic
in two). Therefore, the subsumption rule fires, and Civic be-
comes a child node to Honda. Similarly, Accord becomes a
child of Honda, resulting in the entity tree of Figure 2.

Therefore, our first step for generating a reference set is
to break the set of posts into bigrams, and then check each

1Note, we require terms x and y to co-occur at least once for this
rule to be considered.

2077

Table 1: Four example posts

Honda civic is cool
Look at cheap Honda civic
Honda accord rules
A Honda accord 4 u!

bigram pair using the subsumption rule. So, the first post of
Table 1 yields the bigrams: {Honda, civic}, {civic, is}, etc.2

Building entity trees based on the Sanderson and Croft
heuristic does require a few assumptions. First, by consid-
ering the ordered bigrams, we assume that the order in the
entity tree is reflected in the posts. That is, users tend to or-
der the attributes from more general (e.g. car makes) to more
specific (e.g. car models). Also, this ordering needs to hold in
at least enough of the posts to make the subsuption rule fire.

Yet, once our approach builds the entity trees, it uses
them effectively for extraction, as shown in our experiments.
Therefore, our approach leverages the little ordering it does
find in some the bigrams to build the reference set, which we
can then use to extract values from posts where the ordering
assumption does not hold. Further, given that our approach
finds effective entity trees at all reflects the notion that users
do tend to order attributes from general to specific. If this
were not the case, the discovered entity trees would have lit-
tle utility for extraction later.

Also, the Sanderson and Croft heuristic above is defined
for single tokens x and y, yet not all attribute values are un-
igrams. Therefore, to handle bigrams, we add the constraint
that if x subsumes y and y subsumes x, we merge x and y into
a single node (attribute value). For instance, given attribute
values “Crown” and “Victoria” if “Crown” SUBSUMES “Vic-
toria” and “Victoria” SUBSUMES “Crown” we merge them
into a single value “Crown Victoria” (which is subsumed by
the common parent “Ford”). We note this bigram was actu-
ally merged using our approach. To extend this to n-grams,
one simply checks all token pairs against each other for sub-
sumption. We note, that in our testing, 5.49% of the discov-
ered attributes are bi-grams.

The above assumptions aside, applying the subsumption
rule above can also lead to noisy entity trees. A common
occurrence in auction listings, for instance, is to include the
term “Free Shipping” or “Free Handling.” If such phrases oc-
cur frequently enough in the posts, the subsumption rule will
fire, creating an entity tree rooted on Free with the children
Shipping and Handling. Clearly this is a noisy tree and it
would introduce noisy extractions.

To deal with this problem we use a small amount of back-
ground knowledge to focus the construction of the entity
trees. Our approach constrains the construction of entity trees
such that each entity tree must be rooted on a seed value. If
we only gave “Honda” as a seed, then only one entity tree
rooted on Honda would be constructed. Even if other entity

2We only consider ordered bigrams, rather than all combination
of token pairs. We measured an average post length of 8.6 tokens
across thousands of posts, which would generate more than 40,320
possible token pairs to check, per post, if all pairs are considered.

trees are discovered, they are discarded. However, it is easy
to discover an exhaustive list of seeds on the Web, and in-
cluding too many seeds is not a issue as our algorithm simply
removes any entity tree that consists solely of a root from the
constructed reference set (i.e. a singleton set).

One of the key intuitions behind our approach is that the
set of root nodes for entity trees are generally much easier
to discover online than nodes farther down the trees. For in-
stance, if we consider laptops, the manufacturers of laptops
(the roots) are fairly easy to discover and enumerate. How-
ever, as one traverses farther down the entity trees, say to the
model numbers, it becomes hard to find this information. Yet,
just this small sets of seeds is enough to improve the pro-
cess of reference set construction substantially, as we show
in the results where we compare against reference sets con-
structed without the seed-based constraint. Also, importantly,
the attributes farther down the tree change more over time
(new model numbers are released often), while the seeds in-
frequently change (there are few new computer makers). So,
coverage becomes less of an issue when only considering the
roots versus all of the attributes in a reference set tuple.

Once we have constructed the initial entity trees, we then
iterate over the posts to discover possible terms that occur
across trees. Specifically, subsumption is determined by the
conditional probabilities of the tokens, but when the second
token is much more frequent than the first token, the condi-
tional probability will be low and not yield a subsumption.
This occurs when the attribute value appears across entity
trees (reference set tuples). Since the second term occurs
more frequently than the first across tuples, we call this the
“general” token effect.

An example of this general token effect can be seen with
the trim attribute of cars. For instance, consider the posts in
Table 2 which show the general token effect for the trim value
of “LE.” These posts show the “LE” trim occurring with a
Corolla model, a Camry model, a Grand AM model, and a
Pathfinder. Since LE happens across many different posts
in many varying bigrams, we call it a “general” token, and
its conditional probability will never be high enough for sub-
sumption. Thus it is never inserted into an entity tree.

Table 2: Posts with a general trim token: LE
2001 Nissan Pathfinder LE - $15000
Toyota Camry LE 2003 —- 20000 $15250
98 Corolla LE 145K, Remote entry w/ alarm, $4600
1995 Pontiac Grand AM LE (Northern NJ) $700

To compensate for this “general token” peculiarity, we iter-
atively run our subsumption process, where for each iteration
after the first, we consider the conditional probability using
a set of the first tokens from bigrams that all share the com-
mon second token in the bigram. Note, however, this set only
contains bigrams whose first token is already a node in a hier-
archy, otherwise the algorithm may be counting noise in the
conditional probability. This is the reason we can only run
this after the first iteration. The algorithm iterates until it no
longer generates new attribute values.

To make this clear, consider again the ‘LE’ trim. By it-

2078

erating, the algorithm considers the following conditional
probability for subsumption, assuming the models of Camry,
Corolla and Pathfinder have already been discovered:

P ({CAMRY ∪ COROLLA ∪ PATHFINDER}|LE)

Now, if this conditional probability fits the heuristic for
subsumption, then LE is added as a child to the nodes
CAMRY, COROLLA and PATHFINDER in their own re-
spective entity trees. In this manner we construct a reference
set directly from the posts, using the seeds to constrain the
noise that is generated in the final reference set.

Table 3 formally describes our method for constructing en-
tity trees using seeds, which are then turned into a reference
set by outputting a tuple for each path from root to leaf in
each tree.

Table 3: Entity tree construction using seeds

Input: Posts P , Seeds S

/* First, break posts into bigrams */
Bigrams B ← MAKEBIGRAMS(P)

/* Build the entity trees rooted on the seeds */
AddedNodes N ← {}
For each {x, y} ∈ B /* {x, y} is a bigram */

If x ∈ S /* check x is a seed */
If x SUBSUMES y

y is child of x in entity tree
N ← N ∪ y

/*Find all children’s children, and their children, etc.*/
While N is not null

For each {s, t} ∈ B
where s ∈ N

N ← N - s
If s SUBSUMES t

t is child of s in tree
N ← N ∪ t

/* Iterate to discover ‘‘general’’ token nodes */
/* Start with unique nodes already in the entity trees */
AllEntityNodes ← UNIQUELIST(All Entity Trees)
/* Keep iterating while find new terms */
FoundNewTerms ← true
While FoundNewTerms is true

FoundNewTerms ← false
/* Consider terms {p0, . . ., pn} in entity the trees
that all form bigrams with non-entity tree term q */

For each ({p0, . . ., pn}, q) s.t. {p0, . . ., pn} ⊂ AllEntityNodes
If {p0, . . ., pn} SUBSUMES q /* consider P (

⋃
pi|q) */

q becomes child of each pi in trees
AllEntityNodes ← AllEntityNodes ∪ q
FoundNewTerms ← true

3 Experiments and Results
The goal is to build reference sets for use in information
extraction, so we use information extraction as the task by
which to compare the effectiveness of the different methods
for building reference sets. We compare our seed-based ap-
proach to both full, manually constructed reference sets ex-
tracted from online sources (which we call the “manual” ap-
proach), and to a version of our algorithm that is exactly the

same as outlined above, but that does not constrain the entity
trees to be rooted on seed values. The version that ignores the
seed-based constraint is a fully automatic method for build-
ing the reference set from just the posts themselves, and so
we refer to it as “Auto” in our results below.

Then, for each of our experimental data sets, we build three
different reference sets (one manual, one based on seeds, and
one without the seeds) and then pass the reference sets to a
system that can exploit them for extraction [Michelson and
Knoblock, 2007]. We then compare the extraction results us-
ing the standard metrics of recall, precision, and F1-measure.
Since the only difference for the extraction algorithm is the
reference set provided, the extraction results serve as a proxy
for the quality of the reference set both in terms of how well
it overlaps with the posts (the coverage) and how clean it is
(since noise leads to poor extractions).

The goal of our extraction task is to extract the values for
given attributes. For instance, using Figure 1, we should ex-
tract the make={Honda}, model={Civic}, and trim={DX}.
However, our approach to constructing reference sets does
not supply these attribute names. Our method discovers at-
tribute values such as “Honda” and “Civic,” but it inter-
nally labels their associated attribute names as attribute0 and
attribute1, instead of Make and Model. Therefore, to clarify
the results we manually label the attribute names as given by
the manually constructed reference sets. We do not feel this
is much of a hindrance in our method. If a user can find a
set of seeds, the user should also be able to find appropriate
attributes names. In fact, it is exceedingly more challenging
to discover the attribute values than just finding their names.

We used three real-world data sets as our experimental
data. The first set contains classified ads for used cars
for sale from the classified site Craigslist.org. Of these,
we labeled 1,000 posts to test the extraction of the make
(e.g. Honda), model (e.g. Civic), and trim (e.g. DX) attributes.
The second set consists of classified ads for used laptops from
Craigslist.org as well. Again we labeled 1,000 for extract-
ing the maker (e.g. IBM), model (e.g. Thinkpad), and model
number (e.g. T41). Our last data set contains posts about skis
for sale on eBay. We labeled 1,000 for extraction of the brand
(e.g. Rossignol), the model (e.g. Bandit), and the model spec-
ification (e.g. B3, called the “spec”). The data is summarized
in Table 4.

Table 4: Three experimental data sets
Name Source Attributes Num. Posts
Cars Craigslist make, model, trim 2,568
Laptops Craigslist maker, model, model num. 2,921
Skis eBay brand, model, model spec. 4,981

We need full, manually constructed reference sets for com-
parison. For the Cars domain, we collected 27,000 car tuples
by pulling data from the Edmunds.com car buying site for
cars and combining it with data from a classic car site, Su-
perLambAuto.com. For the Laptops domain, we scraped 279
laptops off of the online retailer Overstock.com. Lastly, for
the Skis domain, we built 213 ski tuples from the skis.com
website, and cleaned them to remove certain stop-words.

2079

The seeds for our seed-based method also came from freely
available sources. For the car domain, the seeds consist of
102 car makes, again from Edmunds. The laptop seeds are 40
makers, culled from Wikipedia, and the ski seeds are 18 ski
brands pulled from Skis.com.

Table 5 shows the field-level extraction results for each at-
tribute in each domain, comparing the three methods.3 Again,
the “manual” method uses the full reference set constructed
from online sources (shown in parentheses in the table), the
“auto” method is the fully automatic method without seeds,
and our full technique is called “seed-based.”

Table 5: Extraction results for different reference sets
Cars

Make Recall Prec. F1-Meas.
Manual (Edmunds) 92.51 99.52 95.68
Auto 79.31 84.30 81.73
Seed-based 89.15 99.50 94.04
Model Recall Prec. F1-Meas.
Manual (Edmunds) 79.50 91.86 85.23
Auto 64.77 84.62 73.38
Seed-based 73.50 93.08 82.14
Trim Recall Prec. F1-Meas.
Manual (Edmunds) 38.01 63.69 47.61
Auto 23.45 54.10 32.71
Seed-based 31.08 50.59 38.50

Laptops
Maker Recall Prec. F1-Meas.
Manual (Overstock) 84.41 95.59 89.65
Auto 51.27 46.22 48.61
Seed-based 73.01 95.12 82.61
Model Recall Prec. F1-Meas.
Manual (Overstock) 43.19 80.88 56.31
Auto 54.47 49.52 51.87
Seed-based 70.42 77.34 73.72
Model Num. Recall Prec. F1-Meas.
Manual (Overstock) 6.05 78.79 11.23
Auto 25.58 77.46 38.46
Seed-based 34.42 86.05 49.17

Skis
Brand Recall Prec. F1-Meas.
Manual (Skis.com) 83.62 87.05 85.30
Auto 60.59 55.03 57.68
Seed-based 80.30 96.02 87.46
Model Recall Prec. F1-Meas.
Manual (Skis.com) 28.12 67.95 39.77
Auto 51.86 51.25 51.55
Seed-based 62.07 78.79 69.44
Model Spec. Recall Prec. F1-Meas.
Manual (Skis.com) 18.28 59.44 27.96
Auto 42.37 63.55 50.84
Seed-based 50.97 64.93 57.11

Table 6 summarizes the results, showing the number of at-
tributes where our seed-based method outperformed the other
techniques in terms of F1-measure. It also shows the num-
ber of attributes where the seed-based technique is within 5%

3Field-level results are strict in that an extraction is correct only
if all the tokens that should be labeled are, and no extra tokens are
labeled.

Table 6: Summary results comparing our method to others

Seed vs. Auto Seed vs. Manual
Outperforms 9/9 5/9
Within 5% 9/9 7/9

of the other method’s F1-measure (including the attributes
where the seed-based method outperforms the other method).
An F1-measure within 5% is a “competitive” result.

The results show that our seed-based method builds a
cleaner reference set than the fully automatic approach that
ignores the seeds since the seed-based approach outperforms
the “auto” approach on every single attribute. The seed-based
method builds a cleaner, more effective reference set and that
leads to more effective extraction.

The results also show that our seed-based method retains
the benefits of constructing reference sets from the posts
themselves, as compared to a full, manually constructed ref-
erence set. In particular, the results support the idea that us-
ing the posts themselves generates a reference set with better
coverage than the single sources that were scraped manually.
Not only does the seed-based method outperform the manual
reference sets on a majority of attributes (5/9), the seed-based
method does much better at building a reference set to repre-
sent the most specific attributes (ski model, ski model spec.,
laptop model, and laptop model num.), which are those at-
tributes that are likely to cause coverage problems. In fact, for
these attributes, only 53.15% of the unique attribute values in
the seed-based reference set exist in the manually constructed
reference set. Therefore, the coverage is quite different.

For example, it is important to note that Overstock sells
new computers, while the laptops for sale on Craigslist are
generally used, older laptops. So, while there is a match
between the makers (since the laptop makers don’t change
quickly), even if the used laptops are six months older than
the new ones for sale there will be a mismatch between some
models and for many of the model numbers. This coverage
mismatch using the “manual” reference sets is very clear for
the laptop model numbers and ski model specifications. Both
of these are attributes that change quite frequently over time
as new models come out. This is in contrast to ski brands and
laptop manufacturers (our seeds) which change much less fre-
quently, and so can be enumerated with less of a concern to-
wards coverage. We note that we chose Wikipedia because of
its comprehensive list of laptop makers, but Wikipedia enu-
merates far fewer models and model numbers than the Over-
stock reference set, and so would be a worse choice for a
manual reference set.

Also, we note that our seed-based technique is competi-
tive on 7/9 attributes when compared to the full, manually
constructed reference sets. Yet, the number of seeds is drasti-
cally smaller than the number of tuples manually constructed
for those reference sets. So, even though we are starting with
a much tinier set of knowledge, we still retain much of the
benefit of that knowledge by leveraging it, rather than having
to explicitly enumerate all of the tuple attributes ourselves.
This is important as it is much easier to find just the seeds.

The one attribute where the manual reference set really out-

2080

performs our seed-based method is the trim attribute for cars,
where the difference is roughly 9% in F1-measure. This is
mostly due to the fact that we use field level results, and when
the seed-based technique constructs the trim attribute it some-
times leaves out certain attribute tokens. For example, con-
sider the example where the extracted trim should be “4 Dr
DX.” However, the seed-based technique only includes “DX”
as the reference set tuple’s attribute. Meanwhile, the man-
ually constructed reference set contains all possible tokens
since it is scraped from a comprehensive source (it’s attribute
value is “4 Dr DX 4WD”). So, although our seed-based tech-
nique finds the DX token and labels it correctly as a trim, it
misses the “4 Dr” part of the extraction, so the whole extrac-
tion is counted as incorrect using field level results.

One limitation of our seed-based technique versus the man-
ual construction of reference sets has to do with the inclusion
of certain attributes. Surprisingly, there is not enough rep-
etition in the posts for discovering the years of the cars as
attributes. This is due to various factors including the vari-
ety of year representations (all four digits, two digits, strange
spellings, etc.) and the placement in the posts of the years
(since we consider bigrams for subsumptions). However, the
full manual reference set does contain years and as such it
can extract this attribute, while the seed-based method cannot.
Nonetheless, although a manual reference set may include an
attribute that can not be discovered automatically, the refer-
ence set might have terrible coverage with the posts, limiting
its utility. So, we feel it is important to deal with coverage, as
our seed-based method does.

We also tested the effect of iterating to capture “general”
tokens versus simply stopping after the first pass. Iterating re-
sults in an improvement in F1-measure for all of the attributes
except for one. This improvement is especially dramatic for
the most specific attributes, the Car trims and Ski specifi-
cation, which are attributes that occur across separate entity
trees. The attribute where we note a decrease is the Laptop
model numbers. In the laptop domain many discovered “gen-
eral” tokens are placed as model numbers when they are ac-
tually different attributes such as cpu speeds. This results in
reference set tuples that share a brand and model, but differ in
that one has the correct model number while the other assigns
the cpu as the model number. Then, during extraction, both
of these tuples match a given post (e.g. the post has both the
correct model number and the cpu speed in the text), resulting
in erroneous extractions. Nonetheless, the dramatic increase
for the other attributes warrants the inclusion of iterating, and
these errors are more an artifact of the extraction algorithm
than the reference set.

Although extraction experiments serve as the best metric
for the actual utility of the seed-based reference sets, we
also ran experiments on the generated entity trees themselves.
We examined whether attribute values are consistent in their
placement in the entity trees (the column homogeny). For in-
stance, given known car models such as “Civic” we measure
if the model values are mostly placed as car model attributes
(second level in the tree) or misplaced as car trims (third
level). However, measuring this directly without domain ex-
pertise is difficult. Instead, we compare the attribute values
in the seed-based reference set to those in the manually con-

structed reference sets, and for those values that match, we
measure if they are the for same attribute (i.e. their columns
match) or not. This yields a measure of the column homogeny
for the seed-based reference set, based on the manual refer-
ence set, which is assumed to be clean. However, it is an ap-
proximate measure because not all values in the seed-based
reference set match those in the manual reference set since
they differ in coverage.

Nonetheless, the results of this approximate measurement
indicate a good level of homogeny amongst the seed-based
attributes. For skis, only 1.7% of the found attribute values
are in the wrong column, while for cars 2.9% of the values are
in the wrong columns. Both the skis and cars had a common
error of placing the specific attribute (model spec or car trim)
one spot higher in the entity tree than it should have been.
However, the approximation was misleadning for laptops. In
the laptops domain, we had perfect column homogeny using
this measure, but this is because we can only measure the
column homogeny for attributes that match in both the seed-
based and manual reference sets. Yet, there were obvious
column homogeny errors, such as cpu speeds being placed as
model numbers. Since these did not match into the manual
reference set, they were ignored by our homogeny measuring
experiment. Given that we have enough domain expertise,
we did a manual calculation for this set, and determined that
8.09% of the tuples in the seed-based set have a cpu speed or
other variant as a model number which is incorrect. However,
even at 8% this is a good result for homogeny.

Lastly, we compare information extraction using our seed-
based reference sets to a supervised machine learning ap-
proach to extraction: Conditional Random Fields (CRF) [Laf-
ferty et al., 2001]. We used MALLET [McCallum, 2002] to
implement two different CRF extractors. One, called “CRF-
Orth,” uses orthographic features of the tokens for extraction,
such as capitalization, number containment, etc. The second
extractor, “CRF-Win,” uses the same orthographic features,
and also considers a two-word sliding window around a to-
ken as a feature. We perform 10-fold cross validation for each
extractor (using 10% of the data for training, to reflect real-
world human-cost requirements for labeling) noting that each
fold is independent, and we use the average results for com-
parison. For brevity, Table 7 shows the summary extraction
results, similar in format to those of Table 6.

Table 7: Summary results comparing the seed-based method
to CRFs

Seed vs. CRF-Win Seed vs. CRF-Orth
Outperforms 7/9 6/9
Within 5% 9/9 7/9

Table 7 shows that our seed-based method outperforms
the two CRF extractors on a majority of the attributes, even
though the cost in creating a seed list is much less than the
cost of labeling the data and creating features for training our
specific CRFs. Further, the table shows that a technique that
relies heavily on structure, such as CRF-Win, performs worse
on extraction from posts as compared to other methods.

2081

4 Related Work
Our goal of creating reference sets for information extrac-
tion is somewhat similar to research on unsupervised in-
formation extraction from the Web [Cafarella et al., 2005;
Hassan et al., 2006; Paşca et al., 2006]. This work focuses on
finding relations, such as person X was born in country Y by
looking at webpages, which is similar to building a reference
set. However, this research learns patterns to make extrac-
tions. Such patterns assume that similar structures will occur
again to make the learned extraction patterns useful. We can
not make such structural assumptions about posts beyond the
redundancy of bigrams.

Building our entity trees using the Sanderson and Croft
(1999) heuristic relates our approach to work in ontology cre-
ation [Cimiano et al., 2005; Dupret and Piwowarski, 2006;
Makrehchi and Kamel, 2007]. Our approach follows the cur-
rent research on this topic in that we generate candidate terms
(the bigrams in our case) and then plug these terms into an
hierarchy (our entity trees). However, there are a number of
differences between the other work on ontology creation and
our approach to building entity trees. First, many of those
methods use NLP to determine the terms, which we cannot
do with posts. Next, these other approaches build up single,
large concept hierarchies. In our case, we build multiple inde-
pendent entity trees, which are then flattened into a reference
set. So, we use hierarchy building in order to construct a set
of relational tuples, but our attributes are not necessarily con-
ceptually hierarchical. Our method is more similar to filling
out a taxonomy, rather than building a conceptual ontology.
Further, all of these methods use webpages as resources for
discovery, while we use posts as our base data.

5 Conclusion
This paper presented a method for building a reference set
from unstructured, ungrammatical data using a small amount
of background knowledge, called a “seed set.” Our method
combines the utility of starting knowledge, which generates
cleaner and more effective reference sets, with the ability to
construct the rest of the reference set from the posts them-
selves, which ensures an alignment between the data to ex-
tract from, and the reference set used. Further, using only
seeds is often a more viable choice than creating a full refer-
ence set manually, because of the difficultly in finding a sin-
gle source that provides all of the required data (e.g., finding
a single source of all laptop model numbers) and given the
fact that certain attributes change over time. The seeds are
high level information, however, and are easier to find and
they change much less frequently.

There are a number of future directions for this work.
First, we intend to combine our approach with more back-
ground knowledge, such as nonroot lists from services such
as Google sets or even partial, manually constructed refer-
ence sets. Also, although this work shows that users do some-
times consider certain attributes as more general than others,
we would like to investigate this more formally and exam-
ine what happens with attributes that should be siblings in an
entity tree (such as model numbers and cpu speeds).

References
[Cafarella et al., 2005] Michael J. Cafarella, Doug Downey,

Stephen Soderland, and Oren Etzioni. Knowitnow: Fast,
scalable information extraction from the web. In Proceed-
ings of HLT-EMNLP, pages 563–570, 2005.

[Cimiano et al., 2005] Philipp Cimiano, Andreas Hotho, and
Steffen Staab. Learning concept hierarchies from text cor-
pora using formal concept analysis. Journal of Artificial
Intelligence Research, 24:305–339, 2005.

[Ciravegna, 2001] Fabio Ciravegna. Adaptive information
extraction from text by rule induction and generalisation.
In Proceedings of IJCAI, pages 1251–1256, 2001.

[Dupret and Piwowarski, 2006] Georges Dupret and Ben-
jamin Piwowarski. Principal components for automatic
term hierarchy building. String Processing and Informa-
tion Retrieval, pages 37–48, 2006.

[Hassan et al., 2006] Hany Hassan, Ahmed Hassan, and Os-
sama Emam. Unsupervised information extraction ap-
proach using graph mutual reinforcement. In Proceedings
of EMNLP, pages 501–508, 2006.

[Kushmerick et al., 1997] Nicholas Kushmerick, Daniel S.
Weld, and Robert Doorenbos. Wrapper induction for in-
formation extraction. In Proceedings of IJCAI, pages 729–
737, 1997.

[Lafferty et al., 2001] John Lafferty, Andrew McCallum,
and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data.
In Proceedings of ICML, pages 282–289, 2001.

[Makrehchi and Kamel, 2007] Masoud Makrehchi and Mo-
hamed S. Kamel. Automatic taxonomy extraction us-
ing google and term dependency. In Proceedings of
IEEE/WIC/ACM International Conference on Web Intel-
ligence, 2007.

[McCallum, 2002] Andrew McCallum. Mallet: A machine
learning for language toolkit. http://mallet.cs.umass.edu,
2002.

[Michelson and Knoblock, 2007] Matthew Michelson and
Craig A. Knoblock. Unsupervised information extrac-
tion from unstructured, ungrammatical data sources on the
world wide web. International Journal of Document Anal-
ysis and Recognition (IJDAR), Special Issue on Noisy Text
Analytics, 10:211–226, 2007.

[Michelson and Knoblock, 2008] Matthew Michelson and
Craig A. Knoblock. Creating relational data from unstruc-
tured and ungrammatical data sources. Journal of Artificial
Intelligence Research (JAIR), 31:543–590, 2008.

[Paşca et al., 2006] Marius Paşca, Dekang Lin, Jeffrey
Bigham, Andrei Lifchits, and Alpa Jain. Organizing and
searching the world wide web of facts - step one: the one-
million fact extraction challenge. In Proceedings of AAAI,
pages 1400–1405, 2006.

[Sanderson and Croft, 1999] Mark Sanderson and Bruce
Croft. Deriving concept hierarchies from text. In Pro-
ceedings of ACM SIGIR, 1999.

2082

