
A Heterogeneous Field Matching Method for Record Linkage

Steven N. Minton and Claude Nanjo
Fetch Technologies

2041 Rosecrans Ave., Suite 245
El Segundo, CA 90245

{sminton, cnanjo}@fetch.com

Craig A. Knoblock, Martin Michalowski, and Matthew Michelson
University of Southern California

Information Sciences Institute,
4676 Admiralty Way

Marina del Rey, CA 90292 USA
{knoblock, martinm, michelso}@isi.edu

Abstract

Record linkage is the process of determining that two
records refer to the same entity. A key subprocess is eval-
uating how well the individual fields, or attributes, of the
records match each other. One approach to matching fields
is to use hand-written domain-specific rules. This “ex-
pert systems” approach may result in good performance
for specific applications, but it is not scalable. This pa-
per describes a new machine learning approach that creates
expert-like rules for field matching. In our approach, the re-
lationship between two field values is described by a set of
heterogeneous transformations. Previous machine learning
methods used simple models to evaluate the distance be-
tween two fields. However, our approach enables more so-
phisticated relationships to be modeled, which better cap-
ture the complex domain specific, common-sense phenom-
ena that humans use to judge similarity. We compare our
approach to methods that rely on simpler homogeneous
models in several domains. By modeling more complex re-
lationships we produce more accurate results.

1. Introduction

Record linkage is the process of recognizing when two
database records are referring to the same entity. Record
linkage is a fundamental problem when integrating multi-
ple information sources. For example, one datasource may
refer to “International Animal Productions” headquartered
in “Los Angeles, CA”, and another may refer to the same
company as “Intl. Animal” of “Hollywood”. The general
problem of recognizing two references to the same entity

occurs widely, and variants of the problem include “de-
duplication” [5, 9, 11], “object identification” [6], and “co-
reference resolution” [8].

Figure 1. Matching Records in Two Tables
A critical part of matching two records is evaluating how

well the individual fields (i.e., attributes) match. Record
linkage systems generally employ similarity metrics that
compare pairs of field values, such as two addresses, and
return a measure of their similarity. Given field-level simi-
larity judgments, an overall record-level judgment is made.

A common commercial approach to measuring field sim-
ilarity writes domain-specific rules for each field. For ex-
ample, when comparing person names, heuristic rules spec-
ify the relative importance of last names versus first names,
handle culturally-specific cases (e.g., Spanish surnames),
etc. This “expert systems” approach can produce acceptable
performance, but developing and maintaining such rules is
time-consuming and difficult.

Machine learning researchers have taken a different tack

1

to record linkage. They have developed systems that use
sophisticated decision-making methods at the record-level,
such as decision trees (e.g., [12]), support vector machines
(e.g., [1]) and unsupervised statistical methods (e.g., [10]).
However, for field-level similarity judgments, they have pri-
marily relied on simple generic methods, such as TF-IDF
and other string-similarity metrics. Unlike expert systems,
these tend to be generic and homogeneous for each field.

Unfortunately, simplistic homogeneous models cannot
capture many important fine-grained phenomena. For ex-
ample, consider Figure 1, which presents two tables list-
ing businesses. Each table contains three attributes: name,
address, and business type. Note that JPM and Joint Pipe
Manufacturers are the same business, while “Union Switch
and Signal” is not the same as “Union Sign”. We can make
this judgment because JPM is clearly an acronym for Joint
Pipe Manufacturers, and the two records have minor vari-
ations of the same address and business type. In contrast,
“Union Switch and Signal” and “Union Sign” share only
textual similarities in their name and address.

Simple homogeneous metrics cannot make these types
of common-sense determinations. We believe that it is im-
portant to accurately model the specific relationships be-
tween values at the field-level, including phenomena such
as acronyms, synonyms, nicknames, spelling errors, etc, in
order to distinguish between a meaningful match and a sur-
face similarity. We refer to the process of establishing the
relationship between two values as “field matching”. We
hypothesize that doing a better job of field matching will
enable more accurate record linkage.

In this article, we present a new algorithm for field
matching, HFM (Hybrid Field Matcher), that combines the
best aspects of the machine learning and expert systems ap-
proaches. We use a library of heterogeneous “transforma-
tions” that enables us to capture complex relationships be-
tween two field values, like the expert systems approach.
Machine learning techniques are then used to automatically
customize these transformations for a given domain, so that
highly accurate decisions can be made. HFM builds upon
previous work in the Active Atlas system [12], where this
approach was originally explored in a more primitive form.

In the next section, we present our record linkage ap-
proach, and then focus our discussion on the HFM field
matching component. We show experiments that HFM
produces superior results in domains where simpler field
matching metrics, including Active Atlas, fail to capture im-
portant distinctions.

2. Overview Of Our Approach

The record linkage approach described here assumes that
we are linking records in two database tables, A and B,
such that there are corresponding attributes in each table,
as in the example in Figure 1. That is, the ith column in

each table contains elements of the same type. In many ap-
plications, there are additional complexities; for instance,
one table might have two attributes, such as “first name”
and “last name”, and the other table might have attributes
such as “full name”. These complexities can generally be
handled in a pre-processing phase (e.g., concatenating “first
name” and “last name”), and for this reason our approach is
applicable in a wide variety of settings.

Our record linkage process has several phases. First, we
parse each cell in each record into a set of tokens, where
each token is an individual word, number, or symbol. Op-
tionally, we also label the tokens with a semantic category
(e.g., parsing a full name into first name, optional middle
initial, and last name), and also optionally apply a set of
normalization operators to standardize the tokens.

Second, we use a blocking algorithm to identify pairs
of records that have the potential to match. This elimi-
nates the need to evaluate the entire cross product. In our
implementation, we use a reverse index to identify poten-
tially matching pairs, similar to the methodology described
in [12] which takes into account many of the transforma-
tions described in the next section.

Next, we take each pair of candidate records (Aj , Bk)
and compare them field by field. I.e., we evaluate each
pair of values, (Aji, Bki) using a learned distance metric
Fi. Creating this distance metric is the focus of this paper.

Once we have computed the distance for each field of the
record pair, we use a support vector machine to determine
the overall goodness of the match. In the following section,
we describe how the distance metric Fi is learned.

2.1. Training the Field Learner

The key to our approach is the use of transformations
to relate two values. For instance, Figure 2 shows how we
might relate the two company names “Intl. Animal” and
“International Animal Productions”. “Intl.” is an abbrevia-
tion for “International”, the word “Animal” is found in both,
and “Productions” is missing. Transformations that we use
for string values include: Equal, Synonym, Misspelling,
Abbreviation, Prefix, Acronym, Concatenation, Suffix,
Soundex and Missing. These transformations are generic,
in the sense that they may be applicable in any domain. A
few of them, however, require domain-specific customiza-
tion. For example, the “Synonym” transformation requires
an association list of synonyms to be developed for each
domain. (These customizations can be made manually, or
in many cases, automatically learned. However, learning
methods for individual transformations are not the focus of
this paper.)

Given two values, a and b, which each consist of a se-
quence of tokens (numbers or strings), a transformation t
maps tokens in a to tokens in b. (A special transformation,

Figure 2. A Transformation Graph

“Missing”, can map a token to the empty set.) A trans-
formation graph G is a set of transformations relating two
tokenized values, a and b, such as the set of transforma-
tions shown in Figure 2, or the set shown in Figure 3. Ob-
viously, for any given pair of values, there is a potentially
large space of possible transformation graphs, each one rep-
resenting a different way to relate the tokens. The key ques-
tions we consider here are how to build the transformation
graph that best represents the actual relationship between a
pair of values, and how to “weight” the transformations in
a transformation graph when evaluating whether a pair of
values match or not. We can then determine, for instance,
whether a pair with a spelling mistake and a synonym is a
closer match than a pair with one equal word and one miss-
ing word.

Figure 3. Another Transformation Graph

Our approach employs supervised learning. For train-
ing data we use a set of records that have been previously
linked, so that we know which records are matches and
which are not. Every pair of field values (a, b) in each
record pair that satisfies the blocking criterion constitutes
a training example. If the pair (a, b) is found in at least
one pair of matching records, then it is labeled as positive,
otherwise it is assumed to be negative. (Note that two field
values may match, even though the records they are in do
not match. Because we are training at the field level, rather
than the record level, we cannot be sure that a training ex-
ample is negative. This invariably generates some noise.)
We also assume that we have a generic preference order-
ing over the types of transformations, such that T1 > T2

implies that a transformation of type T1 is generally more
indicative of a match than transformation of type T2. For
example, the “Equal” transformation is generally more in-
dicative of a match than a “Synonym” transformation, so
Equal > Synonym. Similarly, Synonym > Misspelling,
and Misspelling > Missing. In general, it is straightfor-
ward to choose a reasonable total order. (Because the learn-
ing system eventually assigns its own weights, it is not nec-
essary to get the order exactly “right” in order for the system
to produce reasonable results.)

For each training pair (a,b) we build a transformation
graph which relates a to b. A transformation graph is com-
plete if every token in a and in b participates in a trans-
formation and consistent if no token participates in more
than one transformation. To find a complete and consistent
transformation graph, we use a greedy algorithm that starts
with a null graph (i.e,. an empty set of transformations), and
incrementally builds a complete, consistent transformation
graph. The algorithm considers in turn each transformation
type in the total order, starting with the Equal transforma-
tion, which is the highest weighted transformation type. For
each transformation type, the algorithm considers the avail-
able tokens (which are not yet participating in any transfor-
mation) and selects a consistent transformation of that type
and adds it to the set of transformations in the graph. Since
the least-preferred transformation type, Missing, can be ap-
plied to any token, this procedure necessarily produces a
complete, consistent transformation graph.

Once we have constructed a transformation graph for
each matched example pair (our positive examples) and
each unmatched example pair (our negative examples), we
can determine how to weight each transformation type when
scoring a new, unseen example. In particular, given an un-
labeled example (a, b), which we want to classify as ei-
ther matched M or as not matched ¬M, we first create a
transformation graph using the procedure above where t1,
t2,...,tn are transformations in the graph. Let V be a corre-
sponding set of variables such that the value of vi is the type
of ith transformation in the graph, e.g., if t2 is a Synonym
transformation, then v2 = Synonym. To score an unseen ex-
ample, (a,b), we can estimate the probability that (a,b) is a
match given the types of transformations in the graph, that is
p(M| v1, v2, ...,vn). We make the Naı̈ve Bayes assumption
that the probability of the transformations are independent
given the classification of the example, i.e.,

p(M |V) = p(M |v1, v2, ..., vn) =
p(M)

∏
i=1...n p(vi|M)∏

i=1...n p(vi)

Since the order of the transformations is arbitrary, for any i,
we estimate p(vi | M) by counting the number of transfor-
mations of each type observed in the training data.

This approach is similar to the use of Naı̈ve Bayes for
text learning, but rather than using words as features, we use

transformations as our features. Intuitively, the transforma-
tions that are ranked higher in the preference ordering, such
as Equal, Synonym, etc, will be relatively more common
in matched pairs compared to lower ranked transformations,
such as Missing. P(M|V) can then be used as a measure of
the “distance” between two attribute values. Finally, a nor-
malized value for the score is calculated as follows:

ScoreHFM =
p(M |V)

p(M |V) + p(¬M |V)
=

p(M)
n∏

i=1

p(vi|M)

p(M)
n∏

i=1

p(vi|M) + p(¬M)
n∏

i=1

p(vi|¬M)

For example, consider a case where we are evaluating the
similarity between two restaurant names: “Giovani Italian
Cucina Int’l” and “Giovani Italian Kitchen International”.
In a fashion similar to what was shown in Figure 2, the
transformation graph consists of two Equal transforma-
tions (Giovani to Giovani, Italian to Italian), one Synonym
transformations (Cucina to Kitchen), and one Abbreviation
transformation (Int’l to International). Let us assume that
in the training set, the Equal transformation occurs with a
probability of 0.17 in the match set but only with a prob-
ability of 0.027 in the non-match set. Similarly the Syn-
onym transformation occurs with a probability of 0.29 in the
match set and a probability of 0.14 in the non-match set and
the Abbreviation transformation occurs with a probability
of 0.11 in the match set as opposed to 0.03 in the non-match
set. Also assume that the probability of the pair belonging
to the match set P(M) is 0.31 whereas the probability of be-
longing to the non-match set is P(¬M) = 0.69. Then, we get
P(M)

∏
(vi| M) = (0.31)(0.17)2(0.29)(0.11)= 2.86E-4 and

P(¬M)
∏

p(vi|¬M) = (0.69)(0.027)2(0.14)(0.03)= 2.11E-
6. This results in a score of 0.993 for the pair, which is
highly indicative of a match.

2.2. Finer-Grained Transformations

The approach described in the previous section is not
sensitive to word frequency. As a result, when two person
names share a token such as “Smith” the algorithm weights
these as heavily as two names that share the token “Ivanes-
cuskka”. Similarly, when matching company names, the
token “Incorporated” is weighted just as heavily as “Corru-
gated”.

This problem can be dealt with by developing finer-
grained transformations that capture these distinctions. In
particular, rather than treating all tokens similarly, we can
categorize tokens based on their frequency and refine the
transformations accordingly. For example, in the experi-
ments described later, we assigned tokens into one of three

categories based on frequency: low-frequency, medium-
frequency and high-frequency.

The transformations can then be refined so that they are
applicable only to specific token categories. For example,
we create three forms of the Equal transformation, one for
high-frequency tokens, one for intermediate-frequency to-
kens, and one for low-frequency tokens. We can do the
same for the Missing transformation. In general, this parti-
tioning strategy can be applied to other transformations but
in practice we only use it for Equal and Missing because it
reduces the amount of training data per category.

The same concept can be adapted for other distinctions
as well. For example, consider two street addresses with
surface similarities, such as “201 Carte St., Apt. 23” and
“Apt 201, 23 Carte St”. A string comparison system that
counted the number of shared tokens would consider these
strings to be highly similar. A more intelligent approach is
to first parse the strings into tokens that are labeled with
their semantic category, such as “house number”, “street
name” and “apartment number”. We can then refine the
transformations accordingly. For example, we can have two
versions of the Equal transformation, one for tokens that
are equal and assigned the same semantic category, and one
for tokens that are equal but not assigned the same semantic
category.

2.3. Global Transformations

In some cases, transformations between individual to-
kens or sets of tokens cannot fully describe the relationship
between two field values. In such cases, we have found it
useful to augment our set of transformations with “global
transformations”. These transformations are applied after
the regular transformation graph is computed, and augment
the original graph. For instance, in some domains it is im-
portant to distinguish cases where all the tokens from one
value are involved in transformations other than Missing;
i.e., one value is essentially a subset of the other. For this
case we have a global “subset” transformation, that aug-
ments the regular transformations. Another global transfor-
mation, the Reordering transformation, is useful for testing
whether the corresponding tokens in two values are in the
same order or not. Domain-specific versions of this trans-
formation are also useful for testing the ordering of specific
semantic categories, for example, whether first name pro-
ceeds last name.

2.4. Comparison to Active Atlas Algorithm

This work improves upon ideas explored by Tejada et al.
[12] in the Active Atlas system. Active Atlas evaluated the
similarity between field pairs using transformations, as in
HFM. The fine-grained transformations and global transfor-

mations introduced in the previous sections are new capabil-
ities, however. Moreover, Active Atlas used a more prim-
itive learning scheme, in which the weight of each trans-
formation was determined by comparing its frequency in
the positive labeled matches versus its overall frequency (in
both positive and negative matches). In comparison, HFM
considers two additional pieces of information when calcu-
lating the similarity between field pairs.

First, HFM considers the likelihood that any given pair
is a match given the distribution of matches in the training
data, independent of the transformation frequency distrib-
utions. Because Active Atlas uses only transformation fre-
quencies, it may be misled. For example, if a transformation
occurs equally frequently in the match and non-match set,
than Active Atlas would suggest an equal likelihood that the
pair matches or does not. However, if beyond the transfor-
mation distribution we know that field pairs are highly un-
likely to match because there are many less matching pairs
in the labeled data, HFM would reflect this with a lower
similarity score.

Second, HFM also considers the “saturation” and “di-
lution” of transformations when calculating the similarity
score. Consider the number of occurrences of a transfor-
mation f in the match set and the non-match set to be f+

and f− respectively, and the occurrences of all transforma-
tions in the match set and non-match set to be F+ and F−.
Furthermore, define R− as the ratio between f− and F−

and R+ as the ratio between f+ and F+. Now, assume
f+ and f− remain almost constant while F+ remains con-
stant and F− increases. Such a situation could happen if we
introduce a new transformation(s) that almost exclusively
applies to the non-match set. In this case, R− decreases,
since f− composes less of the total transformations in F−.
We call this situation “dilution.” However, since the R+

remains constant, the difference between R+ and R− in-
creases. This increase implies that f is more indicative of
a match because R+ has increased relative to R− and the
similarity score should then increase to reflect this idea.
Similarly, if we add a transformation that applies almost
exclusively to F+ we have a “saturated” situation, so the
score should decrease. HFM reflects this expected behavior,
while Active Atlas gives the same score in the “saturation”
and “dilution” cases since the new transformation(s) does
not apply.

3. Experimental Results

In a set of experiments we evaluated HFM and compared
it to three alternative approaches. One alternative is TF-
IDF, also known as vector-based cosine similarity. This
is a simple but effective metric for gauging the similarity
of two tokenized strings frequently used in information re-
trieval and integration. TF-IDF calculates the similarity be-

tween two strings as the ratio of the matching tokens be-
tween the strings over the frequency of those matching to-
kens in the whole record set. For our implementation we
measure all document frequency statistics from the full cor-
pus of records to be matched following the approach in [3].

We also compared HFM to the learned string edit metric
used in Marlin [1]. Marlin is notable because it is one of
the few systems that attempts to move beyond generic field-
level textual similarity. Specifically, Marlin uses a variant
of string edit distance (with affine gaps), where substitution,
deletion and insertion operators have learned weights.

Both TF-IDF and Marlin are relatively homogeneous in
their linkage approach. In fact, TF-IDF applies the same
similarity metric in every case. Marlin is more sophis-
ticated, distinguishing between insertions, deletions, sub-
stitutions and matches, which can be weighted differently.
However, in comparison to HFM, there is no attempt to ex-
plicitly model a variety of phenomena, such as acronyms,
synonyms, misspellings, etc. That is, Marlin works at the
“string edit” level, whereas HFM operates at a higher level
where transformations such as acronyms and synonyms ex-
ist.

Finally, we compare our approach to Active Atlas’ field
matching algorithm. This allows for a comparison between
previous work and the significantly refined HFM technique.
We note that in Active Atlas, the field matching component
was embedded in a an ambitious active learning system,
and was never directly compared to alternative techniques.
For our Active Atlas comparison, we used the same basic
transformations, but as described earlier, a more primitive
weighting scheme was used. Also, global transformations
were not employed in Active Atlas, and finer-grained dis-
tinctions such as frequency were omitted.

Each approach calculates a vector of feature scores for
each record. These feature vectors are then passed to a
Support Vector Machine (SVM) trained to classify them
as matches or non-matches. In all of the experiments the
SV MLight [7] implementation1 was used, with a Radial
Bias kernel function, where γ = 10.0. Following the pro-
cedure of [1], we built curves of interpolated precision at
given recall by comparing the labeled data to the matches
produced by the SVM.

We used a blocking stage to generate candidate matches
because comparing the Cartesian product of records is in-
feasible. Marlin employs its own blocking scheme. HFM
does blocking according to the technique described in the
Overview section. We needed a blocking scheme for TF-
IDF (to avoid overwhelming our SVM implementation with
too much data), so TF-IDF was provided with the candi-
dates generated by HFM’s blocking mechanism to allow for
a fair comparison.

We compared the three approaches on four data sets.

1http://svmlight.joachims.org/

Figure 4. “Marlin Restaurants” Results

For each domain, 20 experimental trials were run using
the same cross-validation procedure described in the Mar-
lin experiments [1]. Basic results are reported in Table 1.
Each entry in the table contains the average of maximum
F-measure values over the 20 evaluated folds. The best per-
former in each domain is shown in bold. All comparisons
except for one (i.e., pairs of results) are significant at the
0.05 level using a 1-tailed paired t-test. The single insignif-
icant result (shown in italics) is between Marlin and Active
Atlas on the “Marlin restaurants” dataset.

The first dataset, “Marlin Restaurants” (MR), was a rela-
tively smaller dataset used in [1] to evaluate Marlin. This
data set consists of two tables of restaurants, one from
Fodors and one from Zagats. Each table has four attributes:
name, address, city and cuisine. The tables have 534 records
and 330 records, respectively, and there are 112 matches.
The results on this data set are shown in Figure 4.

This data set is fairly easy, and all of the systems do quite
well. Surprisingly TF-IDF performed best by a small mar-
gin, but the number of matches (112) is so small that the
difference came down to just a few examples. To create a
more substantial test in the same domain, we created a sec-
ond data set consisting of “restaurant names” and “restau-
rant addresses” from the LA County Health Dept Website
and Yahoo LA restaurants. These tables contained 3701
records and 438 records, respectively, and they share 303
matches. The results for all 4 systems are reported in Fig-
ure 5.

In this data set there was a good deal of similarity be-
tween the addresses of matching records (i.e., many equal
tokens), to the point that address alone could generally be
used to discriminate matches. Due to this, and the fact that
addresses have large numbers of tokens (so that matching

Figure 5. MD Restaurant Subset Results

addresses almost always had several equal tokens), TF-IDF
performs quite well. However, it was unable to catch some
hard cases that HFM recognized. These cases required
additional transformations such as Abbreviation and Syn-
onym which are not available to TF-IDF and Marlin. This
is exhibited especially at the highest levels of recall where
TF-IDF could no longer discriminate between matches and
non-matches. Marlin, which considers whole fields as a sin-
gle string, does not benefit from this token level similarity
either.

One point of interest is the poor performance of Active
Atlas. Active Atlas only regards the frequencies of transfor-
mations in the match and non-match set independent of the
relative frequencies those transformations exhibit versus all
other transformations that apply. This is a problem when the
number of non-matches in the candidate set far outweighs
the number of matches. This happens in the larger restau-
rant dataset where many restaurants share similar names but
different addresses. This is one example of HFM’s improve-
ment over the original Active Atlas algorithm as described
in Section 2.

The third dataset consisted of records describing auto-
mobile models from the Edmunds site and Kelly Blue Book
site. The Edmunds data source consisted of 3171 records,
containing make, model, trim and year, while the Kelly Blue
Book data set had 2777 records, with the same attributes.
Between them, there are 2909 matches, because it is possi-
ble to have a 1-to-N matching.

Figure 6 shows the experimental results for the car do-
main. In this domain, HFM greatly outperforms TF-IDF,
due to the frequency of difficult transformations between
the Trim field. Trim benefited from the synonym transfor-
mation, which, for example, maps “Hatchback” to “Lift-
back”. It also benefited from the concatenation transfor-

Figure 6. Cars Results

Matching Domain
Technique Marlin res. MD res. Cars BFT
HFM 94.64 95.77 92.48 79.52
Active Atlas 92.31 45.09 88.97 56.95
TF-IDF 96.86 93.52 78.52 75.65
Marlin 91.39 76.29 N/A 75.54

Table 1. Average maximum F-measure for de-
tecting record matches

mation, which recognizes the similarity between “200 ZX”
and “200ZX”. These transformations allowed HFM to score
fields more accurately, which led to better record level
matching results. Unforunately, Marlin did not scale for
this dataset, therefore no comparisons were possible.

The fourth domain is based on posts about hotels ap-
pearing on the “Bidding For Travel” (BFT) website. Each
one of these posts was manually parsed into a star rating,
a hotel name and a hotel area. Since this data comes from
user-entered text, there are numerous misspellings, abbre-
viations and other such transformations. We try to match
these parsed fields to a clean data set of star ratings, hotel
names and hotel locations, with no duplicates. The “posts”
data set consists of 1125 records, and the “clean” data set
has 132 records. There are 1028 matches between the sets.
Note that not all posts have a match in the clean set, and
each “clean” record can match many “posts”. The results
are reported in Figure 7.

As in the cars domain, there were certain transforma-
tions unique to HFM that helped it outperform TF-IDF. For
example, the concatenation transformation identified simi-
larities such as “Double Tree” to “Doubletree” on a hotel
name, and the abbreviation transformation was able to re-
late “Dwntwn” and “DT” to “Downtown”. Even though
both techniques exhibit low precision at a very high level

Figure 7. Bidding For Travel Results

of recall, HFM still maintains a significant increase in pre-
cision up to that point. Specifically, it has a higher average
maximum F-Measure, as shown in Table 1. Marlin was able
to outperform HFM at the highest and lowest levels of re-
call. The many misspellings amongst the fields are suitable
for Marlin’s approach of adaptive edit distance, which is
able to capture these types of data discrepancy. However,
HFM has difficulty in the case where multiple corrections
are required for a given word, since it does not (yet) allow
multiple transformations per token.

4. Related Work
Most record linkage systems use fairly simple textual

similarity measures at the field level. Previous work in
machine learning has primarily focused on applying intel-
ligence at the record level, that is, determining how best
to discriminate matches based on the multiple fields being
compared. Our approach attempts to improve the accuracy
of the record linkage process by improving the performance
of an underlying field-level matcher.

Some previous systems have been built with this goal in
mind. For example, the Marlin system [1] attempts to move
beyond trivial field-level textual similarity. As described
earlier, their approach is similar to ours in that it learns a
similarity metric between two fields, then uses an SVM to
determine if two records refer to the same entity. However,
one difference between Marlin and HFM is that HFM uses
a heterogeneous set of models to identify complex relation-
ships between two values, whereas Marlin focuses on refin-
ing homogeneous string-based similarity metrics.

Cohen and Richman [4] presents an adaptive approach
for identifier name matching that has some similarity to
HFM in that the system employs a set of complex features
such as “substring match”, “prefix match”, “edit distance”,
and so forth in its learning scheme. However, HFM does

not simply use multiple features; instead, for each pair it
builds a transformation graph that can fully relate two com-
plex values, a more ambitious goal.

The work here was largely inspired by the previous work
of Tejada, Knoblock and Minton, called Active Atlas, in
which transformations related two fields[12]. That work
developed an initial approach to learning transformations,
which led to the Naive Bayes approach described here.
Active Atlas system is in some respects more ambitious
than the method described here, in particular because it
attempted to simultaneously refine a field similarity met-
ric (using weighted transformations) as well as a record-
level decision procedure (via decision trees) using an active
learning approach. In comparison, for the work described
here we used a more straightforward supervised learning
approach. This enabled us to focus on the contribution
of the transformation weighting scheme, and in particular,
carry out a detailed comparison of HFM to other methods.

An alternative approach to using transformations is to
normalize the data prior to record linkage [2]. For instance,
as the data is parsed, one could expand all abbreviations
as they are encountered. In general, if values can be re-
liably normalized prior to the record linkage process, it
makes sense to do so. However, this strategy has limited
applicability. There may be no normal form in some cases.
For instance, the name “Caitlyn” may be associated with
both the synonyms “Catherine” and “Lynne” (which in turn
have widely differing sets of variants). And there are many
domains in which important transformations may only be
identified in the context of a pair of values, such as mis-
spellings and acronyms.

Similarly, some values can be parsed into separate fields
prior to record linkage, such as full name being parsed into
first, middle and last names. However, if the parsing is not
100% reliable, this can create problems. In contrast, the
technique introduced here (where parsed components are
tagged and used to refine the transformations) is more ro-
bust with respect to such errors. For example, if “Steven
Aster Tate” is parsed so that “Aster Tate” is the last name,
and compared to “Steven A. Tate”, where “Tate” is parsed
as the last name, the error will be difficult to recover from if
there are three separate fields, as compared to a single field.

5. Discussion
As we have shown, the ability to identify complex rela-

tionships between two values can make an important contri-
bution to record linkage. In some domains, like the restau-
rant domain, the improvement is minor, because matching
values normally have enough commonality that they can be
identified using simple metrics. However, in other domains,
like the car domain, the added power of transformations can
result in larger improvements.

This contribution is meaningless if the technique can not

scale to sizable data sets, which are more representative of
the record linkage task in the real world. As shown exper-
imentally, HFM is also able to perform well when the data
sets are large and complex. This is important as information
integration matures into real world domains where the data
sets are huge and varied.

6. Acknowledgements
This research is based upon work supported in part by

the United States Air Force under contract number F49620-
02-C-0103, in part by the Air Force Office of Scientific Re-
search under grant number FA9550-04-1-0105, and in part
by the National Science Foundation under Award No. IIS-
0324955. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of any of the above organiza-
tions or any person connected with them.

References

[1] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings
of ACM SIGKDD-03, pages 39–48, Washington DC, 2003.

[2] P. Christen, T. Churches, and J. X. Zhu. Probabilistic name
and address cleaning and standardization. In Proceedings of
the Australasian Data Mining Workshop, 2002.

[3] W. Cohen, P. Ravikumar, and S. Feinberg. A comparison
of string metrics for matching names and records. In KDD-
2003 Workshop on Data Cleaning and Object Consolida-
tion, 2003.

[4] W. W. Cohen and J. Richman. Learning to match and clus-
ter large high-dimensional data sets for data integration. In
Proceedings of ACM SIGKDD-02, pages 475–480, 2002.

[5] M. A. Hernandez and S. J. Stolfo. The merge/purge problem
for large databases. In Proceedings of the ACM SIGMOD
Conference, 1995.

[6] T. Huang and S. J. Russell. Object identification in a
bayesian context. In IJCAI-97, pages 1276–1283, 1997.

[7] T. Joachims. Making large-scale support vector machine
learning practical. In Advances in Kernel Methods: Support
Vector Machines. MIT Press, Cambridge, MA, 1998.

[8] A. McCallum and B. Wellner. Conditional models of iden-
tity uncertainty with application to noun coreference. In
Neural Information Processing Systems (NIPS), 2004.

[9] A. E. Monge and C. Elkan. The field matching prob-
lem: Algorithms and applications. In Proceedings of ACM
SIGKDD-96, pages 267–270, 1996.

[10] P. Ravikumar and W. W. Cohen. A hierarchical graphical
model for record linkage. In UAI 2004, 2004.

[11] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proceedings of ACM SIGKDD-02,
Edmonton, Alberta, Canada, 2002.

[12] S. Tejada, C. A. Knoblock, and S. Minton. Learning
domain-independent string transformation weights for high
accuracy object identification. In Proceedings of ACM
SIGKDD-02, Edmonton, Alberta, Canada, 2002.

