Selective Sampling With Redundant Views

TIon Muslea, Steven Minton, and Craig A. Knoblock
Information Sciences Institute and Integrated Media Systems Center
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292, USA

{muslea, minton, knoblock }@isi.edu

Abstract

Selective sampling, a form of active learning, re-
duces the cost of labeling training data by asking
only for the labels of the most informative unla-
beled examples. We introduce a novel approach
to selective sampling which we call co-testing. Co-
testing can be applied to problems with redundant
views (i.e., problems with multiple disjoint sets of
attributes that can be used for learning). We an-
alyze the most general algorithm in the co-testing
family, naive co-testing, which can be used with
virtually any type of learner. Naive co-testing
simply selects at random an example on which the
existing views disagree. We applied our algorithm
to a variety of domains, including three real-world
problems: wrapper induction, Web page classifi-
cation, and discourse trees parsing. The empirical
results show that besides reducing the number of
labeled examples, naive co-testing may also boost
the classification accuracy.

Introduction

In order to learn a classifier, supervised learning algo-
rithms need labeled training examples. In many appli-
cations, labeling the training examples is an expensive
process because it requires human expertise and is a te-
dious, time consuming task. Selective sampling, a form
of active learning, reduces the number of training ex-
amples that need to be labeled by examining unlabeled
examples and selecting the most informative ones for
the human to label. This paper introduces co-testing,
which is a novel approach to selective sampling for do-
mains with redundant views. A domain has redundant
views if there are at least two mutually exclusive sets of
features that can be used to learn the target concept.
Our work was inspired by Blum and Mitchell (1998),
who noted that there are many real world domains with
multiple views. One example is Web page classification,
where one can identify faculty home pages either based
on the words on the page or based on the words in
HTML anchors pointing to the page. Another example
is perception learning with multiple sensors, where we

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

can determine a robot’s position based on vision, sonar,
or laser sensors.

Active learning techniques work by asking the user to
label an example that maximizes the information con-
veyed to the learner (we refer to such selected examples
as queries). In a standard, single-view learning sce-
nario, this generally translates into finding an example
that splits the version space in half, i.e., eliminating half
of the hypotheses consistent with the training set. With
redundant views, we can do much better. Co-testing
simultaneously trains a separate classifier for each re-
dundant view. FKEach classifier is applied to the pool
of unlabeled examples, and the system selects a query
based on the degree of disagreement among the learn-
ers. Because the target hypotheses in each view must
agree, co-testing can reduce the hypothesis space faster
than would otherwise be possible. To illustrate this,
consider a learning problem where we have two views,
V1 and V2. For illustrative purposes, imagine an ex-
treme case where there is an unlabeled example x that
is classified as positive by a single hypothesis from the
V1 version space; furthermore, assume that z 1s clas-
sified as positive by all but one of the hypotheses from
the V2 version space. If the system asks for the label
of this example, it will immediately converge to a sin-
gle hypothesis in one of the spaces and no additional
examples will be required.

In the real world, where noise and other effects in-
trude into the learning process, translating this simple
intuition into an effective algorithm raises some inter-
esting 1ssues. In this paper we describe co-testing as a
family of algorithms, and empirically analyze a simple
implementation of the co-testing approach called naive
co-testing. This paper begins with two in-depth illus-
trative examples that contrast co-testing with existing
sampling approaches. Then we present the naive co-
testing algorithm and discuss its application to both
wrapper induction and traditional learning problems.

Co-testing and uncertainty sampling

There are two major approaches to selective sam-
pling: uncertainty and committee-based sampling. The
former queries the unlabeled examples on which the
learned classifier i1s the least confident; the later gener-

Salary Salary
100K |, 100K | | ®
® (G
® ®
.
L 50K |m——————————— :
. RS '
e ‘6_
7K Q1. Office 7K ©
100 400 999 100 300

a) Trained on initial training set

b) Re-trained after query Q1

Salary
100", ®
CHURIR
| e N
[S) S)
© (S} © (S}
Office 7K © o Office
999 100 300 999

¢) Re-trained after query Q2

Figure 1: Co-testing at work.

ates a committee of several classifiers and selects the un-
labeled examples on which the committee members dis-
agree the most. In this section, we contrast co-testing
with uncertainty sampling, and in the next section we
compare our approach with committee-based sampling.

Let us consider the task of classifying the employees
of a CS department in two categories: faculty and non-
faculty. Let us assume that the classification can be
done either by using a person’s salary (e.g., only faculty
have salaries above $65K) or office number (e.g., only
faculty office numbers are below 300). In this case, the
domain has two redundant views: one that uses only
the salary, and another one that uses only the office
number. In both views the target concept is a threshold
value: $65K for salary, and 300 for the office number.
To learn the target concepts, we use for both views the
following learner £: first, £ identifies the pair of labeled
examples that belong to different classes and have the
closest attribute values; then £ sets the threshold to
the mean of these two values.

Co-testing works as follows: initially, the user pro-
vides a few labeled examples, and a pool of unlabeled
ones. In Figure la, the unlabeled examples are denoted
by points, while the labeled ones appear as & and © (the
former denotes faculty, and the latter represents non-
faculty). We use the learner £ to create one classifier for
each view (the classifiers are geometrically represented
as the dotted and the dashed lines, respectively). Then
we apply the classifiers to all unlabeled examples and
determine the contention points — the examples that
are labeled differently by the two classifiers. The con-
tention points, which lay in the picture’s gray areas, are
extremely informative because whenever the two classi-
fiers disagree, at least one of them must be wrong. We
select one of the contention points for labeling, add it
to the training set, and repeat the whole process.

If the learner can evaluate the confidence of its clas-
sification, we can query the contention point on which
both categorizers are most confident, which means that
each query maximally improves at least one of the hy-
potheses. In each view from our example, we can mea-
sure the confidence level as the distances between the
point and the threshold: the larger the distance, the
higher the confidence in the classification. In Figure la
co-testing asks for the label of the example Q1, which

is the contention point on which both categorizers are
the most confident (i.e., the sum of the distances to the
two thresholds is maximal). Once the example is la-
beled by the user, we re-train, find the new contention
points (see Figure 1b), make the query Q2, and re-train
again. As shown in Figure lc, the new classifiers agree
on all unlabeled examples, and co-testing stops.

As we already mentioned, the traditional approach in
uncertainty sampling (Lewis & Gale 1994) consists of
learning a single classifier and querying one of the points
on which the classifier is the least confident. If we use
just one of the views in the example above, the low-
est confidence points are the ones that are the closest
to the threshold. Consequently, uncertainty sampling
makes queries that lead to minimal improvements of
the hypothesis, and it takes more queries to find the
correct classifier. In comparison, co-testing has two ma-
jor advantages. First of all, combining evidence from
several views allows us to make queries that lead to
maximal improvements. Second, by querying only con-
tention points, we are guaranteed to always select an
example on which at least one of the classifiers is wrong.

Co-testing & committee-based sampling

Committee-based algorithms (Seung, Opper, & Som-
polinski 1972)(Abe & Mamitsuka 1998) take a different
approach. First, they generate several classifiers (the
comimittee) that are consistent with the training set or
sub-samples of 1t, respectively. Then they make the
queries that are the most likely to eliminate half of the
hypotheses that are consistent with the training set.
More precisely, they apply all committee members to
each unlabeled example and query the ones on which
the committee vote is the most equally split.

Despite their advantages, committee-based algo-
rithms have difficulties on some types of prob-
lems. For example, consider the problem P of
learning conjunctive concepts 1n an instance space
with 10,000 binary attributes that can be split
into two redundant views: V1(aj,as,...,as000) and
V2(as001,@5002;- - - ,¢10000). Let us assume that the tar-

get concept has the following equivalent definitions:
-inV1: <t,t,t,7,7,...,7>;
-inV2: <f,f,£,7,7,...,7>;

- in VIUV2: <t,t,%,7,7,...,7,£,£,£,72,7,...,7>.

Given:
- a problem P with features V={a1,a2,...,an}
- a learning algorithm £
- two views V1 and V2 (V=V1UV2 and V1NV2=0)
- the sets T and U of labeled and unlabeled examples

LOOP for k iterations
-use £, V1(T'), and V2(T) to create classifiers by and hs
- let ContentionPoints = { ¢ € U, h1(z) # ha(z) }
- let © = SelectQuery(Contention Points)
- remove z from U, ask for its label, and ad it to T

Figure 2: The Co-Testing Family of Algorithms.

The meaning of these concepts is straightforward: for
example, in V1, ay, as, and az must be t, and the other
attributes do not matter. Finally, let us further assume
that the attribute a4 has the value t for 99% of the
instances (i.e., it rarely has the value £). The scarcity of
examples with a,=f makes the target concept difficult
to learn because it is highly improbable that a random
training set includes such an examples. For domains
like this one, the challenge consists of identifying these
rare and informative examples.!

For this problem, we use the FIND-s learner (Mitchell
1997), which generates the most specific hypothesis that
is consistent with all positive examples. We chose FIND-
s because boolean conjunctions are PAC-learnable by
FIND-5 (i.e., with a high probability, the target concept
can be learned in polynomial time based on a polyno-
mial number of randomly chosen examples).

Now let us assume that we apply a committee-
based approach to the 10,000-attribute instance space.
In the initial training set a4 is unlikely to have the
value £, in which case all initial committee members
will have a4 set to t; this means that the queries
are also unlikely to have a4=f because such exam-
ples are classified as negative by all committee mem-
bers (remember that queries are made only on exam-
ples on which the committee is split). After several
queries, all the committee members become identical
(<t,t,t,t,7,...,7,f£,£,£,7,7,...,?7>) and learning
stops. Consequently, even though the target concept is
PAC-learnable, with high probability the learned con-
cept will not be the correct one.

By contrast, co-testing easily learns the correct
concept. First, after several queries, it gener-
ates the concepts <t,t,t,t,?,...,?> for V1 and
<f,f,f,?,...,?>for V2, which correspond to the con-
cept <t,t,t,t,?,...,7,f,f,f,7,7,...,7> learned
above. These two hypotheses disagree on all unla-
beled examples that have as=f (V1 labels them nega-
tive, while V2 labels them positive) and only on those.
Consequently, co-testing queries such an example and
learns the correct hypotheses: <t,t,t,?,...,?> and
<f,f,f,?,...,7> respectively.

Later in this paper we will discuss wrapper induction,
which is a typical example of problem with rare values.

In order to make the problem more realistic, let us
now assume that there are two attributes with rare val-
ues. In case they both fall within the same view, the
argument above remains valid, and co-testing is guaran-
teed to find the correct hypothesis. If the two attributes
belong to different views, co-testing still finds the per-
fect hypothesis unless both rare values always appear
together in all unlabeled examples (which is highly un-
likely). A similar argument holds for an arbitrary num-
ber of independent attributes with rare values.

The co-testing algorithms

In this section we present a formal description of the
co-testing family of algorithms, which was designed for
problems with redundant views. By definition, a learn-
ing problem P is said to have redundant views if its set
of attributes V.= {ay,as,...,an} can be partitioned
in two disjoint views V1 and V2, and either view 1s
sufficient to learn a classifier for P. Ideally, the two
views should be able to reach the same classification
accuracy, but we will see latter that in practice this is
not a necessary condition.

Given a learner £, a set T of labeled examples, and a
set U of unlabeled ones, co-testing (see Figure 2) works
as follows: first, it uses £ to learn two classifiers hy
and hs based on the projections of the examples in T'
onto the two views, V1 and V2. Then it applies hy
and hy to all unlabeled examples and creates the list
ContentionPoints of all unlabeled examples on which
they disagree. The difference between the members of
the co-testing family comes from the manner in which
they select the next query. Naive co-testing, on which
we will focus in the remaining sections, is the most
straightforward member of the family: it randomly
queries one of the contention points. Naive co-testing is
also the most general member of the family because it
can be applied to virtually any type of learner (the more
sophisticated version discussed in the second section 1s
applicable only to learners that can reliably estimate
the confidence of their classification). Despite its sim-
plicity, the empirical results show that naive co-testing
is a powerful selective sampling algorithm. We believe
that more sophisticated versions of co-testing should
lead to faster convergence, but this is a topic that we
are still investigating.

Naive co-testing for wrapper induction

A plethora of applications are using data extracted from
collections of on-line documents. To avoid hand-writing
a large number of extraction rules, researchers focused
on learning the rules based on labeled examples. As la-
beling such examples is an extremely tedious and time
consuming task, active learning can play a crucial role
in reducing the user’s burden. However, relatively little
attention has been paid to applying active learning to
information extraction. The only approaches that we
know about, (Thompson, Califf, & Mooney 1999) and
(Soderland 1999), are not general-purpose algorithms

because they select the queries based on heuristics spe-
cific to their respective learners, RAPIER and WHISK.

Wrapper induction algorithms, like STALKER
(Muslea, Minton, & Knoblock 2000), are designed to
learn high accuracy extraction rules for semi-structured
documents. For instance, let us assume that we
want to extract the restaurant names from a collec-
tion of documents that look similar to the Web-page
fragment shown in Figure 3. To find the beginning
of the restaurant name, we can use the start rule
R1 = SkipTo(Cuisine:)SkipTo(<p>). R1 starts from
the beginning of the page and ignores everything until
it finds the string “Cuisine:”; then, again, it ignores ev-
erything until it finds “<p>”. A similar end rule can be
used to find the end of the name within the document.

An alternative way to find the start of the name is to
use the rule R2 = SkipTo(Phone)SkipTo(Capitalized),
which is applied backward, from the end of the docu-
ment, and has similar semantics: it ignores everything
until 1t finds “Phone” and then, again, skips to the first
capitalized word. In this paper, we call R1 and R2
forward and backward start rules, respectively. As
STALKER can learn both forward and backward rules,
we can create the two views in a straightforward man-
ner: V1 and V2 consist of the sequences of characters
that precede and follow the beginning of the item, re-
spectively. More precisely, in V1 we learn forward rules,
while in V2 we learn backward rules. Finally, to ap-
ply co-testing to wrapper induction, we use STALKER’s
learning algorithm and the two views described above.

Note that by combining forward/backward start and
end rules, one can obtain three types of wrappers: FB
(Forward start and Backward end rules), FF (Forward
start and Forward end rules), and BB (Backward start
and Backward end rules). Out of the 206 extraction
tasks described in (Muslea, Minton, & Knoblock 2000),
we applied naive co-testing on the 10 tasks on which,
based on random examples, STALKER failed to gener-
ate perfect wrappers of all three types. STALKER was
successively trained on random training sets of sizes 1,
2, ..., 10; the extraction accuracy was averaged over
20 runs. For co-testing, we started with one random
labeled example and made nine queries. We used such
small training sets because the learning curves tend to
flatten even before reaching 10 examples.

Because of the space constraints, we present here
only an overview of the empirical results. Over the 10
tasks, stand-alone STALKER reached the following aver-
age accuracies: 82.6% (FB), 84.4% (FF), and 81.4%
(BB). By applying co-testing,? we obtained signifi-
cantly higher accuracies for all three classes of wrap-

pers: 90.7% (FB), 93.2% (FF), and 91.2% (BB). These

We compared co-testing only with STALKER because
there is no other active learning algorithm for wrap-
per induction. Furthermore, STALKER can not be used
in a straightforward manner in conjunction with existing
general-purpose selective sampling algorithms (Seung, Op-
per, & Sompolinski 1972) (Cohn, Atlas, & Ladner 1994)
(Abe & Mamitsuka 1998).

R1 R2

.. <p>Cuisine Italian <p>|Gino's|
Phone: ...

Figure 3: Extracting the restaurant name.

results deserve several comments. First, for all three
classes of wrappers, co-testing reduced the error rate
by 47%, 57%, and 53%, respectively. Second, for four
of the 10 tasks, co-testing learned 100% accurate wrap-
pers of all three types. Furthermore, these perfect wrap-
pers were learned based on as few as five or six queries.
Third, on all 10 tasks co-testing tmproved the accuracy
of the most accurate of the three types of wrappers. Fi-
nally, on eight tasks co-testing also improved the ac-
curacy of the least accurate of the wrappers. We can
conclude that applying co-testing to STALKER leads to
a dramatic improvement in accuracy without having to
label more training data.

Beyond wrapper induction

In order to contrast naive co-testing with state-of-the-
art sampling algorithms, we applied it to more tradi-
tional machine learning domains. In this paper, we
compared naive co-testing with query-by-bagging and
-boosting (Abe & Mamitsuka 1998) because these are
techniques where performance has been reported on
several well-studied UCI domains.® These two algo-
rithms are also the most general selective sampling ap-
proaches in terms of practical applicability (i.e., simi-
larly to co-testing, they can use a large variety of learn-
ers). We implemented all three algorithms based on the
MLC++ library (Kohavi, Sommerfield, & Dougherty
1997), and we used as learner Mc4, which is the
MLC++ implementation of c4.5.

First, we applied co-testing on two real world do-
mains for which there is a natural, intuitive way to
create the two views: Ad (Kushmerick 1999) and
Transfer-Few (Marcu, Carlson, & Watanabe 2000).
The former is a Web classification problem with two
classes, 1500 attributes, and 3279 examples. It clas-
sifies Web images into ads and non-ads and has the
following views: V1 describes the image itself (geome-
try, words in the image’s URL and caption), while V2
contains all other features (e.g., words from the URL
of the page that contains the image, and words from
the URL of the page the image points to). The second
domain, Transfer-Few, has seven classes, 99 features
and 11,193 examples. It uses a shift-reduce parsing
paradigm in order to learn to rewrite Japanese discourse
trees as English-like discourse trees in the context of a
machine translation system. In this case, V1 describes
features specific to a shift-reduce parsing paradigm: the
elements in the input list and the partial trees in the
stack. V2 describes features specific to the Japanese
tree given as input.

®http:/ /www .ics.uci.edu/~mlearn/MLRepository.html

LENSES

SOYBEAN-SMALL

T T 100 -
96 85
98
S S g w6l
oy oy oy
g 92 S 75 S 94t
3 3 3
£ 9 F / COTST(V2) —e—- g e 92 COTST(v2) —e— -
< ; bBa Eallg ”””” 7o corST(v2) < , gbBag(v2) -------
,v gbsag gbBag(all) ------- 90 / bBst(v2) E
o8 |é qbBst(all) - es [qbBst(all) a
1 1 1 1 1 1 1 1 1 88 1 [1 1 1 1
50 100 150 200 250 300 10 12 14 16 18 20 10 12 14 16 18 20
Number of Training Examples Number of Training Examples Number of Training Examples
TRANSFER-FEW IRIS VOTE
82 T T T T T 96 T 97 T T
80 - L
94 4 96
= 87 < s S 95 F
S 76 F S gt i S o
> > > -
§ “r a § 920 g § 93
§ 72 1 § § I~
< 70 7 COTST(vl) —e— - < 88 | COTST(V2) —e— - < 92 98- COTST(v2) —e— -
68 -/ gbBag(all) ---——- g gbBag(all) - o1 b qbBag(v2) —------ |
Iy gbBst(all) - 86 | gbBst(all) - i ! gbBst(v2)
66 - # ! ! ! ! ! ! ! T i ! ! ! 90 ! ! ! ! ! !
100 200 300 400 500 600 700 800 9001000 15 20 30 35 10 15 20 25 30 35 40 45

Number of Training Examples

Number of Training Examples

Number of Training Examples

Figure 4: Co-Testing on Traditional Machine Learning Domains.

As the size of these two domains leads to high com-
putational costs, we used 2-fold cross validation and
averaged the results over 5 random runs. In both do-
mains we started with a randomly chosen training set
of 10 examples, and we made 10 and 20 queries after
each learning episode, respectively. As shown in the
first column of Figure 4, co-testing clearly outperforms
query-by-bagging and -boosting on both domains. We
must emphasize that these results were obtained de-
spite the fact that the classifier used by co-testing is
less powerful than the other two (i.e., a single decision
tree vs 20 bagged/boosted decision trees).

To better understand how naive co-testing can out-
perform such powerful algorithms, we continued our
empirical investigation on small size UCI domains. As
in most of these domains there 1s no natural way to
create two views, we artificially created the views by
splitting the attributes in half* (i.e., first and last 50%
of them). Finally, in order to have a fair comparison,
we selected the domains on which bagging and boost-
ing have accuracies as close as possible to MC4: Lenses,
Soybean-Small, Iris, and Vote. For all these domains,
we used 10-fold cross validation and averaged the results
over 20 random runs. For each domain, we started with
arandom training set of five examples, and we made one
query after each learning episode.

*The only exception is the iris domain (4 attributes),
where there is a large difference in the accuracy of the views
{a1, a2} and {as, as} (72% and 94%, respectively). By
using the views {ai1, a2, as} and {as}, we obtained closer
accuracies: 94% and 95%, respectively. Note that the view
{as} is not restricted to single-level decision trees because
a4 has continuous values.

Figure 4 shows the learning curves for both the UCI
and the real world domains. For co-testing, we al-
ways present the results on the best of the two views.
For query-by-bagging and -boosting, we show the best
learning curve among V1, V2, and V1{JV2 (denoted
by v1, v2, and all in the legends from Figure 4). Note
that on soybean-small and vote, the best accuracy of
query-by-bagging and -boosting was obtained on V2,
not on all features!

The empirical results require a few comments. First
of all, co-testing outperforms query-by-boosting on all
six domains. Second, co-testing does better than query-
by-bagging on five domains; on the sixth one, Vote,
both reach the same final accuracies, but query-by-
bagging is capable of doing it based on fewer queries.
The explanation is quite simple: on this domain, bag-
ging consistently outperforms Mc4 by 1%, which means
that it reaches the final accuracy based on fewer ex-
amples. Third, on all domains except Soybean-Small
and Vote, the best accuracy of query-by-bagging and
-boosting is obtained on V1| JV2. This means that
co-testing outperforms even more clearly the other two
algorithms on the individual views. Last but not least,
we found it interesting that the UCI domains contain
so much redundancy that our arbitrary views do not
lead to any loss of accuracy.

Discussion
In (Blum & Mitchell 1998), the authors showed that

redundant views can provide an important source of in-
formation for supervised machine learning algorithms.
Previously, this topic was largely ignored, though the
idea clearly shows up in many unsupervised applica-

tions using techniques like EM(Dempster, Laird, & Ru-
bin 1977). However, rather than considering active
learning methods, Blum and Mitchell use the two views
to learn hypotheses that feed each other with the unla-
beled examples on which their classification is the most
confident.

Our empirical results show that co-testing is a po-
tentially powerful approach for active learning. In the
wrapper induction, Ad, and Transfer-Few domains, all
of which have natural redundant views, naive co-testing
clearly improves upon the current state of the art. We
believe that co-testing works so well in these domains
because it can identify the rarely occurring cases that
are relevant, as described in the third section. We note
that all these three domains have large number of fea-
tures, so finding relevant but rare feature-values con-
tributes significantly to performance.

Naive co-testing’s good performance on the UCI do-
mains was more surprising, especially since we derived
the views by splitting the features arbitrarily. We con-
jecture that splitting the problem into two views is prof-
itable because it effectively produces committees that
are independent, so that the hypotheses produced by
one view are quite different than those produced in the
other view. Perhaps any committee-based technique
that encourages such variation within its committee
would do as well.

Whether or not co-testing turns out to do well on tra-
ditional single-view domains, we believe that it will have
practical value because many large real-world domains
do have redundant views. We note that the views are
not required to lead to the same accuracy, which makes
the constraint easier to fulfill (in fact, none of our do-
mains above had equally accurate views). Clearly, more
work needs to be done here, both in exploring the space
of co-testing algorithms as well as analyzing the theo-
retical underpinnings of the approach. Nevertheless, we
believe this study presents a step towards an interesting
new approach to active learning.

Conclusion

This paper introduced co-testing, a family of selective
sampling algorithms. Co-testing queries one of the con-
tention points among multiple, redundant views. We
focused on a simple member of the family, naive co-
testing, which randomly selects one of the contention
points. We provided empirical evidence that on do-
mains like wrapper induction, where other sampling
methods cannot be naturally applied, co-testingleads to
significant improvements of the classification accuracy.
We also applied naive co-testing to traditional machine
learning domains, and we showed that its query selec-
tion strategy is comparable to the more sophisticated
ones used in query-by-bagging and -boosting.

We plan to continue our work on co-testing by follow-
ing several research directions. First, we will continue
studying the various members of the family in order
to fully understand both its advantages and its weak-
nesses. Second, we plan to provide theoretical guar-

antees for the most interesting members of the family.
Third, we will search a formal way to detect the redun-
dant views within a given domain. Last but not least,
we will perform a large-scale empirical evaluation by
applying co-testing to various real world problems such
as Web classification and natural language processing.

Acknowledgments

This work was supported in part by USC’s Integrated
Media Systems Center (IMSC) - an NSF Engineering
Research Center, by the National Science Foundation
under grant number IRI-9610014, by the U.S. Air Force
under contract number F49620-98-1-0046, by the De-
fense Logistics Agency, DARPA, and Fort Huachuca
under contract number DABT63-96-C-0066, and by re-
search grants from NCR and General Dynamics Infor-
mation Systems. The views and conclusions contained
in this paper are the authors’ and should not be inter-
preted as representing the official opinion or policy of
any of the above organizations or any person connected
with them.

References

Abe, N., and Mamitsuka, H. 1998. Query learning
using boosting and bagging. In Proc. of ICML, 1-10.
Blum, A., and Mitchell, T. 1998. Combining labeled
and unlabeled data with co-training. In Proc. of the
1988 Conf. Computational Learning Theory, 92-100.
Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving
generalization with active learning. ML 15:201-221.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Max-
imum likelihood from incomplete data vie the EmM al-
gorithm. J. of Royal Statistical Society 39:1-38.
Kohavi, R.; Sommerfield, D.; and Dougherty, J. 1997.
Data mining using MLC++, a machine learning library

in a++. Intl. J. of AI Tools 6(4):537-566.

Kushmerick, N. 1999. Learning to remove internet
advetisements. In Proc. of Auton. Agents-99, 175-181.
Lewis, D., and Gale, W. 1994. A sequential algorithm
for training text classifiers. In Proc. of Research and
Development in Information Retrieval 3—12.

Marcu, D.; Carlson, L.; and Watanabe, M. 2000. The
automatic translation of discourse structures.

Mitchell, T. 1997. Machine learning. McGraw-Hill.

Muslea, I.; Minton, S.; and Knoblock, C. 2000. Hi-
erarchical wrapper induction for semistructured infor-
mation sources. J. Autonom. Agents & Multi- Agent Sys.
Seung, H.; Opper, M.; and Sompolinski, H. 1972.
Query by committee. In Proc. of COLT-72, 287-294.
Soderland, S. 1999. Learning extraction rules for semi-
structured and free text. ML 34:233-272.

Thompson, C.; Califf, M.; and Mooney, R. 1999. Ac-
tive learning for natural language parsing and infor-
mation extraction. In Proc. of ICML-99, 406-414.

