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Abstract

Selective sampling, a form of active learning, re-
duces the cost of labeling training data by asking
only for the labels of the most informative unla-
beled examples. We introduce a novel approach
to selective sampling which we call co-testing. Co-
testing can be applied to problems with redundant

views (i.e., problems with multiple disjoint sets of
attributes that can be used for learning). We an-
alyze the most general algorithm in the co-testing
family, naive co-testing, which can be used with
virtually any type of learner. Naive co-testing
simply selects at random an example on which the
existing views disagree. We applied our algorithm
to a variety of domains, including three real-world
problems: wrapper induction, Web page classi�-
cation, and discourse trees parsing. The empirical
results show that besides reducing the number of
labeled examples, naive co-testing may also boost
the classi�cation accuracy.

Introduction

In order to learn a classi�er, supervised learning algo-
rithms need labeled training examples. In many appli-
cations, labeling the training examples is an expensive
process because it requires human expertise and is a te-
dious, time consuming task. Selective sampling, a form
of active learning, reduces the number of training ex-
amples that need to be labeled by examining unlabeled
examples and selecting the most informative ones for
the human to label. This paper introduces co-testing,
which is a novel approach to selective sampling for do-
mains with redundant views. A domain has redundant
views if there are at least two mutually exclusive sets of
features that can be used to learn the target concept.
Our work was inspired by Blum and Mitchell (1998),
who noted that there are many real world domains with
multiple views. One example is Web page classi�cation,
where one can identify faculty home pages either based
on the words on the page or based on the words in
html anchors pointing to the page. Another example
is perception learning with multiple sensors, where we
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can determine a robot's position based on vision, sonar,
or laser sensors.
Active learning techniques work by asking the user to

label an example that maximizes the information con-
veyed to the learner (we refer to such selected examples
as queries). In a standard, single-view learning sce-
nario, this generally translates into �nding an example
that splits the version space in half, i.e., eliminating half
of the hypotheses consistent with the training set. With
redundant views, we can do much better. Co-testing
simultaneously trains a separate classi�er for each re-
dundant view. Each classi�er is applied to the pool
of unlabeled examples, and the system selects a query
based on the degree of disagreement among the learn-
ers. Because the target hypotheses in each view must
agree, co-testing can reduce the hypothesis space faster
than would otherwise be possible. To illustrate this,
consider a learning problem where we have two views,
V1 and V2. For illustrative purposes, imagine an ex-
treme case where there is an unlabeled example x that
is classi�ed as positive by a single hypothesis from the
V1 version space; furthermore, assume that x is clas-
si�ed as positive by all but one of the hypotheses from
the V2 version space. If the system asks for the label
of this example, it will immediately converge to a sin-
gle hypothesis in one of the spaces and no additional
examples will be required.
In the real world, where noise and other e�ects in-

trude into the learning process, translating this simple
intuition into an e�ective algorithm raises some inter-
esting issues. In this paper we describe co-testing as a
family of algorithms, and empirically analyze a simple
implementation of the co-testing approach called naive
co-testing. This paper begins with two in-depth illus-
trative examples that contrast co-testing with existing
sampling approaches. Then we present the naive co-
testing algorithm and discuss its application to both
wrapper induction and traditional learning problems.

Co-testing and uncertainty sampling

There are two major approaches to selective sam-
pling: uncertainty and committee-based sampling. The
former queries the unlabeled examples on which the
learned classi�er is the least con�dent; the later gener-
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Figure 1: Co-testing at work.

ates a committee of several classi�ers and selects the un-
labeled examples on which the committee members dis-
agree the most. In this section, we contrast co-testing
with uncertainty sampling, and in the next section we
compare our approach with committee-based sampling.

Let us consider the task of classifying the employees
of a CS department in two categories: faculty and non-
faculty. Let us assume that the classi�cation can be
done either by using a person's salary (e.g., only faculty
have salaries above $65K) or o�ce number (e.g., only
faculty o�ce numbers are below 300). In this case, the
domain has two redundant views: one that uses only
the salary, and another one that uses only the o�ce
number. In both views the target concept is a threshold
value: $65K for salary, and 300 for the o�ce number.
To learn the target concepts, we use for both views the
following learner L: �rst, L identi�es the pair of labeled
examples that belong to di�erent classes and have the
closest attribute values; then L sets the threshold to
the mean of these two values.

Co-testing works as follows: initially, the user pro-
vides a few labeled examples, and a pool of unlabeled
ones. In Figure 1a, the unlabeled examples are denoted
by points, while the labeled ones appear as � and	 (the
former denotes faculty, and the latter represents non-
faculty). We use the learner L to create one classi�er for
each view (the classi�ers are geometrically represented
as the dotted and the dashed lines, respectively). Then
we apply the classi�ers to all unlabeled examples and
determine the contention points { the examples that
are labeled di�erently by the two classi�ers. The con-
tention points, which lay in the picture's gray areas, are
extremely informative because whenever the two classi-
�ers disagree, at least one of them must be wrong. We
select one of the contention points for labeling, add it
to the training set, and repeat the whole process.

If the learner can evaluate the con�dence of its clas-
si�cation, we can query the contention point on which
both categorizers are most con�dent, which means that
each query maximally improves at least one of the hy-
potheses. In each view from our example, we can mea-
sure the con�dence level as the distances between the
point and the threshold: the larger the distance, the
higher the con�dence in the classi�cation. In Figure 1a
co-testing asks for the label of the example Q1, which

is the contention point on which both categorizers are
the most con�dent (i.e., the sum of the distances to the
two thresholds is maximal). Once the example is la-
beled by the user, we re-train, �nd the new contention
points (see Figure 1b), make the query Q2, and re-train
again. As shown in Figure 1c, the new classi�ers agree
on all unlabeled examples, and co-testing stops.
As we already mentioned, the traditional approach in

uncertainty sampling (Lewis & Gale 1994) consists of
learning a single classi�er and querying one of the points
on which the classi�er is the least con�dent. If we use
just one of the views in the example above, the low-
est con�dence points are the ones that are the closest
to the threshold. Consequently, uncertainty sampling
makes queries that lead to minimal improvements of
the hypothesis, and it takes more queries to �nd the
correct classi�er. In comparison, co-testing has two ma-
jor advantages. First of all, combining evidence from
several views allows us to make queries that lead to
maximal improvements. Second, by querying only con-
tention points, we are guaranteed to always select an
example on which at least one of the classi�ers is wrong.

Co-testing & committee-based sampling
Committee-based algorithms (Seung, Opper, & Som-
polinski 1972)(Abe & Mamitsuka 1998) take a di�erent
approach. First, they generate several classi�ers (the
committee) that are consistent with the training set or
sub-samples of it, respectively. Then they make the
queries that are the most likely to eliminate half of the
hypotheses that are consistent with the training set.
More precisely, they apply all committee members to
each unlabeled example and query the ones on which
the committee vote is the most equally split.
Despite their advantages, committee-based algo-

rithms have di�culties on some types of prob-
lems. For example, consider the problem P of
learning conjunctive concepts in an instance space
with 10,000 binary attributes that can be split
into two redundant views: V1(a1,a2,. . . ,a5000) and
V2(a5001,a5002,. . . ,a10000). Let us assume that the tar-
get concept has the following equivalent de�nitions:

- in V1: <t,t,t,?,?,...,?>;

- in V2: <f,f,f,?,?,...,?>;

- in V1[V2: <t,t,t,?,?,...,?,f,f,f,?,?,...,?>.



Given:
- a problem P with features V=fa1; a2; : : : ; aNg
- a learning algorithm L
- two views V1 and V2 (V=V1[V2 and V1\V2=�)
- the sets T and U of labeled and unlabeled examples

LOOP for k iterations
- use L, V1(T ), and V2(T ) to create classi�ers h1 and h2

- let ContentionPoints = f x 2 U , h1(x) 6= h2(x) g
- let x = SelectQuery(ContentionPoints)
- remove x from U , ask for its label, and ad it to T

Figure 2: The Co-Testing Family of Algorithms.

The meaning of these concepts is straightforward: for
example, inV1, a1, a2, and a3 must be t, and the other
attributes do not matter. Finally, let us further assume
that the attribute a4 has the value t for 99% of the
instances (i.e., it rarely has the value f). The scarcity of
examples with a4=f makes the target concept di�cult
to learn because it is highly improbable that a random
training set includes such an examples. For domains
like this one, the challenge consists of identifying these
rare and informative examples.1

For this problem, we use the find-s learner (Mitchell
1997), which generates the most speci�c hypothesis that
is consistent with all positive examples. We chose find-
s because boolean conjunctions are pac-learnable by
find-s (i.e., with a high probability, the target concept
can be learned in polynomial time based on a polyno-
mial number of randomly chosen examples).

Now let us assume that we apply a committee-
based approach to the 10,000-attribute instance space.
In the initial training set a4 is unlikely to have the
value f, in which case all initial committee members
will have a4 set to t; this means that the queries
are also unlikely to have a4=f because such exam-
ples are classi�ed as negative by all committee mem-
bers (remember that queries are made only on exam-
ples on which the committee is split). After several
queries, all the committee members become identical
(<t,t,t,t,?,...,?,f,f,f,?,?,...,?>) and learning
stops. Consequently, even though the target concept is
PAC-learnable, with high probability the learned con-
cept will not be the correct one.

By contrast, co-testing easily learns the correct
concept. First, after several queries, it gener-
ates the concepts <t,t,t,t,?,...,?> for V1 and
<f,f,f,?,...,?> forV2, which correspond to the con-
cept <t,t,t,t,?,...,?,f,f,f,?,?,...,?> learned
above. These two hypotheses disagree on all unla-
beled examples that have a4=f (V1 labels them nega-
tive, while V2 labels them positive) and only on those.
Consequently, co-testing queries such an example and
learns the correct hypotheses: <t,t,t,?,...,?> and
<f,f,f,?,...,?>, respectively.

1Later in this paper we will discuss wrapper induction,
which is a typical example of problem with rare values.

In order to make the problem more realistic, let us
now assume that there are two attributes with rare val-
ues. In case they both fall within the same view, the
argument above remains valid, and co-testing is guaran-
teed to �nd the correct hypothesis. If the two attributes
belong to di�erent views, co-testing still �nds the per-
fect hypothesis unless both rare values always appear
together in all unlabeled examples (which is highly un-
likely). A similar argument holds for an arbitrary num-
ber of independent attributes with rare values.

The co-testing algorithms

In this section we present a formal description of the
co-testing family of algorithms, which was designed for
problems with redundant views. By de�nition, a learn-
ing problem P is said to have redundant views if its set
of attributes V = fa1; a2; : : : ; aNg can be partitioned
in two disjoint views V1 and V2, and either view is
su�cient to learn a classi�er for P. Ideally, the two
views should be able to reach the same classi�cation
accuracy, but we will see latter that in practice this is
not a necessary condition.
Given a learner L, a set T of labeled examples, and a

set U of unlabeled ones, co-testing (see Figure 2) works
as follows: �rst, it uses L to learn two classi�ers h1

and h2 based on the projections of the examples in T

onto the two views, V1 and V2. Then it applies h1

and h2 to all unlabeled examples and creates the list
ContentionPoints of all unlabeled examples on which
they disagree. The di�erence between the members of
the co-testing family comes from the manner in which
they select the next query. Naive co-testing, on which
we will focus in the remaining sections, is the most
straightforward member of the family: it randomly

queries one of the contention points. Naive co-testing is
also the most general member of the family because it
can be applied to virtually any type of learner (the more
sophisticated version discussed in the second section is
applicable only to learners that can reliably estimate
the con�dence of their classi�cation). Despite its sim-
plicity, the empirical results show that naive co-testing
is a powerful selective sampling algorithm. We believe
that more sophisticated versions of co-testing should
lead to faster convergence, but this is a topic that we
are still investigating.

Naive co-testing for wrapper induction

A plethora of applications are using data extracted from
collections of on-line documents. To avoid hand-writing
a large number of extraction rules, researchers focused
on learning the rules based on labeled examples. As la-
beling such examples is an extremely tedious and time
consuming task, active learning can play a crucial role
in reducing the user's burden. However, relatively little
attention has been paid to applying active learning to
information extraction. The only approaches that we
know about, (Thompson, Cali�, & Mooney 1999) and
(Soderland 1999), are not general-purpose algorithms



because they select the queries based on heuristics spe-
ci�c to their respective learners, rapier and whisk.
Wrapper induction algorithms, like stalker

(Muslea, Minton, & Knoblock 2000), are designed to
learn high accuracy extraction rules for semi-structured
documents. For instance, let us assume that we
want to extract the restaurant names from a collec-
tion of documents that look similar to the Web-page
fragment shown in Figure 3. To �nd the beginning
of the restaurant name, we can use the start rule
R1 = SkipTo(Cuisine:)SkipTo(<p>). R1 starts from
the beginning of the page and ignores everything until
it �nds the string \Cuisine:"; then, again, it ignores ev-
erything until it �nds \<p>". A similar end rule can be
used to �nd the end of the name within the document.
An alternative way to �nd the start of the name is to

use the rule R2 = SkipTo(Phone)SkipTo(Capitalized),
which is applied backward, from the end of the docu-
ment, and has similar semantics: it ignores everything
until it �nds \Phone" and then, again, skips to the �rst
capitalized word. In this paper, we call R1 and R2
forward and backward start rules, respectively. As
stalker can learn both forward and backward rules,
we can create the two views in a straightforward man-
ner: V1 and V2 consist of the sequences of characters
that precede and follow the beginning of the item, re-
spectively. More precisely, inV1we learn forward rules,
while in V2 we learn backward rules. Finally, to ap-
ply co-testing to wrapper induction, we use stalker's
learning algorithm and the two views described above.
Note that by combining forward/backward start and

end rules, one can obtain three types of wrappers: FB
(Forward start and Backward end rules), FF (Forward
start and Forward end rules), andBB (Backward start
and Backward end rules). Out of the 206 extraction
tasks described in (Muslea, Minton, & Knoblock 2000),
we applied naive co-testing on the 10 tasks on which,
based on random examples, stalker failed to gener-
ate perfect wrappers of all three types. stalker was
successively trained on random training sets of sizes 1,
2, . . . , 10; the extraction accuracy was averaged over
20 runs. For co-testing, we started with one random
labeled example and made nine queries. We used such
small training sets because the learning curves tend to
atten even before reaching 10 examples.
Because of the space constraints, we present here

only an overview of the empirical results. Over the 10
tasks, stand-alone stalker reached the following aver-
age accuracies: 82.6% (FB), 84.4% (FF), and 81.4%
(BB). By applying co-testing,2 we obtained signi�-
cantly higher accuracies for all three classes of wrap-
pers: 90.7% (FB), 93.2% (FF), and 91.2% (BB). These

2We compared co-testing only with stalker because
there is no other active learning algorithm for wrap-
per induction. Furthermore, stalker can not be used
in a straightforward manner in conjunction with existing
general-purpose selective sampling algorithms (Seung, Op-
per, & Sompolinski 1972) (Cohn, Atlas, & Ladner 1994)
(Abe & Mamitsuka 1998).

R1 R2

... <p>Cuisine: Italian <p>  Gino’s  <br>Phone: ...

Figure 3: Extracting the restaurant name.

results deserve several comments. First, for all three
classes of wrappers, co-testing reduced the error rate
by 47%, 57%, and 53%, respectively. Second, for four
of the 10 tasks, co-testing learned 100% accurate wrap-
pers of all three types. Furthermore, these perfect wrap-
pers were learned based on as few as �ve or six queries.
Third, on all 10 tasks co-testing improved the accuracy
of the most accurate of the three types of wrappers. Fi-
nally, on eight tasks co-testing also improved the ac-
curacy of the least accurate of the wrappers. We can
conclude that applying co-testing to stalker leads to
a dramatic improvement in accuracy without having to
label more training data.

Beyond wrapper induction

In order to contrast naive co-testing with state-of-the-
art sampling algorithms, we applied it to more tradi-
tional machine learning domains. In this paper, we
compared naive co-testing with query-by-bagging and
-boosting (Abe & Mamitsuka 1998) because these are
techniques where performance has been reported on
several well-studied UCI domains.3 These two algo-
rithms are also the most general selective sampling ap-
proaches in terms of practical applicability (i.e., simi-
larly to co-testing, they can use a large variety of learn-
ers). We implemented all three algorithms based on the
MLC++ library (Kohavi, Sommer�eld, & Dougherty
1997), and we used as learner mc4, which is the
MLC++ implementation of c4.5.
First, we applied co-testing on two real world do-

mains for which there is a natural, intuitive way to
create the two views: Ad (Kushmerick 1999) and
Transfer-Few (Marcu, Carlson, & Watanabe 2000).
The former is a Web classi�cation problem with two
classes, 1500 attributes, and 3279 examples. It clas-
si�es Web images into ads and non-ads and has the
following views: V1 describes the image itself (geome-
try, words in the image's url and caption), while V2
contains all other features (e.g., words from the url

of the page that contains the image, and words from
the url of the page the image points to). The second
domain, Transfer-Few, has seven classes, 99 features
and 11,193 examples. It uses a shift-reduce parsing
paradigm in order to learn to rewrite Japanese discourse
trees as English-like discourse trees in the context of a
machine translation system. In this case, V1 describes
features speci�c to a shift-reduce parsing paradigm: the
elements in the input list and the partial trees in the
stack. V2 describes features speci�c to the Japanese
tree given as input.

3http://www.ics.uci.edu/�mlearn/MLRepository.html
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Figure 4: Co-Testing on Traditional Machine Learning Domains.

As the size of these two domains leads to high com-
putational costs, we used 2-fold cross validation and
averaged the results over 5 random runs. In both do-
mains we started with a randomly chosen training set
of 10 examples, and we made 10 and 20 queries after
each learning episode, respectively. As shown in the
�rst column of Figure 4, co-testing clearly outperforms
query-by-bagging and -boosting on both domains. We
must emphasize that these results were obtained de-
spite the fact that the classi�er used by co-testing is
less powerful than the other two (i.e., a single decision
tree vs 20 bagged/boosted decision trees).

To better understand how naive co-testing can out-
perform such powerful algorithms, we continued our
empirical investigation on small size UCI domains. As
in most of these domains there is no natural way to
create two views, we arti�cially created the views by
splitting the attributes in half4 (i.e., �rst and last 50%
of them). Finally, in order to have a fair comparison,
we selected the domains on which bagging and boost-
ing have accuracies as close as possible to mc4: Lenses,
Soybean-Small, Iris, and Vote. For all these domains,
we used 10-fold cross validation and averaged the results
over 20 random runs. For each domain, we started with
a random training set of �ve examples, and we made one
query after each learning episode.

4The only exception is the iris domain (4 attributes),
where there is a large di�erence in the accuracy of the views
fa1, a2g and fa3, a4g (72% and 94%, respectively). By
using the views fa1, a2, a3g and fa4g, we obtained closer
accuracies: 94% and 95%, respectively. Note that the view
fa4g is not restricted to single-level decision trees because
a4 has continuous values.

Figure 4 shows the learning curves for both the UCI
and the real world domains. For co-testing, we al-
ways present the results on the best of the two views.
For query-by-bagging and -boosting, we show the best
learning curve among V1, V2, and V1

S
V2 (denoted

by v1, v2, and all in the legends from Figure 4). Note
that on soybean-small and vote, the best accuracy of
query-by-bagging and -boosting was obtained on V2,
not on all features!

The empirical results require a few comments. First
of all, co-testing outperforms query-by-boosting on all
six domains. Second, co-testing does better than query-
by-bagging on �ve domains; on the sixth one, Vote,
both reach the same �nal accuracies, but query-by-
bagging is capable of doing it based on fewer queries.
The explanation is quite simple: on this domain, bag-
ging consistently outperforms mc4 by 1%, which means
that it reaches the �nal accuracy based on fewer ex-
amples. Third, on all domains except Soybean-Small

and Vote, the best accuracy of query-by-bagging and
-boosting is obtained on V1

S
V2. This means that

co-testing outperforms even more clearly the other two
algorithms on the individual views. Last but not least,
we found it interesting that the UCI domains contain
so much redundancy that our arbitrary views do not
lead to any loss of accuracy.

Discussion

In (Blum & Mitchell 1998), the authors showed that
redundant views can provide an important source of in-
formation for supervised machine learning algorithms.
Previously, this topic was largely ignored, though the
idea clearly shows up in many unsupervised applica-



tions using techniques like EM(Dempster, Laird, & Ru-
bin 1977). However, rather than considering active
learning methods, Blum and Mitchell use the two views
to learn hypotheses that feed each other with the unla-
beled examples on which their classi�cation is the most
con�dent.
Our empirical results show that co-testing is a po-

tentially powerful approach for active learning. In the
wrapper induction, Ad, and Transfer-Few domains, all
of which have natural redundant views, naive co-testing
clearly improves upon the current state of the art. We
believe that co-testing works so well in these domains
because it can identify the rarely occurring cases that
are relevant, as described in the third section. We note
that all these three domains have large number of fea-
tures, so �nding relevant but rare feature-values con-
tributes signi�cantly to performance.
Naive co-testing's good performance on the UCI do-

mains was more surprising, especially since we derived
the views by splitting the features arbitrarily. We con-
jecture that splitting the problem into two views is prof-
itable because it e�ectively produces committees that
are independent, so that the hypotheses produced by
one view are quite di�erent than those produced in the
other view. Perhaps any committee-based technique
that encourages such variation within its committee
would do as well.
Whether or not co-testing turns out to do well on tra-

ditional single-view domains, we believe that it will have
practical value because many large real-world domains
do have redundant views. We note that the views are
not required to lead to the same accuracy, which makes
the constraint easier to ful�ll (in fact, none of our do-
mains above had equally accurate views). Clearly, more
work needs to be done here, both in exploring the space
of co-testing algorithms as well as analyzing the theo-
retical underpinnings of the approach. Nevertheless, we
believe this study presents a step towards an interesting
new approach to active learning.

Conclusion
This paper introduced co-testing, a family of selective
sampling algorithms. Co-testing queries one of the con-
tention points among multiple, redundant views. We
focused on a simple member of the family, naive co-
testing, which randomly selects one of the contention
points. We provided empirical evidence that on do-
mains like wrapper induction, where other sampling
methods cannot be naturally applied, co-testing leads to
signi�cant improvements of the classi�cation accuracy.
We also applied naive co-testing to traditional machine
learning domains, and we showed that its query selec-
tion strategy is comparable to the more sophisticated
ones used in query-by-bagging and -boosting.
We plan to continue our work on co-testing by follow-

ing several research directions. First, we will continue
studying the various members of the family in order
to fully understand both its advantages and its weak-
nesses. Second, we plan to provide theoretical guar-

antees for the most interesting members of the family.
Third, we will search a formal way to detect the redun-
dant views within a given domain. Last but not least,
we will perform a large-scale empirical evaluation by
applying co-testing to various real world problems such
as Web classi�cation and natural language processing.
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