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lon Muslea! and Steven Mintor? and Craig A. Knoblock?

Abstract. Selectivesampling, aform of activelearning, reducesthe
cost of labeling training data by asking only for the |abels of the most
informative unlabeled examples. We introduce a novel approach to
selective sampling which we call co-testing. Co-testing can be ap-
plied to problemswith redundant views (i.e., problemswith multiple
digoint sets of attributes that can be used for learning). We analyze
the most general algorithm in the co-testing family, naive co-testing,
which can be used with virtually any type of learner. Naive co-testing
simply selectsat random an example on which the existing views dis-
agree. We applied our algorithm to a variety of domains, including
three real-world problems: wrapper induction, Web page classifica-
tion, and discoursetrees parsing. The empirical results show that be-
sidesreducing the number of |abeled examples, naive co-testing may
also boost the classification accuracy.

1 INTRODUCTION

In order to learn a classifier, supervised learning algorithms need la-
beled training examples. In many applications, labeling the training
examplesisan expensiveprocessbecauseit requireshuman expertise
and is atedious, time consuming task. Selective sampling, a form of
activelearning, reducesthe number of training examplesthat need to
be labeled by examining unlabeled examples and selecting the most
informative ones for the human to label. This paper introduces co-
testing, whichisanovel approach to selective sampling for domains
with redundant views. A domain has redundant views if there are
at least two mutually exclusive sets of features that can be used to
learn thetarget concept. Our work wasinspired by Blum and Mitchel|
(1998), who noted that there are many real world domainswith mul-
tiple views. One exampleis Web page classification, where one can
identify faculty home pageseither based on the words on the page or
based on the words in HTML anchors pointing to the page. Another
exampleis perception learning with multiple sensors, where we can
determine arobot’s position based on vision, sonar, or |laser sensors.

Activelearning techniqueswork by asking the user to label an ex-
amplethat maximizestheinformation conveyedto thelearner (were-
fer to such selected examplesas queries). In astandard, single-view
learning scenario, this generally trandates into finding an example
that splits the version spacein half, i.e., eliminating half of the hy-
potheses consistent with the training set. With redundant views, we
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can do much better. Co-testing simultaneously trains a separate clas-
sifier for each redundant view. Each classifier is applied to the pool
of unlabeled examples, and the system selects a query based on the
degree of disagreement among the learners. Because the target hy-
pothesesin each view must agree, co-testing can reduce the hypoth-
esis space faster than would otherwise be possible. To illustrate this,
consider alearning problem where we have two views, V1 and V2.
For illustrative purposes, imagine an extreme case where there is an
unlabeled example « that is classified as positive by a single hypoth-
esisfrom the V1 version space; furthermore, assumethat « is classi-
fied aspositive by al but one of the hypothesesfrom the V2 version
space. If the system asks for the label of this example, it will imme-
diately convergeto a single hypothesisin one of the spaces and no
additional exampleswill be required.

In the real world, where noise and other effects intrude into the
learning process, translating this simpleintuition into an effective al-
gorithm raises some interesting issues. In this paper we describe co-
testing asafamily of algorithms, and empirically analyzeasimpleim-
plementation of the co-testing approach called naive co-testing. We
begin with two in-depth illustrative examplesthat contrast co-testing
with existing sampling approaches. Then we present the naive co-
testing algorithm and discuss its application to both wrapper induc-
tion and traditional learning problems.

2 CO-TESTING AND UNCERTAINTY
SAMPLING

There are two major approaches to selective sampling: uncertainty
and committee-based sampling. Theformer queriesthe unlabeled ex-
ampleson which thelearned classifier istheleast confident; the latter
generatesa committee of several classifiersand selectsthe unlabeled
exampleson which the committee members disagreethe most. In this
section, we contrast co-testing with uncertainty sampling, and in the
next section we compare our approach with committee-based sam-
pling.

Let us consider the task of classifying the employeesof a CS de-
partment in two categories: faculty and non-faculty. Let us assume
that the classification can be done either by using a person’s salary
(e.g., only faculty have salaries above $65K) or office number (e.g.,
only faculty office numbers are below 300). In this case, the domain
has two redundant views: one that uses only the salary, and another
onethat usesonly the office number. In both viewsthe target concept
isathresholdvalue: $65K for salary, and 300for the office number. To
learn the target concepts, we usefor both viewsthe following learner
L: first, £ identifies the pair of labeled examplesthat belong to dif-
ferent classes and have the closest attribute values; then £ sets the
threshold to the mean of thesetwo values.
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Figurel. Co-testing at work.

Co-testing works as follows: initially, the user provides afew la-
beled examples, and a pool of unlabeled ones. In Figure 1a, the un-
labeled examples are denoted by points, while the labeled ones ap-
pear as @ and & (the former denotes faculty, and the latter repre-
sents non-faculty). We use the learner £ to create one classifier for
each view (the classifiers are geometrically represented as the dot-
ted and the dashed lines, respectively). Then we apply the classifiers
to all unlabeled examples and determine the contention points — the
examplesthat are labeled differently by the two classifiers. The con-
tention points, which lay in the picture’sgray areas, are extremely in-
formative becausewhenever the two classifiers disagree, at least one
of them must be wrong. We select one of the contention points for
labeling, add it to the training set, and repeat the whole process.

If the learner can evaluate the confidence of its classification, we
can query the contention point on which both categorizers are most
confident, which meansthat eachquery mazimally improvesat |east
one of the hypotheses. In each view from our example, we can mea-
sure the confidencelevel as the distances between the point and the
threshold: the larger the distance, the higher the confidence in the
classification. In Figure laco-testing asksfor thelabel of theexample
Q1, whichisthe contention point on which both categorizersare the
most confident (i.e., the sum of the distancesto the two thresholdsis
maximal). Once the exampleis labeled by the user, we re-train, find
the new contention points (see Figure 1b), make the query Q2, and
re-train again. As shown in Figure 1c, the classifiersagree on al un-
labeled examples, and co-testing stops.

As we aready mentioned, the traditional approach in uncertainty
sampling [5] consistsof learning asingle classifier and querying one
of the points on which the classifier is the least confident. If we use
just one of the views in the example above, the lowest confidence
points arethe onesthat are the closest to the threshol d. Consequently,
uncertainty sampling makes queriesthat lead to minimal improve-
ments of the hypothesis, and it takes more queries to find the cor-
rect classifier. In comparison, co-testing has two major advantages.
First of all, combiningevidencefrom several viewsallowsusto make
queries that lead to maximal improvements. Second, by querying
only contention points, we are guaranteed to always select an exam-
ple on which at least one of the classifiersis wrong.

3 CO-TESTING & COMMITTEE-BASED
SAMPLING

Committee-based algorithms [8][1] take a different approach. First,
they generate several classifiers (the commattee) that are consistent

with the training set or sub-samples of it, respectively. Then they
make the queries that are the most likely to eliminate half of the hy-
pothesesthat are consistent with thetraining set. More precisely, they
apply al committee members to each unlabeled example and query
the ones on which the committee vote is the most equally split.

Despite their advantages, committee-based algorithms have diffi-
culties on some types of problems. For example, consider the prob-
lem P of learning conjunctive concepts in an instance space with
10,000 binary attributes that can be split into two redundant views:
Vl(a1 ,a2,...,d5000 ) and V2(a5001 , 35002 4+ -+ ,310000 ) Let us assume
that the target concept has the following equivalent definitions:

-inVL:<t,t,t, "~ L, P>
-inv2.<f,f,f,? ?>:

2,2, ..., 7>
17---1- l
- invViuva: <t,t,t,?,?,...

Bl O N

Themeaning of these conceptsis straightforward: for example,in V1,
a1, a2, and as must bet , and the other attributes do not matter. Fi-
nally, let us further assumethat the attribute a4 hasthe valuet for
99% of theinstances(i.e., it rarely hasthevaluef ). Thescarcity of ex-
ampleswith a4 =f makesthetarget concept difficult to learn because
it ishighly improbablethat arandom training set includessuch an ex-
amples. For domainslike this one, the challenge consists of identify-
ing theserare and informative examples. A typica problem with rare
valuesiswrapper induction, whichwill be discussed at length later in
this paper.

For this problem, we use the FIND-S learner [?], which generates
the most specific hypothesis that is consistent with all positive ex-
amples. We chose FIND-S because boolean conjunctions are PAC-
learnable by FIND-S (i.e., with a high probability, the target concept
can be learned based on a polynomia number of randomly chosen
examples).

Now let us assume that we apply a committee-based approach
to the 10,000-attribute instance space. As in the initial training
set as is unlikely to have the value f, all initid committee
members will have a4 set to t; this means that the queries are
also unlikely to have a4=f because such examples are classified
as negative by al committee members (remember that queries
are made only on examples on which the committee is split).
After several queries, all the committee members become iden-
tical (<t,t,t,t,?,...,2,f,f,f,2,2,...,?>) and learn-
ing stops. Consequently, even though the target concept is PAC-
learnable, with high probability the learned concept will not be the
correct one.

By contrast, co-testing easily learns the correct concept. First,



Given:
- aproblem P with features V={a1, ao, . ..
- alearning algorithm £
-two viewsV1and V2 (V=V1UV2 and V1NV2=0Q)
-thesets T and U of labeled and unlabeled examples

,an}

LOOP for k iterations
-use £, VLI(T), and V2(T) to learn classifiershy and h»
- let ContentionPoints ={ x € U, hi(z) # h2(z) }
- let & = SelectQuery(Contention Points)
- removex from U, ask for itslabel, andad it to T
Figure2. The Co-Testing Family of Algorithms.

after several queries, it learnsthe concepts<t , t,t,t,?, ..., ?>
forViand <f,f,f,?,...,?> for V2, which correspond to the
concept <t,t,t,t,?,...,2,f, f,f,?2,?2,...,?> leaned

above. These two hypotheses disagree on all unlabeled examples
that have as=f (V1 labels them negative, while V2 labels them
positive) and only on those. Consequently, co-testing queriessuchan
example and learns the correct hypotheses: <t , t,t,?,..., ?>
and<f,f,f,?, ..., ?>, respectively.

In order to makethe problem moreredlistic, let usnow assumethat
there are two attributes with rare values. In case they both fall within
the same view, the argument above remains valid, and co-testing is
guaranteed to find the correct hypothesis. If the two attributes belong
to different views, co-testing still findsthe perfect hypothesisunless
both rare values always appear together in all unlabeled examples
(which ishighly unlikely). A similar argument holds for an arbitrary
number of independent attributes with rare values.

4 THE CO-TESTING ALGORITHMS

In this section we present aformal description of the co-testing fam-
ily of algorithms, which was designed for problems with redundant
views. By definition, alearning problem P is said to have redundant
viewsif itsset of attributesV = {a1, a2, . .., ax} can be partitioned
intwo digoint viewsV1and V2, and either view issufficient to learn
aclassifier for P. Ideally, the two views should be able to reach the
same classification accuracy, but we will seelatter that in practicethis
is not anecessary condition.

Givenalearner £, aset T' of labeled examples, andaset U of unla-
beled ones, co-testing (see Figure 2) worksasfollows: firgt, it uses £
to learn two classifiersh, and k2 based on the projections of the ex-
amplesin 7" onto the two views, V1 and V2. Thenit appliesh; and
hy todl unlabeled examplesand createsthelist Contention Points
of al unlabeled exampleson which they disagree. The difference be-
tween the members of the co-testing family comes from the manner
in which they select the next query. Naive co-testing, on which we
will focusin the remaining sections, isthe most straightforward mem-
ber of the family: it randomly queries one of the contention points.
Naive co-testing is also the most general member of the family be-
cause it can be applied to virtually any type of learner (the more so-
phisticated version discussed in the second section is applicable only
to learners that can reliably estimate the confidence of their classifi-
cation). Despite its simplicity, the empirical results show that naive
co-testing isapowerful selective samplingalgorithm. We believethat
more sophisticated versionsof co-testing shouldlead to faster conver-
gence, but thisis atopic that we are still investigating.

R1 R2

Name:<i>Gino’ s</i><p>Phone:<i>(800) 111-1717|</i><p>Cuisine: ...

Figure3. Extractingthe phone number.

5 NAIVE CO-TESTING FOR WRAPPER
INDUCTION

A plethora of applications are using data extracted from collections
of on-line documents. To avoid hand-writing a large number of ex-
traction rules, researchersfocused on learning the rules based on la-
beled examples. As labeling such examplesis an extremely tedious
and time consuming task, activelearning can play acrucia roleinre-
ducing the user’sburden. However, relatively little attention hasbeen
paid to applying active learning to information extraction. The only
existing approaches, [10] and[9], are not general-purposea gorithms
becausethey select the queri esbased on heuristicsspecificto their re-
spective learners, RAPIER and WHISK.

Wrapper induction algorithms, like STALKER
[7], are designed to learn high accuracy extraction rules for
semi-structured documents. For instance, let us assumethat we want
to extract the phone numbers from a collection of documents that
look similar to the Web-page fragment shown in Figure 3. To find
the beginning of phone number, we can use the start rule R1 =
SkipTo(Phone: <i >). R1 starts from the beginning of the page
and ignores everything until it finds the string Phone: <i >. A
similar rule can be used to find the end of the phone number.

An aternative way to find the start of the phone number isto use
the rule R2 = SkipTo(CQui si ne)SkipTo(( Number )), which is
applied backward, from the end of the document, and has similar
semantics: it ignores everything until it finds“Cui si ne” and then,
again, skipsto the first number between parantheses.

The rules R1 and R2 are called forward and backward start
rules, respectively. By simply reversing the direction in which arule
is applied, STALKER uses the same agorithm to learn both forward
and backward rules. This duality allows us to create the two views
in a straightforward manner. To learn a start rule, we can apply co-
testing as follows: we use STALKER’S learning algorithm, and the
viewsV1and V2 consist of the sequencesof charactersthat precede
and follow the beginning of the item, respectively. More precisely,
in V1welearn forward rules, whilein V2 we learn backward rules.

Before analizing the empirical evaluation of co-testing on wrap-
per induction, we must provide a few additional details. First of all,
in order to extract the items of interest, one must have both a start
rule and an end rule (eachitem is uniquely defined by its starting and
ending points). Second, the end rules can be learned based on views
similar to the ones described above: the sequencesof charactersthat
precede and follow the end of the item. Last but not least, in or-
der to extract an item of interest, based on the various combinations
of forward/backward start and end rules, one can identify three main
classes of wrappers:

- theFB class: Forward start rule + Backwar d end rule. Thisisthe
type of wrapper learned by the STALKER agorithm for the work
reported in [7]. Thetwo rules are applied :ndependently of each
other: theformer starting from the beginning of the document, and
the latter starting from the end of it.

- theFF class: Forward start rule + Forward endrule. Thestart rule
isapplied forward from the beginning of the document, while the
latter isalsoapplied forward, but from thepoint wherethe start rule



Tablel. Resultson the 10 hardest tasks.

Task Exs STALKER Co-Testing +STALKER
FB FF BB FB FF BB
s2.2 | 491 || 517 | 753 | 495 || 89.8 | 82.7 | 94.0
s2.3 | 466 || 822 | 822 | 814 || 90.2 | 90.2 | 70.1
s3.4 | 174 || 981 | 64.7 | 982 || 99.1 | 85.9 | 99.1
s3.5 | 174 || 96.7 | 96.7 | 975 || 100 | 100 100
s6.1 26 923 | 97.3 | 95.0 || 100 | 100 100
s9.10 | 43 92.0 | 91.6 | 933 || 100 | 100 100
s11.3 | 71 671 | 931 | 67.1 || 475 | 933 | 495
s24.3 | 689 || 90.2 | 90.2 | 77.0 || 99.4 | 994 | 99.9
s26.3 | 376 || 979 | 97.1 | 979 || 100 | 100 100
s26.5 | 376 || 580 | 58.0 | 579 || 81.3 | 81.3 | 99.6

Mean | [ 826 | 844 | 814 || 90.7 [ 932 | 912 |

stopped.

the BB class: Backward start rule + Backward end rule. The end
rule is applied backward from the end of the document, while the
start rule is a'so applied backward, but from the point where the
end rule stopped.

Note that the FB, FF, and BB wrappersrepresent equally valid ways
to extract an item. However, the three classes of wrappers are not
equivaent. For example, given aparticular extraction task, it is pos-
sible that no FF wrapper is 100% accurate, even though there are
100%-accurate FB and BB wrappers. Furthermore, evenfor tasksfor
whichthere are perfect wrappersof al threetypes, it may happenthat
onetype of wrapper is more difficult to learn than the other ones(i.e.,
it requires more training examples).

To eval uatenaiveco-testing for wrapper induction, weappliedit on
the 23 extraction tasks on which STALKER failed to generate perfect
FB wrappers[7]. For the purpose of this discussion, we split the 23
tasksin two groups:

- the 10 tasks on which, based on random examples, STALKER fails
to learn perfect wrappers of any type (see Table 1);

- the 13 tasks on which, based on random examples, STALKER fails
to learn perfect FB wrappers, but managesto learn either a perfect
FF or aperfect BB wrapper (see Table 2).

The second group is obviously less interesting than the first one, but
it isworth being analized because one does not know apriori whether
or not one classof wrappersis better fit than the other onesfor apar-
ticular task.

For all tasks, we followed the experimental setup from [7], where
STALKER was successively trained on randomly chosen training
sets of sizes 1, 2, ..., 10, and the reported accuracy was averaged
over 20 runs. We use such small training setsbecause, in practice, the
learning curvestend to flatten even before reaching 10 examples.

Compared with stand-alone STALKER,* over the 23 tasks, co-
testing improved the average accuraciesof the three classes of wrap-
persasfollows:

- FB: from 85.7% to 94.2% (error rate reduced by 59.5%);
- FF: from 92.9% to 97.0% (error rate reduced by 57.8%);
- BB:from 85.3% to 94.5% (error rate reduced by 62.6%).

Note that for al three classes of wrappers, co-testing reduced the
overall averageerror rate by more than 57%!

4 We compared co-testing only with STAL K ER becausethereis no other active
learning algorithm for wrapper induction. Furthermore, STALKER can not
be used in a straightforward manner in conjunction with existing general-
purpose selective sampling agorithms [8] [3] [1].

Table2. Resultson other 13 difficult tasks.

Task Exs STALKER Co-Testing + STALKER
FB FF BB FB FF BB
sl.1 403 || 86.7 | 100 | 86.7 || 98.7 | 100 98.7
s1.2 403 || 944 | 100 | 933 || 97.1 | 100 97.1
s2.1 500 || 98.3 | 100 | 95.1 || 100 | 100 100
s6.9 26 97.6 | 100 | 97.6 || 100 | 100 100
s6. 10 15 96.6 | 96.6 | 100 100 | 100 100
s9.7 43 93.6 | 100 | 936 || 100 | 100 100
s9.11 38 96.0 | 100 | 98.8 || 100 | 100 100
s9.1e2 | 30 995 | 995 | 100 || 99.0 | 99.0 100
s11.0 90 93.7 | 100 | 93.7 || 99.6 | 100 99.6
s11.1 90 97.3 | 97.3 | 100 100 | 100 100
s11.2 90 69.0 | 100 | 69.0 || 71.6 | 100 71.6
s24.1 | 423 || 930 | 100 | 90.9 || 96.8 | 100 96.8
s26.4 | 376 || 30.1 | 100 | 30.1 || 98.0 | 99.7 98.0

[ Mean | 881 [ 994 [ 883 || 969 | 999 | 970 |

The results above deserve a few comments. First, on the 10 most
difficult tasks presented in Table 1, in four cases co-testing learns
100% accurate wrappers of all threetypes. Furthermore, for all these
four tasks, the perfect wrappers are learned based on less than 9
queries: five for s6. 1, six for s11. 3 and s26. 3, and eight for
s3. 5. Second, onall 10 tasksco-testing improvesthe accuracy of the
best STALKER wrapper. Third, only on two tasks, s2. 3 and s11.3,
the accuracy of the worst of the three wrappers decreases. Finally,
the results in Table 2 were quite expected: as for each of these 13
tasksat least oneclass of wrappers could be learned with 100% accu-
racy based on random examples, this “ easy-to-learn” class behaves
like an “oracle” that detects all the mistakes of the other two classes
of wrappers. We can conclude that applying co-testing to STALKER
leadsto a dramatic improvement in accuracy without having to label
more training data.

6 BEYOND WRAPPER-INDUCTION

In order to contrast naive co-testing with state-of-the-art sampling al-
gorithms, we appliedit to moretraditional machinelearning domains.
In this paper, we compared naive co-testing with query-by-bagging
and -boosting [1] because these are techniques where performance
has been reported on several well-studied UCI domains.® Thesetwo
algorithms are also themost general sel ective sampling approachesin
terms of practical applicability (i.e., similarly to co-testing, they can
usealarge variety of learners). We implemented all three algorithms
based onthe M LC++ library [4], and we used aslearner Mc4, which
isthe M LC++ implementation of c4.5.

We present here® the results of co-testing on two real world do-
mains for which there is an intuitive way to create the two views:
Ad [?] and Tr ansf er - Few [6]. The former is a Web classifica
tion problem with two classes, 1500 attributes, and 3279 examples.
It classifies Web images into ads and non-ads and has the follow-
ing views: V1 describesthe imageitself (geometry, wordsin theim-
age’s URL and caption), while V2 contains al other features (e.g.,
words from the URL of the page that contains the image, and words
from the URL of the page the image points to). The second domain,
Tr ansf er - Few, has seven classes, 99 features and 11,193 exam-
ples. It uses a shift-reduce parsing paradigm in order to learn to
rewrite Japanesediscoursetrees as English-like discoursetreesin the
context of a machine translation system. In this case, V1 describes

5 http://www.ics.uci.edu/~mlearn/M L Repository.html
6 More results on applying co-testing to UCI domains are presentedin [7]
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Figure4. Co-Testing on Traditional Machine L earning Domains.

features specific to a shift-reduce parsing paradigm: the elementsin
theinput list and the partial treesin the stack. V2 describesfeatures
specific to the Japanesetree given as input.

Asthesize of these domainsleadsto high computational costs, we
used 2-fold cross validation and averaged the results over 5 random
runs. In both domainswe started with arandomly chosentraining set
of 10 examples, and we made 10 and 20 queries after each learning
episode, respectively. As shown in Figure 4, co-testing clearly out-
performs query-by-bagging and -boosting on both domains. We must
emphasize that these results were obtained despite the fact that the
classifier used by co-testing is less powerful than the other two (i.e.,
asingle decision tree vs 20 bagged/boosted decision trees).

7 DISCUSSION

In[2], the authors showedthat redundant views can provide animpor-
tant source of information for supervised learning algorithms. Previ-
ously, this topic was largely ignored, though the idea clearly shows
up in many unsupervised applications using techniques like EM[?].
However, rather than considering active learning methods, the au-
thors use the two viewsto learn hypothesesthat feed each other with
the unlabel ed exampleson which their classificationisthe most con-
fident.

Our empirical results show that co-testing is a potentially power-
ful approachfor activelearning. Inthe application domainsdiscussed
above, all of which have natural redundant views, naive co-testing
clearly improves upon the current state of the art. We believe that
co-testing works so well in these domains becauseit can identify the
rarely occurring casesthat are relevant, as described in the third sec-
tion. We note that all these three domains have large number of fea
tures, so finding relevant but rare feature-values contributes signifi-
cantly to performance.

Whether or not co-testing turnsout to do well on traditional single-
view domains, we believe that it will have practical value because
many large real-world domains do have redundant views. We note
that the views are not required to lead to the same accuracy, which
makes the constraint easier to fulfill (none of our domains above had
equally accurate views). Clearly, more work needs to be done here,
both in exploring the space of co-testing algorithms as well as ana-
lyzing the theoretical underpinnings of the approach. Nevertheless,

we believe this study presents a step towards an interesting new ap-
proach to activelearning.

8 CONCLUSION

This paper introduced co-testing, a family of selective sampling al-
gorithms. We focused on a simple member of the family, naive co-
testing, which randomly selects one of the contention points among
multiple, redundant views. We provided empirical evidence that on
domains like wrapper induction, where other sampling methods can-
not be naturally applied, co-testing leadsto significant improvements
of theclassification accuracy. We a so applied naive co-testing to tra-
ditional machinelearning domains, and we showed that its query se-
lection strategy is comparableto or better than the more sophisticated
ones used in query-by-bagging and -boosting.

We plan to continue our work on co-testing by following several
researchdirections. First, wewill continuestudyingthe variousmem-
bersof thefamily in order to fully understand both its advantagesand
its weaknesses. Second, we will search aformal way to detect there-
dundant viewswithin agiven domain. Last but not least, we will per-
form alarge-scale empirical evaluation by applying co-testing to var-
ious real world problems such as Web classification and natural lan-
guage processing.
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