
Selective Sampling With Naive Co-Testing: Preliminary
Results

Ion Muslea1, and Steven Minton2 and Craig A. Knoblock3

Abstract. Selective sampling, a form of active learning, reduces the
cost of labeling training data by asking only for the labels of the most
informative unlabeled examples. We introduce a novel approach to
selective sampling which we call co-testing. Co-testing can be ap-
plied to problems with redundant views (i.e., problems with multiple
disjoint sets of attributes that can be used for learning). We analyze
the most general algorithm in the co-testing family, naive co-testing,
which can be used with virtually any type of learner. Naive co-testing
simply selects at random an example on which the existing views dis-
agree. We applied our algorithm to a variety of domains, including
three real-world problems: wrapper induction, Web page classifica-
tion, and discourse trees parsing. The empirical results show that be-
sides reducing the number of labeled examples, naive co-testing may
also boost the classification accuracy.

1 INTRODUCTION

In order to learn a classifier, supervised learning algorithms need la-
beled training examples. In many applications, labeling the training
examples is an expensiveprocess becauseit requires human expertise
and is a tedious, time consuming task. Selective sampling, a form of
active learning, reduces the number of training examples that need to
be labeled by examining unlabeled examples and selecting the most
informative ones for the human to label. This paper introduces co-
testing, which is a novel approach to selective sampling for domains
with redundant views. A domain has redundant views if there are
at least two mutually exclusive sets of features that can be used to
learn the target concept. Our work was inspired by Blum and Mitchell
(1998), who noted that there are many real world domains with mul-
tiple views. One example is Web page classification, where one can
identify faculty home pages either based on the words on the page or
based on the words in HTML anchors pointing to the page. Another
example is perception learning with multiple sensors, where we can
determine a robot’s position based on vision, sonar, or laser sensors.

Active learning techniques work by asking the user to label an ex-
ample that maximizes the information conveyedto the learner (we re-
fer to such selected examples as queries). In a standard, single-view
learning scenario, this generally translates into finding an example
that splits the version space in half, i.e., eliminating half of the hy-
potheses consistent with the training set. With redundant views, we

1 Information Sciences Institute, Integrated Media Systems Center, and Com-
puter Science Department, University of Southern California, 4676 Admi-
ralty Way, Marina del Rey, CA 90230, USA, email: muslea@isi.edu

2 InformationSciences Institute, IntegratedMedia Systems Center, University
of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90230,
USA, email: minton@isi.edu

3 Information Sciences Institute, Integrated Media Systems Center, and Com-
puter Science Department, University of Southern California, 4676 Admi-
ralty Way, Marina del Rey, CA 90230, USA, email: knoblock@isi.edu

can do much better. Co-testing simultaneously trains a separate clas-
sifier for each redundant view. Each classifier is applied to the pool
of unlabeled examples, and the system selects a query based on the
degree of disagreement among the learners. Because the target hy-
potheses in each view must agree, co-testing can reduce the hypoth-
esis space faster than would otherwise be possible. To illustrate this,
consider a learning problem where we have two views, V1 and V2.
For illustrative purposes, imagine an extreme case where there is an
unlabeled example x that is classified as positive by a single hypoth-
esis from the V1 version space; furthermore, assume that x is classi-
fied as positive by all but one of the hypotheses from the V2 version
space. If the system asks for the label of this example, it will imme-
diately converge to a single hypothesis in one of the spaces and no
additional examples will be required.

In the real world, where noise and other effects intrude into the
learning process, translating this simple intuition into an effective al-
gorithm raises some interesting issues. In this paper we describe co-
testing as a family of algorithms, and empirically analyze a simple im-
plementation of the co-testing approach called naive co-testing. We
begin with two in-depth illustrative examples that contrast co-testing
with existing sampling approaches. Then we present the naive co-
testing algorithm and discuss its application to both wrapper induc-
tion and traditional learning problems.

2 CO-TESTING AND UNCERTAINTY
SAMPLING

There are two major approaches to selective sampling: uncertainty
and committee-based sampling. The former queries the unlabeled ex-
amples on which the learned classifier is the least confident; the latter
generates a committee of several classifiers and selects the unlabeled
examples on which the committee members disagree the most. In this
section, we contrast co-testing with uncertainty sampling, and in the
next section we compare our approach with committee-based sam-
pling.

Let us consider the task of classifying the employees of a CS de-
partment in two categories: faculty and non-faculty. Let us assume
that the classification can be done either by using a person’s salary
(e.g., only faculty have salaries above $65K) or office number (e.g.,
only faculty office numbers are below 300). In this case, the domain
has two redundant views: one that uses only the salary, and another
one that uses only the office number. In both views the target concept
is a threshold value: $65K for salary, and 300 for the office number. To
learn the target concepts, we use for both views the following learner
L: first, L identifies the pair of labeled examples that belong to dif-
ferent classes and have the closest attribute values; then L sets the
threshold to the mean of these two values.

−

−
−

+

+

+

100 999

100K

7K
400

50K

Salary

Q1 Office

−

−
−

+

+

+

100 999

100K

7K

50K

Salary

Office−
300

Q2

−

−
−

+

+

+

100 999

100K

7K

Salary

Office−
300

−65K

a) Initial hypotheses b) After query Q1 c) After query Q2

Figure 1. Co-testing at work.

Co-testing works as follows: initially, the user provides a few la-
beled examples, and a pool of unlabeled ones. In Figure 1a, the un-
labeled examples are denoted by points, while the labeled ones ap-
pear as � and 	 (the former denotes faculty, and the latter repre-
sents non-faculty). We use the learner L to create one classifier for
each view (the classifiers are geometrically represented as the dot-
ted and the dashed lines, respectively). Then we apply the classifiers
to all unlabeled examples and determine the contention points – the
examples that are labeled differently by the two classifiers. The con-
tention points, which lay in the picture’s gray areas, are extremely in-
formative because whenever the two classifiers disagree, at least one
of them must be wrong. We select one of the contention points for
labeling, add it to the training set, and repeat the whole process.

If the learner can evaluate the confidence of its classification, we
can query the contention point on which both categorizers are most
confident, which meansthat eachquerymaximally improves at least
one of the hypotheses. In each view from our example, we can mea-
sure the confidence level as the distances between the point and the
threshold: the larger the distance, the higher the confidence in the
classification. In Figure 1a co-testing asks for the label of the example
Q1, which is the contention point on which both categorizers are the
most confident (i.e., the sum of the distances to the two thresholds is
maximal). Once the example is labeled by the user, we re-train, find
the new contention points (see Figure 1b), make the query Q2, and
re-train again. As shown in Figure 1c, the classifiers agree on all un-
labeled examples, and co-testing stops.

As we already mentioned, the traditional approach in uncertainty
sampling [5] consists of learning a single classifier and querying one
of the points on which the classifier is the least confident. If we use
just one of the views in the example above, the lowest confidence
points are the ones that are the closest to the threshold. Consequently,
uncertainty sampling makes queries that lead to minimal improve-
ments of the hypothesis, and it takes more queries to find the cor-
rect classifier. In comparison, co-testing has two major advantages.
First of all, combining evidence from several views allows us to make
queries that lead to maximal improvements. Second, by querying
only contention points, we are guaranteed to always select an exam-
ple on which at least one of the classifiers is wrong.

3 CO-TESTING & COMMITTEE-BASED
SAMPLING

Committee-based algorithms [8][1] take a different approach. First,
they generate several classifiers (the committee) that are consistent

with the training set or sub-samples of it, respectively. Then they
make the queries that are the most likely to eliminate half of the hy-
potheses that are consistent with the training set. More precisely, they
apply all committee members to each unlabeled example and query
the ones on which the committee vote is the most equally split.

Despite their advantages, committee-based algorithms have diffi-
culties on some types of problems. For example, consider the prob-
lem P of learning conjunctive concepts in an instance space with
10,000 binary attributes that can be split into two redundant views:
V1(a1 ,a2 ,. . . ,a5000) and V2(a5001 ,a5002 ,. . . ,a10000). Let us assume
that the target concept has the following equivalent definitions:

- in V1: <t,t,t,?,?,...,?>;
- in V2: <f,f,f,?,?,...,?>;
- in V1[V2: <t,t,t,?,?,...,?,f,f,f,?,?,...,?>.

The meaning of these concepts is straightforward: for example, in V1,
a1 , a2 , and a3 must be t, and the other attributes do not matter. Fi-
nally, let us further assume that the attribute a4 has the value t for
99% of the instances(i.e., it rarely has the valuef). The scarcity of ex-
amples with a4=f makes the target concept difficult to learn because
it is highly improbable that a random training set includes such an ex-
amples. For domains like this one, the challenge consists of identify-
ing these rare and informative examples. A typical problem with rare
values is wrapper induction, which will be discussed at length later in
this paper.

For this problem, we use the FIND-S learner [?], which generates
the most specific hypothesis that is consistent with all positive ex-
amples. We chose FIND-S because boolean conjunctions are PAC-
learnable by FIND-S (i.e., with a high probability, the target concept
can be learned based on a polynomial number of randomly chosen
examples).

Now let us assume that we apply a committee-based approach
to the 10,000-attribute instance space. As in the initial training
set a4 is unlikely to have the value f, all initial committee
members will have a4 set to t; this means that the queries are
also unlikely to have a4=f because such examples are classified
as negative by all committee members (remember that queries
are made only on examples on which the committee is split).
After several queries, all the committee members become iden-
tical (<t,t,t,t,?,...,?,f,f,f,?,?,...,?>) and learn-
ing stops. Consequently, even though the target concept is PAC-
learnable, with high probability the learned concept will not be the
correct one.

By contrast, co-testing easily learns the correct concept. First,

Given:
- a problem P with features V=fa1; a2; : : : ; aNg
- a learning algorithm L

- two views V1 and V2 (V=V1[V2 and V1\V2=�)
- the sets T and U of labeled and unlabeled examples

LOOP for k iterations
- use L, V1(T), and V2(T) to learn classifiers h1 and h2
- let ContentionPoints = f x 2 U , h1(x) 6= h2(x) g
- let x = SelectQuery(ContentionPoints)
- remove x from U , ask for its label, and ad it to T

Figure 2. The Co-Testing Family of Algorithms.

after several queries, it learns the concepts <t,t,t,t,?,...,?>
for V1 and <f,f,f,?,...,?> for V2, which correspond to the
concept <t,t,t,t,?,...,?,f,f,f,?,?,...,?> learned
above. These two hypotheses disagree on all unlabeled examples
that have a4=f (V1 labels them negative, while V2 labels them
positive) and only on those. Consequently, co-testing queries such an
example and learns the correct hypotheses: <t,t,t,?,...,?>
and <f,f,f,?,...,?>, respectively.

In order to make the problem more realistic, let us now assume that
there are two attributes with rare values. In case they both fall within
the same view, the argument above remains valid, and co-testing is
guaranteed to find the correct hypothesis. If the two attributes belong
to different views, co-testing still finds the perfect hypothesis unless
both rare values always appear together in all unlabeled examples
(which is highly unlikely). A similar argument holds for an arbitrary
number of independent attributes with rare values.

4 THE CO-TESTING ALGORITHMS

In this section we present a formal description of the co-testing fam-
ily of algorithms, which was designed for problems with redundant
views. By definition, a learning problem P is said to have redundant
views if its set of attributes V = fa1; a2; : : : ; aNg can be partitioned
in two disjoint views V1 and V2, and either view is sufficient to learn
a classifier for P . Ideally, the two views should be able to reach the
same classification accuracy,but we will see latter that in practice this
is not a necessary condition.

Given a learnerL, a setT of labeled examples, and a setU of unla-
beled ones, co-testing (see Figure 2) works as follows: first, it usesL
to learn two classifiers h1 and h2 based on the projections of the ex-
amples in T onto the two views, V1 and V2. Then it applies h1 and
h2 to all unlabeled examples and creates the list ContentionPoints
of all unlabeled examples on which they disagree. The difference be-
tween the members of the co-testing family comes from the manner
in which they select the next query. Naive co-testing, on which we
will focus in the remaining sections, is the most straightforward mem-
ber of the family: it randomly queries one of the contention points.
Naive co-testing is also the most general member of the family be-
cause it can be applied to virtually any type of learner (the more so-
phisticated version discussed in the second section is applicable only
to learners that can reliably estimate the confidence of their classifi-
cation). Despite its simplicity, the empirical results show that naive
co-testing is a powerful selective sampling algorithm. We believe that
more sophisticatedversions of co-testing should lead to faster conver-
gence, but this is a topic that we are still investigating.

R1 R2

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

Figure 3. Extracting the phone number.

5 NAIVE CO-TESTING FOR WRAPPER
INDUCTION

A plethora of applications are using data extracted from collections
of on-line documents. To avoid hand-writing a large number of ex-
traction rules, researchers focused on learning the rules based on la-
beled examples. As labeling such examples is an extremely tedious
and time consuming task, active learning can play a crucial role in re-
ducing the user’s burden. However, relatively little attention has been
paid to applying active learning to information extraction. The only
existing approaches, [10] and [9], are not general-purpose algorithms
because they select the queries based on heuristics specific to their re-
spective learners, RAPIER and WHISK.

Wrapper induction algorithms, like STALKER

[7], are designed to learn high accuracy extraction rules for
semi-structured documents. For instance, let us assume that we want
to extract the phone numbers from a collection of documents that
look similar to the Web-page fragment shown in Figure 3. To find
the beginning of phone number, we can use the start rule R1 =
SkipTo(Phone:<i>). R1 starts from the beginning of the page
and ignores everything until it finds the string Phone:<i>. A
similar rule can be used to find the end of the phone number.

An alternative way to find the start of the phone number is to use
the rule R2 = SkipTo(Cuisine)SkipT o((Number)), which is
applied backward, from the end of the document, and has similar
semantics: it ignores everything until it finds “Cuisine” and then,
again, skips to the first number between parantheses.

The rules R1 and R2 are called forward and backward start
rules, respectively. By simply reversing the direction in which a rule
is applied, STALKER uses the same algorithm to learn both forward
and backward rules. This duality allows us to create the two views
in a straightforward manner. To learn a start rule, we can apply co-
testing as follows: we use STALKER’s learning algorithm, and the
views V1 and V2 consist of the sequences of characters that precede
and follow the beginning of the item, respectively. More precisely,
in V1 we learn forward rules, while in V2 we learn backward rules.

Before analizing the empirical evaluation of co-testing on wrap-
per induction, we must provide a few additional details. First of all,
in order to extract the items of interest, one must have both a start
rule and an end rule (each item is uniquely defined by its starting and
ending points). Second, the end rules can be learned based on views
similar to the ones described above: the sequences of characters that
precede and follow the end of the item. Last but not least, in or-
der to extract an item of interest, based on the various combinations
of forward/backward start and end rules, one can identify three main
classes of wrappers:

- the FB class: Forward start rule + Backward end rule. This is the
type of wrapper learned by the STALKER algorithm for the work
reported in [7]. The two rules are applied independently of each
other: the former starting from the beginning of the document, and
the latter starting from the end of it.

- the FF class: Forward start rule + Forward end rule. The start rule
is applied forward from the beginning of the document, while the
latter is also applied forward, but from the point where the start rule

Table 1. Results on the 10 hardest tasks.

Task Exs STALKER Co-Testing +STALKER

FB FF BB FB FF BB
s2.2 491 51.7 75.3 49.5 89.8 82.7 94.0
s2.3 466 82.2 82.2 81.4 90.2 90.2 70.1
s3.4 174 98.1 64.7 98.2 99.1 85.9 99.1
s3.5 174 96.7 96.7 97.5 100 100 100
s6.1 26 92.3 97.3 95.0 100 100 100
s9.10 43 92.0 91.6 93.3 100 100 100
s11.3 71 67.1 93.1 67.1 47.5 93.3 49.5
s24.3 689 90.2 90.2 77.0 99.4 99.4 99.9
s26.3 376 97.9 97.1 97.9 100 100 100
s26.5 376 58.0 58.0 57.9 81.3 81.3 99.6

Mean 82.6 84.4 81.4 90.7 93.2 91.2

stopped.
- the BB class: Backward start rule + Backward end rule. The end

rule is applied backward from the end of the document, while the
start rule is also applied backward, but from the point where the
end rule stopped.

Note that the FB, FF, and BB wrappers represent equally valid ways
to extract an item. However, the three classes of wrappers are not
equivalent. For example, given a particular extraction task, it is pos-
sible that no FF wrapper is 100% accurate, even though there are
100%-accurate FB and BB wrappers. Furthermore, even for tasks for
which there are perfect wrappers of all three types, it may happen that
one type of wrapper is more difficult to learn than the other ones (i.e.,
it requires more training examples).

To evaluate naive co-testing for wrapper induction, we applied it on
the 23 extraction tasks on which STALKER failed to generate perfect
FB wrappers [7]. For the purpose of this discussion, we split the 23
tasks in two groups:

- the 10 tasks on which, based on random examples, STALKER fails
to learn perfect wrappers of any type (see Table 1);

- the 13 tasks on which, based on random examples, STALKER fails
to learn perfect FB wrappers, but manages to learn either a perfect
FF or a perfect BB wrapper (see Table 2).

The second group is obviously less interesting than the first one, but
it is worth being analized because one does not know apriori whether
or not one class of wrappers is better fit than the other ones for a par-
ticular task.

For all tasks, we followed the experimental setup from [7], where
STALKER was successively trained on randomly chosen training
sets of sizes 1, 2, .. . , 10, and the reported accuracy was averaged
over 20 runs. We use such small training sets because, in practice, the
learning curves tend to flatten even before reaching 10 examples.

Compared with stand-alone STALKER,4 over the 23 tasks, co-
testing improved the average accuracies of the three classes of wrap-
pers as follows:

- FB: from 85.7% to 94.2% (error rate reduced by 59.5%);
- FF: from 92.9% to 97.0% (error rate reduced by 57.8%);
- BB:from 85.3% to 94.5% (error rate reduced by 62.6%).

Note that for all three classes of wrappers, co-testing reduced the
overall average error rate by more than 57%!

4 We comparedco-testing only with STALKER because there is no other active
learning algorithm for wrapper induction. Furthermore, STALKER can not
be used in a straightforward manner in conjunction with existing general-
purpose selective sampling algorithms [8] [3] [1].

Table 2. Results on other 13 difficult tasks.

Task Exs STALKER Co-Testing + STALKER

FB FF BB FB FF BB
s1.1 403 86.7 100 86.7 98.7 100 98.7
s1.2 403 94.4 100 93.3 97.1 100 97.1
s2.1 500 98.3 100 95.1 100 100 100
s6.9 26 97.6 100 97.6 100 100 100
s6.10 15 96.6 96.6 100 100 100 100
s9.7 43 93.6 100 93.6 100 100 100
s9.11 38 96.0 100 98.8 100 100 100
s9.le2 30 99.5 99.5 100 99.0 99.0 100
s11.0 90 93.7 100 93.7 99.6 100 99.6
s11.1 90 97.3 97.3 100 100 100 100
s11.2 90 69.0 100 69.0 71.6 100 71.6
s24.1 423 93.0 100 90.9 96.8 100 96.8
s26.4 376 30.1 100 30.1 98.0 99.7 98.0

Mean 88.1 99.4 88.3 96.9 99.9 97.0

The results above deserve a few comments. First, on the 10 most
difficult tasks presented in Table 1, in four cases co-testing learns
100% accurate wrappers of all three types. Furthermore, for all these
four tasks, the perfect wrappers are learned based on less than 9
queries: five for s6.1, six for s11.3 and s26.3, and eight for
s3.5. Second, on all 10 tasks co-testing improves the accuracy of the
best STALKER wrapper. Third, only on two tasks, s2.3 and s11.3,
the accuracy of the worst of the three wrappers decreases. Finally,
the results in Table 2 were quite expected: as for each of these 13
tasks at least one class of wrappers could be learned with 100% accu-
racy based on random examples, this “easy-to-learn” class behaves
like an “oracle” that detects all the mistakes of the other two classes
of wrappers. We can conclude that applying co-testing to STALKER

leads to a dramatic improvement in accuracy without having to label
more training data.

6 BEYOND WRAPPER-INDUCTION

In order to contrast naive co-testing with state-of-the-art sampling al-
gorithms, we applied it to more traditional machine learning domains.
In this paper, we compared naive co-testing with query-by-bagging
and -boosting [1] because these are techniques where performance
has been reported on several well-studied UCI domains.5 These two
algorithms are also the most general selective sampling approaches in
terms of practical applicability (i.e., similarly to co-testing, they can
use a large variety of learners). We implemented all three algorithms
based on theMLC++ library [4], and we used as learner MC4, which
is theMLC++ implementation of C4.5.

We present here6 the results of co-testing on two real world do-
mains for which there is an intuitive way to create the two views:
Ad [?] and Transfer-Few [6]. The former is a Web classifica-
tion problem with two classes, 1500 attributes, and 3279 examples.
It classifies Web images into ads and non-ads and has the follow-
ing views: V1 describes the image itself (geometry, words in the im-
age’s URL and caption), while V2 contains all other features (e.g.,
words from the URL of the page that contains the image, and words
from the URL of the page the image points to). The second domain,
Transfer-Few, has seven classes, 99 features and 11,193 exam-
ples. It uses a shift-reduce parsing paradigm in order to learn to
rewrite Japanese discourse trees as English-like discourse trees in the
context of a machine translation system. In this case, V1 describes

5 http://www.ics.uci.edu/�mlearn/MLRepository.html
6 More results on applying co-testing to UCI domains are presented in [?]

88

90

92

94

96

50 100 150 200 250 300

A
cc

ur
ac

y
(%

)

Number of Training Examples

AD

coTST(v2)
qbBag(all)
qbBst(all)

66
68
70
72
74
76
78
80
82

100 200 300 400 500 600 700 800 9001000

A
cc

ur
ac

y
(%

)

Number of Training Examples

TRANSFER-FEW

coTST(v1)
qbBag(all)
qbBst(all)

Figure 4. Co-Testing on Traditional Machine Learning Domains.

features specific to a shift-reduce parsing paradigm: the elements in
the input list and the partial trees in the stack. V2 describes features
specific to the Japanese tree given as input.

As the size of these domains leads to high computational costs, we
used 2-fold cross validation and averaged the results over 5 random
runs. In both domains we started with a randomly chosen training set
of 10 examples, and we made 10 and 20 queries after each learning
episode, respectively. As shown in Figure 4, co-testing clearly out-
performs query-by-bagging and -boosting on both domains. We must
emphasize that these results were obtained despite the fact that the
classifier used by co-testing is less powerful than the other two (i.e.,
a single decision tree vs 20 bagged/boosted decision trees).

7 DISCUSSION

In [2], the authors showedthat redundant views can provide an impor-
tant source of information for supervised learning algorithms. Previ-
ously, this topic was largely ignored, though the idea clearly shows
up in many unsupervised applications using techniques like EM[?].
However, rather than considering active learning methods, the au-
thors use the two views to learn hypotheses that feed each other with
the unlabeled examples on which their classification is the most con-
fident.

Our empirical results show that co-testing is a potentially power-
ful approach for active learning. In the application domains discussed
above, all of which have natural redundant views, naive co-testing
clearly improves upon the current state of the art. We believe that
co-testing works so well in these domains because it can identify the
rarely occurring cases that are relevant, as described in the third sec-
tion. We note that all these three domains have large number of fea-
tures, so finding relevant but rare feature-values contributes signifi-
cantly to performance.

Whether or not co-testing turns out to do well on traditional single-
view domains, we believe that it will have practical value because
many large real-world domains do have redundant views. We note
that the views are not required to lead to the same accuracy, which
makes the constraint easier to fulfill (none of our domains above had
equally accurate views). Clearly, more work needs to be done here,
both in exploring the space of co-testing algorithms as well as ana-
lyzing the theoretical underpinnings of the approach. Nevertheless,

we believe this study presents a step towards an interesting new ap-
proach to active learning.

8 CONCLUSION

This paper introduced co-testing, a family of selective sampling al-
gorithms. We focused on a simple member of the family, naive co-
testing, which randomly selects one of the contention points among
multiple, redundant views. We provided empirical evidence that on
domains like wrapper induction, where other sampling methods can-
not be naturally applied, co-testing leads to significant improvements
of the classification accuracy. We also applied naive co-testing to tra-
ditional machine learning domains, and we showed that its query se-
lection strategy is comparable to or better than the more sophisticated
ones used in query-by-bagging and -boosting.

We plan to continue our work on co-testing by following several
research directions. First, we will continue studying the various mem-
bers of the family in order to fully understand both its advantages and
its weaknesses. Second, we will search a formal way to detect the re-
dundant views within a given domain. Last but not least, we will per-
form a large-scale empirical evaluation by applying co-testing to var-
ious real world problems such as Web classification and natural lan-
guage processing.

ACKNOWLEDGEMENTS

This work was supported in part by USC’s Integrated Media Systems
Center (IMSC) - an NSF Engineering Research Center, by the Na-
tional Science Foundation under grant number IRI-9610014, by the
U.S. Air Force under contract number F49620-98-1-0046, by the De-
fense Logistics Agency, DARPA, and Fort Huachuca under contract
number DABT63-96-C-0066, and by research grants from NCR and
General Dynamics Information Systems. The views and conclusions
contained in this paper are the authors’ and should not be interpreted
as representing the official opinion or policy of any of the above or-
ganizations or any person connected with them.

REFERENCES
[1] N. Abe and H. Mamitsuka, ‘Query learning strategies using boosting

and bagging’, in Proceedings of the 15th International Conference on
Machine Learning ICML-1998, pp. 1–10, (1998).

[2] A. Blum and T. Mitchell, ‘Combining labeled and unlabeled data with
co-training’, in Proceedings of the 1988 Conference on Computational
Learning Theory, pp. 92–100, (1998).

[3] L. Atlas D. Cohn and R. Ladner, ‘Improving generalization with active
learning’, Machine Learning, 15, 201–221, (1994).

[4] A. Dempster, N. Laird, and D. Rubin, ‘Maximum likelihood from in-
complete data vie the EM algorithm’, Journal of Royal Statistical Soci-
ety, 39, 1–38, (1977).

[5] R. Kohavi, D. Sommerfield, and J. Dougherty, ‘Data mining using
mlc++, a machine learning library in c++’, International Journal of Ar-
tificial Intelligence Tools, 6(4), 537–566, (1997).

[6] N. Kushmerick, ‘Learning to remove internet advetisements’, in Pro-
ceedings of the Third International Conference on Autonomous Agents
(Seattle 1999), pp. 175–181, (1999).

[7] D. Lewis and W. Gale, ‘A sequential algorithm for training text clas-
sifiers’, in SIGIR’94: Proceedings of the Seventeenth Annual Interna-
tional ACM-SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 3–12, (1994).

[8] D. Marcu, ‘A decision-based approach to rhetorical parsing’, in The
37th Annual Meeting of the Association for Computational Linguistics
(ACL-99), pp. 365–372, (1999).

[9] T. Mitchell, ‘Machine learning’. McGraw-Hill, (1997).
[10] I. Muslea, S. Minton, and C. Knoblock, ‘Hierarchical wrapper induction

for semistructured information sources’, Journalof AutonomousAgents
& Multi-Agent Systems (in press), (2000).

[11] I. Muslea, S. Minton, and C. Knoblock, ‘Selective sampling with redun-
dant views’, in Proceedings of the 17th National Conference on Artifi-
cial Intelligence (AAAI-2000), (2000).

[12] H. Seung, M. Opper, and H. Sompolinski, ‘Query by committee’, in
Proceedings of the 5th Workshop on Computational Learning Theory,
pp. 287–294, (1972).

[13] S. Soderland, ‘Learning extraction rules for semi-structured and free
text’, Machine Learning, 34, 233–272, (1999).

[14] C. Thompson, M. Califf, and R. Mooney, ‘Active learning for natural
languageparsing and informationextraction’, in Proceedingsof the 16th
International Conference on Machine Learning (ICML-99), pp. 406–
414, (1999).

