
Adaptive View Validation: A First Step Towards Automatic View Detection

Ion Muslea MUSLEA@ISI.EDU

University of Southern California, Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

Steven Minton MINTON@FETCH.COM

Fetch Technologies, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

Craig A. Knoblock KNOBLOCK@ISI.EDU

University of Southern California, Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

Abstract

Multi-view algorithms reduce the amount of re-
quired training data by partitioning the domain
features into separate subsets or views that are
sufficient to learn the target concept. Such al-
gorithms rely on the assumption that the views
are sufficiently compatible for multi-view learn-
ing (i.e., most examples are labeled identically
in all views). In practice, it is unclear whether
or not two views are sufficiently compatible for
solving a new, unseen learning task. In order
to cope with this problem, we introduce a view
validation algorithm: given a learning task, the
algorithm predicts whether or not the views are
sufficiently compatible for solving that partic-
ular task. We use information acquired while
solving several exemplar learning tasks to train
a classifier that discriminates between the tasks
for which the views are sufficiently and insuffi-
ciently compatible for multi-view learning. Our
experiments on wrapper induction and text clas-
sification show that view validation requires only
a modest amount of training data to make high
accuracy predictions.

1. Introduction

In a multi-view problem, one can partition the domain’s
features into subsets (views) each of which are sufficient for
learning the target concept. For instance, one can classify
segments of televised broadcasts based either on the video
or on the audio information; or one can classify Web pages
based on the words that appear either in the pages or in
the hyperlinks pointing to them. Blum and Mitchell (1998)
proved that by bootstrapping the views from each other, the
target concept can be learned from a few labeled and many
unlabeled examples. Their proof relies on the assumption
that the views are compatible and uncorrelated (i.e., every

5

10

15

20

25

30

0 10 20 30 40
er

ro
r

ra
te

 (
%

)
difference in the accuracy of the two views (%)

multi-view algorithm
single-view algorithm

Figure 1. As the difference in the accuracy of the two views in-
creases, the views become more incompatible, and the single-
view algorithm outperforms its multi-view counterpart.

example is identically labeled in each view; and, given the
label of any example, its descriptions in each view are in-
dependent).

In real-world problems, both assumptions are often vio-
lated for a variety of reasons such as correlated or insuffi-
cient features. In a companion paper (Muslea et al., 2002),
we introduced an active learning algorithm that performs
well even when the independence assumption is violated.
We focus here on the view incompatibility issue, which is
closely related to the accuracy of the hypotheses learned
in the two views: the more accurate the views, the fewer
examples can be incompatible (i.e., labeled differently in
the two views). Figure 1, which is based on our results in
(Muslea et al., 2002), illustrates the relationship between
the incompatibility of the views and the applicability of
the multi-view algorithms: as the difference between the
accuracy of the hypotheses learned in the two views in-
creases (i.e., the views become more incompatible), the
single-view algorithm outperforms its multi-view counter-
part. This observation immediately raises the following
question: for a new, unseen learning task, should we use
a multi-view or a single-view learning algorithm?

The question above can be restated as follows: given two
views and a set of learning tasks, how can one identify the

tasks for which these two views are sufficiently compatible
for multi-view learning? In order to answer this question,
we introduce a view validation algorithm that, for a given
pair of views, discriminates between the tasks for which
the views are sufficiently and insufficiently compatible for
multi-view learning. In other words, view validation judges
the usefulness of the views for a particular learning task
(i.e., it validates the views for a task of interest).

View validation is suitable for applications such as wrapper
induction (Muslea et al., 2000) and Web page classification
(Blum & Mitchell, 1998), where the same views are re-
peatedly used to solve a variety of unrelated learning tasks.
Consider, for instance, the Web page classification prob-
lem, in which the two views consist of “words that appear in
Web pages” and “words in hyperlinks pointing to them”. Note
that, in principle, we can use these two views in learning
tasks as diverse as distinguishing between homepages of
professors and students or distinguishing between articles
on economics and terrorism. However, for any of these
learning tasks, it may happen that the text in the hyperlinks
is so short and uninformative that one is better off using
just the words in the Web pages. To cope with this prob-
lem, one can use view validation to predict whether or not
multi-view learning is appropriate for a task of interest.

This paper presents a general, meta-learning approach to
view validation. In our framework, the user provides sev-
eral exemplar learning tasks that were solved using the
same views. For each solved learning task, our algorithm
generates a view validation example by analyzing the hy-
potheses learned in each view. Then it uses the C4.5 al-
gorithm to identify common patterns that discriminate be-
tween the learning tasks for which the views are sufficiently
and insufficiently compatible for multi-view learning. An
illustrative example of such a pattern is the following: “IF
for a task � the difference in the training errors in the two views is
larger than 20% and the views agree on less than 45% of the unla-
beled examples THEN the views are insufficiently compatible for
applying multi-view learning to � ”. We consider two applica-
tion domains: text classification and wrapper induction (a
commercially important multi-view problem). On both do-
mains, the view validation algorithm makes high accuracy
predictions based on a modest amount of training data.

View validation represents a first step towards our long-
term goal of automatic view detection, which would dra-
matically widen the practical applicability of multi-view al-
gorithms. Instead of having to rely on user-provided views,
one can use view detection to search for adequate views
among the possible partitions of the domain’s features. In
this context, a view validation algorithm becomes a key
component that verifies whether or not the views that are
generated during view detection are sufficiently compati-
ble for applying multi-view learning to a learning task.

2. Background

2.1. Terminology

The multi-view setting (Blum & Mitchell, 1998) applies to
learning tasks that have a natural way to partition their fea-
tures into subsets (views), each of which are sufficient to
learn the target concept. In such tasks, an example � is
described by a different set of features in each view. For
example, in a domain with two views �� and ��, any ex-
ample � can be seen as a triple ���� ��� ��, where �� and ��
are its descriptions in the two views, and � is its label.

A multi-view problem is a collection of learning tasks that
use the same views; each such task is called an instance
of the multi-view problem or a problem instance. To illus-
trate these concepts, let us reconsider the idea of classify-
ing Web pages based on the views “words in Web pages”
and “words in hyperlinks pointing to the pages”. Then the
multi-view problem �� consists of all learning tasks that
use these two views. Each of these tasks (e.g., learning a
classifier that distinguishes between homepages of profes-
sors and students) represents an instance of ��.

Blum and Mitchell (1998) proved that by using two views
to bootstrap each other, a target concept can be learned
from a few labeled and many unlabeled examples, provided
that the views are compatible and uncorrelated. The former
requires that all examples are labeled identically by the tar-
get concepts in each view. The latter means that for any
example ���� ��� ��, �� and �� are independent given �.

In practice, one cannot expect two views to be sufficiently
compatible and uncorrelated for all learning tasks. For in-
stance, in the problem �� above, a problem instance may
have incompatible views because the text in the hyperlinks
is too short and uninformative for the text classification
task. Similarly, there may be problem instances in which
the views are correlated because all the words in the hyper-
links also appear in the Web pages to which they point.

2.2. Incompatible Views and Multi-view Learning

The theoretical foundation of multi-view learning (Blum &
Mitchell, 1998) is based on the following idea: one can
learn a weak hypothesis �� in �� based on the few labeled
examples and then apply �� to all unlabeled examples. If
the views are uncorrelated, these newly labeled examples
are seen in �� as a random training set with classification
noise, based on which one can learn the target concept in
��. The same principle holds for some (low) level of view
incompatibility, provided that the views are uncorrelated.

However, as shown in (Muslea et al., 2002), in practice
one cannot ignore view incompatibility because one rarely,
if ever, encounters real world domains with uncorrelated
views. Intuitively, view incompatibility affects multi-view

Given:
- a learning task with two views �� and ��
- a learning algorithm �
- the sets � and � of labeled and unlabeled examples

LOOP for � iterations
- use �, ��(�), and ��(�) to learn classifiers �� and ��
- FOR EACH class �� DO

- let �� and �� be the � unlabeled examples on which ��
and �� make the most confident predictions for ��

- remove �� and �� from � , label them according to ��
and ��,respectively, and add them to �

- combine the prediction of �� and ��

Figure 2. The Co-Training algorithm.

learning in a straightforward manner: if the views are in-
compatible, the target concepts in the two views label dif-
ferently a large number of examples. Consequently, from
��’s perspective, �� may “mislabel” so many examples that
learning the target concept in �� becomes impossible.

To illustrate how view incompatibility affects an actual
multi-view algorithm, let us consider Co-Training (Blum
& Mitchell, 1998), which is a semi-supervised, multi-view
algorithm.1 Co-Training uses a small set of labeled exam-
ples to learn a (weak) classifier in the two views. Then
each classifier is applied to all unlabeled examples, and
Co-Training detects the examples on which each classi-
fier makes the most confident predictions. These high-
confidence examples are labeled with the estimated class
labels and added to the training set (see Figure 2). Based on
the updated training set, a new classifier is learned in each
view, and the process is repeated for several iterations.

When Co-Training is applied to learning tasks with com-
patible views, the information exchanged between the
views (i.e., the high-confidence examples) is beneficial for
both views because most of the examples have the same
label in each view. Consequently, after each iteration, one
can expect an increase in the accuracy of the hypotheses
learned in each view. In contrast, Co-Training has a poor
performance on domains with incompatible views: as the
difference between the accuracy of the two views increases,
the low-accuracy view feeds the other view with a larger
amount of mislabeled training data.

3. View Validation

In real world problems, because of corrupted or insufficient
features, it is unrealistic to expect the views to be suffi-
ciently compatible for applying multi-view learning to all
problem instances. In order to cope with this problem, we
introduce a view validation algorithm: for any problem in-

1View incompatibility affects in a similar manner other semi-
supervised, multi-view algorithms such as Co-EM (Nigam &
Ghani, 2000) or Co-Boost(Collins & Singer, 1999).

Given:
- a multi-view problem 	 with views �� and ��
- a learning algorithm �
- a set of pairs � �
�� ���, �
�� ���, . . . , �
�� ��� �, where
�

are instances of 	 , and �� labels
� as having or not views
that are sufficiently compatible for multi-view learning

FOR each instance
� DO
- let �� and �� be labeled and unlabeled examples in
�
- use �, ������, and ������ to learn classifiers �� and ��
- ������ ���� �������������������� ��� ��� ��� ���

- train C4.5 on the view validation examples
- use the learned classifier to discriminates between problem

instances for which the views are sufficiently and insufficiently
compatible for multi-view learning

Figure 3. The View Validation Algorithm.

stance, our algorithm predicts whether or not the views are
sufficiently compatible for using multi-view learning for
that particular task. In this section we first describe our
view validation algorithm, and then we present the features
used for view validation.

3.1. The View Validation Algorithm

In practice, the level of “acceptable” view incompatibility
depends on both the domain features and the algorithm �
that is used to learn the hypotheses in each view. Con-
sequently, in our approach, we apply view validation to a
given multi-view problem (i.e., pair of views) and learn-
ing algorithm �. Note that this is a natural scenario for
multi-view problems such as text classification and wrap-
per induction, in which the same views are used for a wide
variety of learning tasks.

Our view validation algorithm (see Figure 3) implements
a three-step process. First, the user provides several pairs
��� � ���, where �� is a problem instance, and �� is a label
that specifies whether or not the views are sufficiently com-
patible for using multi-view learning to solve ��. The label
�� is generated automatically by comparing the accuracy
of a single- and multi-view algorithm on a test set. Sec-
ond, for each instance �� , we generate a view validation
example (i.e., a feature-vector) that describes the proper-
ties of the hypotheses learned in the two views. Finally,
we apply C4.5 to the view validation examples; we use
the learned decision tree to discriminate between learning
tasks for which the views are sufficiently or insufficiently
compatible for multi-view learning,

In keeping with the multi-view setting, we assume that for
each instance �� the user provides a (small) set 	� of la-
beled examples and a (large) set
� of unlabeled examples.
For each instance �� , we use the labeled examples in 	�
to learn a hypothesis in each view (i.e., �� and ��). Then
we generate a view validation example that is labeled ��

and consists of a feature-vector that describes the hypothe-
ses �� and ��. In the next section, we present the actual
features used for view validation.

3.2. Features Used for View Validation

Ideally, besides the label ��, a view validation example
would consist of a single feature: the percentage of exam-
ples that are labeled differently in the two views. Based on
this unique feature, one could learn a threshold value that
discriminates between the problem instances for which the
views are sufficiently/insufficiently compatible for multi-
view learning. In Figure 1, this threshold corresponds to
the point in which the two learning curves intersect. In
practice, using this unique feature requires knowing the la-
bels of all examples in a domain. As this is an unrealistic
scenario, we have chosen instead to use several features
that are indicators of the how incompatible the views are.

In this paper, each view validation example is described by
the following seven features:

- ��: the percentage of unlabeled examples in
� that are
classified identically by �� and ��;

- ��: ���	���������������� 	 ����������������;

- ��: ����	���������������� 	 ����������������;

- ��: �� � ��;

- ��: ����������������� ��������������;

- ��: ������������������ ��������������;

- ��: �� � ��.

Note that features ��-�� are measured in a straightforward
manner, regardless of the algorithm � used to learn �� and
��. By contrast, features ��-�� dependent on the represen-
tation used to describe these two hypotheses. For instance,
the complexity of a boolean formula may be expressed in
terms of the number of disjuncts and literals in the disjunc-
tive or conjunctive normal form; or, for a decision tree, the
complexity measure may take into account the depth and
the breadth (i.e., number of leaves) of the tree.

The intuition behind the features ��-�� is the following:

- the fewer unlabeled examples from
� are labeled iden-
tically by �� and ��, the larger the number of poten-
tially incompatible examples;

- the larger the difference in the training error of � � and ��,
the less likely it is that the views are equally accurate;

- the larger the difference in the complexity of �� and ��,
the likelier it is that the most complex of the two hy-
potheses overfits the (small) training set 	�. In turn,

this may indicate that the corresponding view is sig-
nificantly less accurate than the other one.

In practice, features ��-�� are measured in a straightfor-
ward manner; consequently, they can be always used in
the view validation process. In contrast, measuring the
complexity of a hypothesis may not be always possible
or meaningful (consider, for instance, the case of a Naive
Bayes or a � nearest-neighbor classifier, respectively). In
such situations, one can simply ignore features ��-�� and
rely on the remaining features.

4. The Test Problems for View Validation

We describe now the two problems that we use as case stud-
ies for view validation. First we present the wrapper induc-
tion problem, which consists of a collection 33 information
extraction tasks that originally motivated this work. Then
we describe a family of 60 parameterized text classification
tasks (for short, PTCT) that we used in (Muslea et al., 2002)
to study the influence of view incompatibility and correla-
tion on multi-view learning algorithms.

4.1. Multi-View Wrapper Induction

To introduce our approach to wrapper induction (Muslea
et al., 2000), let us consider the illustrative task of extract-
ing phone numbers from documents similar to the Web-
page fragment in Figure 4. In our framework, an extraction
rule consists of a start rule and an end rule that identify the
beginning and the end of the item, respectively; given that
start and end rules are extremely similar, we describe here
only the former. For instance, in order to find the beginning
of phone number, we can use the start rule

R1 = ���	�(Phone:<i>).

This rule is applied forward, from the beginning of the
page, and it ignores everything until it finds the string
Phone:<i>. For a slightly more complicated extraction
task, in which only the toll-free numbers appear in italic,
one can use a disjunctive start rule such as

R1� = EITHER ���	�(Phone:<i>)
OR ���	�(Phone:)

An alternative way to detect the beginning of the phone
number is to use the start rule

R2 = ����	�(Cuisine) ����	�((�����))

which is applied backward, from the ��� of the document.
R2 ignores everything until it finds “Cuisine” and then,
again, skips to the first number between parentheses.

As described in (Muslea et al., 2001), rules such as R1
and R2 can be learned based on user-provided examples
of items to be extracted. Note that R1 and R2 represent

R1 R2

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

Figure 4. Extracting the phone number.

descriptions of the same concept (i.e., start of phone num-
ber) that are learned in two different views. That is, the
views �� and �� consist of the sequences of characters that
precede and follow the beginning of the item, respectively.

For wrapper induction, the view validation features are
measured as follows: �� represents that percentage of (un-
labeled) documents from which the two extraction rules
extract the same string; for ��-��, we count the labeled
documents from which the extraction rules do not extract
the correct string. Finally, to measure ��-��, we define the
complexity of an extraction rule as the maximum number
of disjuncts that appear in either the start or the end rule.

4.2. Multi-View Text Classification

As a second case study, we use the PTCT family of parame-
terized text categorization tasks described in (Muslea et al.,
2002).2 PTCT contains 60 text classification tasks that are
evenly distributed over five levels of view incompatibility:
0%, 10%, 20%, 30%, or 40% of the examples in a prob-
lem instance are made incompatible by corrupting the cor-
responding percentage of labels in one of the views.

PTCT is a text classification domain in which one must pre-
dict whether or not various newsgroups postings are of in-
terest for a particular user. In PTCT, a multi-view example’s
description in each view consists a document from the 20-
Newsgroups dataset (Joachims, 1996). Consequently, we
use the Naive Bayes algorithm (Nigam & Ghani, 2000) to
learn the hypotheses in the two views. As there is no obvi-
ous way to measure the complexity of a Naive Bayes clas-
sifier, for PTCT we do not use the features ��-��. The other
features are measured in a straightforward manner: �� rep-
resents the percentage of unlabeled examples on which the
two Naive Bayes classifiers agree, while ��-�� are obtained
by counting the training errors in the two views.

5. Empirical Results

5.1. Generating the WI and PTCT Datasets

To label the 33 problem instances for wrapper induction
(WI), we compare the single-view STALKER algorithm
(Muslea et al., 2001) with its multi-view version described
in (Muslea et al., 2000). On the six extraction tasks in
which the difference in the accuracy of the rules learned

2We would have preferred to use a real-world multi-view prob-
lem instead of PTCT. Unfortunately, given that multi-view learn-
ing represents a relatively new field of study, most multi-view al-
gorithms were applied to just a couple problem instances.

in the two views is larger than 10%, single-view STALKER

does at least as well as its multi-view counterpart. We label
these six problem instances as having views that are insuf-
ficiently compatible for multi-view learning.

In order to label the 60 instances in PTCT, we compare
single-view, semi-supervised EM with Co-Training, which
is the most widely used semi-supervised multi-view algo-
rithm (Collins & Singer, 1999) (Pierce & Cardie, 2001)
(Sarkar, 2001). We use the empirical results from (Muslea
et al., 2002) to identify the instances on which semi-
supervised EM performs at least as well as Co-Training.
We label the 40 such instances as having views that are
insufficiently compatible for multi-view learning.

For both WI and PTCT, we have chosen the number of ex-
amples in 	� (i.e., ����	��) according to the experimen-
tal setups described in (Muslea et al., 2001) and (Muslea
et al., 2002), in which WI and PTCT were introduced. For
WI, in which an instance �� may have between 91 and 690
examples, ����	��=6 and
� consists of the remaining
examples. For PTCT, where each instance consists of 800
examples, the size of 	� and
� is 70 and 730, respectively.

5.2. The Setup

In contrast to the approach described in Figure 3, where
a single view validation example is generated per problem
instance, in our experiments we create several view valida-
tion examples per instance. That is, for each instance ��,
we generate ���������� � �� view validation examples
by repeatedly partitioning the examples in �� into randomly
chosen sets 	� and
� of the appropriate sizes. The motiva-
tion for this decision is two-fold. First, the empirical results
should not reflect a particularly (un)fortunate choice of the
sets 	� and
�. Second, if we generate a single view vali-
dation example per instance, for both WI and PTCT we ob-
tain a number of view validation examples that is too small
for a rigorous empirical evaluation (i.e., 33 and 60, respec-
tively). To conclude, by generating ���������� � ��
view validation examples per problem instance, we obtain
larger number of view validation examples (660 and 1200,
respectively) that, for each problem instance ��, are repre-
sentative for a wide variety of possible sets 	� and
�.

To evaluate view validation’s performance, for both WI

and PTCT, we partition the problem instances into train-
ing and test instances. For each such partition, we cre-
ate the training and test sets for C4.5 as follows: all
���������� � �� view validation examples that were
created for a training instance are used in the C4.5 train-
ing set; similarly, all 20 view validation examples that were
created for a test instance are used in the C4.5 test set. In
other words, all view validation examples that are created
based on the same problem instance belong either to the
training set or to the test set, and they cannot be split be-

10

15

20

25

30

35

40

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

ViewValidation(WI)
Baseline(WI)

ViewValidation(PTCT)
Baseline(PTCT)

Figure 5. View validation clearly outperforms a baseline algo-
rithm that predicts the most frequent label.

tween the two sets. In our experiments, we train on �

�
, �

�
,

and �

�
of the instances and test on the remaining ones. For

each of these three ratios, we average the error rates ob-
tained over � �� random partitions of the instances into
training and test instances.

Figure 5 shows the view validation results for the WI and
PTCT datasets. The empirical results are excellent: when
trained on 66% of the available instances, the view valida-
tion algorithm reaches an accuracy of 92% on both the WI

and PTCT datasets. Furthermore, even when trained on just
33% of the instances (i.e., 11 and 20 instances for WI and
PTCT, respectively), we still obtain a 90% accuracy. Last
but not least, for both WI and PTCT, view validation clearly
outperforms a baseline algorithm that simply predicts the
most frequent label in the corresponding dataset.

5.3. The Influence of ���������� and ����	��

The results in Figure 5 raise an interesting practical ques-
tion: how much can we reduce the user’s effort without
harming the performance of view validation? In other
words, can we label only a fraction of the ����������
view validation examples per problem instance and a sub-
set of 	�, and still obtain a high-accuracy prediction? To
answer this question, we designed two additional experi-
ments in which we vary one of the parameters at the time.

To study the influence of the ���������� parameter, we
keep ����	�� constant (i.e., 6 and 70 for WI and PTCT,
respectively), and we consider the values ���������� �
�� 	� ��� ��. That is, rather than including all 20 view vali-
dation examples that we generate for each instance ��, the
C4.5 training sets consist of (randomly chosen) subsets
of one, five, 10, or 20 view validation examples for each
training instance. Within the correspondingC4.5 test sets,
we continue to use all 20 view validation examples that are
available for each test instance.

Figure 6 displays the learning curves obtained in this ex-
periment. The empirical results suggest that the benefits

of increasing ���������� become quickly insignificant:
for both WI and PTCT, the difference between the learn-
ing curves corresponding to ���������� � �� and ��
is not statistically significant, even though for the latter
we use twice as many view validation examples than for
the former. This implies that a (relatively) small number
of view validation examples is sufficient for high-accuracy
view validation. For example, our view validation algo-
rithm reaches a 90% accuracy when trained on 33% of the
problem instances (i.e., 11 and 20 training instances, for
WI and PTCT, respectively). For ���������� � ��, this
means that C4.5 is trained on just 110 and 200 view vali-
dation examples, respectively.

In order to study the influence of the ����	�� parameter,
we designed an experiment in which the hypotheses �� and
�� are learned based on a fraction of the examples in the
original set 	�. Specifically, for WI we use two, four, and
six of the examples in 	�; for PTCT we use 20, 30, 40, 50,
60, and 70 of the examples in 	�. For both WI and PTCT,
we keep ���������� � �� constant.

Figure 7 shows the learning curves obtained in this exper-
iment. Again, the results are extremely encouraging: for
both WI and PTCT we reach an accuracy of 92% without
using all examples in 	�. For example, the difference be-
tween ����	�� �
 and 6 (for WI) or ����	�� � �� and
70 (for PTCT) are not statistically significant.

The experiments above suggest two main conclusions.
First, for both WI and PTCT, the view validation algorithm
makes high accuracy predictions. Second, our approach
requires a modest effort from the user’s part because both
the number of view validation examples and the size of the
training sets 	� are reasonably small.

5.4. Understanding the Predictions

In practice, it is important to provide users with the in-
tuition behind a view validation prediction. The decision
trees learned by C4.5 are extremely useful with this re-
spects. Figure 8 shows two illustrative pruned decision
trees (one for each domain) that were learned using 66%
of the problem instances. For each node in the trees, we
show the following information: the view validation fea-
ture used to make the decision (i.e., one of the seven fea-
tures described in Section 4); the error rate on the test set;
and the number of test examples that are classified based
on the node’s descendents.

Consider, for instance, the PTCT decision tree, which mis-
classifies 4.5% of the 400 test examples (see the tree’s
root). The decision tree reads as follows: if the hypotheses
�� and �� agree on more than 62% of the unlabeled exam-
ples in
� (i.e., if �� ! ���), then the problem instance
has views that are sufficiently compatible for multi-view

6

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

WI

ExsPerInst = 1
ExsPerInst = 5
ExsPerInst = 10
ExsPerInst = 20

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

PTCT

ExsPerInst = 1
ExsPerInst = 5
ExsPerInst = 10
ExsPerInst = 20

Figure 6. We keep �������� constant and vary the value of ���	�
��� (1, 5, 10, and 20).

6

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

WI

Size(Tk) = 2
Size(Tk) = 4
Size(Tk) = 6

8

10

12

14

16

18

20

22

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

PTCT

Size(Tk) = 20
 = 30
 = 40
 = 50
 = 60
 = 70

Figure 7. For ���	�
�� � ��, we consider several values for ��������: 2/4/6 for WI, and 20/30/40/50/60/70 for PTCT.

learning. Based on this criterion, 150 of the 400 examples
are labeled “sufficiently compatible”, with an error rate of
2.67% (i.e., only four examples are misclassified).

If the two hypotheses agree on at most 59% of the unla-
beled examples (i.e., �� � 	�), the views are insuffi-
ciently compatible for learning. Finally, if the agreement
level is between 59% and 62%, the decision is taken based
on the feature ��: the views are sufficiently compatible if
and only if the difference in training error in the two views
is larger than 10% (i.e., seven of the 70 examples in 	�).
This counter-intuitive decision, which is due to overfitting,
produces half the errors on the entire test set (i.e., nine of
the 18 misclassified examples).

6. Limitations and Future Work

In this section we discuss the limitations of our algorithm
and possible approaches to address them. First, view vali-
dation can be applied only to problems in which the same
views are used to solve a large number of learning tasks.
For wrapper induction, which motivates our work, this is a
natural scenario: we currently maintain a library of almost
900 extraction tasks, and we add several dozen new tasks
each month. For scenarios in which one tries to solve a sin-
gle instance of a new multi-view problem, view validation
cannot be applied. To address this issue, we plan to investi-
gate the use of training sets that consist of labeled instances
from several multi-view problems that use the same learn-

ing algorithm � (see Figure 2).

Second, we applied view validation only to the two multi-
view problems for which there is a large collection of learn-
ing tasks. In order perform additional experiments, we
plan to collect data for several other problems, such as
Web page classification (Blum & Mitchell, 1998), adver-
tisement removal and discourse tree parsing (Muslea et al.,
2000). These problems share a common trait: their views
can be used to solve hundreds of real world learning tasks.
We expect view validation to be successful on such prob-
lems because the decision trees learned in our experiments
correspond to a powerful intuition: if the views are com-
patible, the hypotheses learned in each view should agree
on many unlabeled examples, and they should have similar
complexity and training errors.

Third, in this paper we used only seven view validation fea-
tures. We are investigating several additional features that
describe the dynamics of the learning process in each view.
More precisely, we partition the training set 	� in several
subsets, and we record the changes in the values of features
��-�� as more of these subsets are used for training. In-
tuitively, these new features monitor the difference in the
speed of convergence towards the target concept in each
view. Preliminary experiments indicate that the additional
features reduce the error rate by almost 50%.

Finally, to broaden the practical applicability of view val-
idation, we plan to reduce the number of labeled problem

f6
 error: 9.09% (220)

Sufficiently Compatible
 error: 5.98% (184)

<= 1

f1
 error: 25.00% (36)

> 1

f6
 error: 46.67% (15)

> 83

Insufficiently Compatible
 error: 9.52% (21)

<= 83

Sufficiently Compatible
 error: 58.33% (12)

<= 2

Insufficiently Compatible
 error: 0.00% (3)

> 2

f1
error: 4.50% (400)

f1
error: 5.60% (250)

<= 62%

Sufficiently Compatible
error: 2.67% (150)

> 62%

Insufficiently Compatible
error: 2.33% (215)

<= 59%

f4
error: 25.71% (35)

> 59%

Insufficiently Compatible
error: 24.24% (33)

<= 6

Sufficiently Compatible
error: 50.00% (2)

> 6

Figure 8. Illustrative trees for WI (left) and PTCT (right).

instances required for training. We intend to replace the
C4.5 algorithm in Figure 3 with a semi-supervised algo-
rithm that combines both labeled and unlabeled examples,
thus reducing the need for labeled problem instances.

7. Conclusions

In this paper we describe the first approach to view val-
idation. We use several solved problem instances to
train a classifier that discriminates between instances for
which the views are sufficiently/insufficiently compatible
for multi-view learning. For both wrapper induction
and text classification, view validation requires a modest
amount of training data to make high-accuracy predictions.
View validation represents a first step towards our long-
term goal to create a view detection algorithm that parti-
tions the domain’s features in views that are adequate for
multi-view learning.

Acknowledgments

The authors are grateful to Daniel Marcu and José Luis Ambite
for their useful comments on several drafts of this paper.

The research reported here was supported in part by the Defense
Advanced Research Projects Agency (DARPA) and Air Force Re-
search Laboratory under contract/agreement numbers F30602-
01-C-0197, F30602-00-1-0504, F30602-98-2-0109, in part by
the Air Force Office of Scientific Research under grant num-
ber F49620-01-1-0053, in part by the National Science Foun-
dation under award number DMI-0090978, and in part by the
Integrated Media Systems Center, a National Science Founda-
tion Engineering Research Center, cooperative agreement num-
ber EEC-9529152. The U.S.Government is authorized to repro-
duce and distribute reports for Governmental purposes notwith-
standing any copy right annotation thereon. The views and con-
clusions contained herein are those of the authors and should not

be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of any of the above
organizations or any person connected with them.

References

Blum, A., & Mitchell, T. (1998). Combining labeled and
unlabeled data with co-training. Proc. of the Conference
on Computational Learning Theory (pp. 92–100).

Collins, M., & Singer, Y. (1999). Unsupervised models for
named entity classification. Proceedings of Empirical
Methods in NLP and Very Large Corpora (pp. 100–110).

Joachims, T. (1996). A probabilistic analysis of the
Rocchio algorithm with TFIDF for text categorization.
Computer Science Tech. Report CMU-CS-96-118.

Muslea, I., Minton, S., & Knoblock, C. (2000). Selective
sampling with redundant views. Proc. of National Con-
ference on Artificial Intelligence (pp. 621–626).

Muslea, I., Minton, S., & Knoblock, C. (2001). Hierar-
chical wrapper induction for semistructured sources. J.
Autonomous Agents & Multi-Agent Systems, 4, 93–114.

Muslea, I., Minton, S., & Knoblock, C. (2002). Active +
semi-supervised learning = robust multi-view learning.
Proc. of ICML-2002.

Nigam, K., & Ghani, R. (2000). Analyzing the effective-
ness and applicability of co-training. Proc. of Informa-
tion and Knowledge Management (pp. 86–93).

Pierce, D., & Cardie, C. (2001). Limitations of co-training
for natural language learning from large datasets. Proc.
of Empirical Methods in NLP (pp. 1–10).

Sarkar, A. (2001). Applying co-training methods to statis-
tical parsing. Proc. of NAACL 2001 (pp. 175–182).

