
ACTIVE LEARNING WITH MULTIPLE VIEWS

by

Ion Alexandru Muslea

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2002

Copyright 2002 Ion Alexandru Muslea

Dedication

To those who - lovingly and selflessly - made this possible:

Mara, Codruţa, and my parents.

ii

Acknowledgments

What soon grows old? Gratitude.

Aristotle

During the last six and a half years, my co-advisors, Craig Knoblock and Steve Minton,

played a crucial role in my life. Their insights, support, and patience allowed me to grow

and become the person that I am today. Craig and Steve gave me the opportunity to join

a fabulous institution (ISI), to work on the topic of my dreams (machine learning) and

to find my own way as a researcher. I am extremely grateful for all of this. I also want to

thank the other members of my thesis committee: Kevin Knight, Margaret McLaughlin,

Ray Mooney, and Paul Rosenbloom; their feedback and support is greatly appreciated.

Over the years, Kevin Knight influenced me in many ways: he always provided a fresh

perspective on my work; he initiated me to the secrets of EM algorithms; and, together

with Ed Hovy, he introduced me to the fascinating world of natural language processing.

Paul Rosenbloom played a key role in the development of this dissertation. His ability

to find the weak points in my work helped me clean up and tighten my arguments. The

most challenging part of this dissertation (i.e., the formal results) has its origins in a

question that he asked me in April 2000, during my qual exam.

iii

Ray Mooney is a great mentor who keeps amazing me with his friendliness, cheerful-

ness, and constant support. Ray helped me become a member of the machine learning

community. His trust in me was a constant source of motivation. If only each PhD

student had the chance to have “her own Ray.”

During my 26 years in school, I was fortunate to encounter teachers that motivated

me, shaped my thinking, and greatly influenced my future: Maria Ţigan, Alin Giurgiu,

Valentin Cuibus, Ambrosie Lelijak, Mihai Hudrea, Tudor Bărăian, Karol Moldovan, Ioan

Oprea, Kalman Pusztai, Ioan Leţia, Ioan Salomie, William Klostermeyer, Yolanda Gil,

Len Adleman, and Ed Hovy. Each of them deserves more thanks that I can ever express.

I was also blessed with wonderful friends; in many ways, my successes are theirs, too.

If we were to live it all over again, I cannot think of anything that they didn’t already do

for me. Thank you Adrian & Brinduşa Fritsch, Florin & Diana Moldovan, Florin & Robin

Tămaş, Daniel Marcu, Sorin & Miruna Ţicrea, Marius & Anca Greere, Florin Olteanu,

Mihai & Marcela Ciupe, Dan Bochiş, Claudiu Gâlgǎu, Horaţiu Guja, Cǎlin Caşcaval,

Gheorghe Almási, Oana Marcu, Dorel & Monica Moldovan, and Dragoş Mărgineanţu.

When I look back to where and how it all started, the answer is “Bolintineanu 18.”

My parents, Uca, Ioana, Mica, Noiu and all the people revolving around them provided

a unique environment that prepared me for this journey. I was unbelievably lucky to

belong to that world, and all I wish is to create a similar experience for my own kids.

Finally, the two people who give sense to my life and work are Mara and Codruţa.

Without their love, support, and sacrifice, this dissertation would have never happened.

Without them, nothing would have really mattered: there would have been no love;

nothing to care for, to smile at, or to be proud of. I love you both.

iv

Contents

Dedication ii

Acknowledgments iii

List Of Tables viii

List Of Figures ix

Abstract xi

1 Introduction 1
1.1 A Motivating Problem: Wrapper Induction 3
1.2 My approach . 6

1.2.1 Co-Testing: multi-view active learning 7
1.2.2 Co-EMT: interleaving active and semi-supervised learning 8
1.2.3 View Validation: are the views adequate for multi-view learning? 10

1.3 Thesis statement . 11
1.4 Contributions . 11
1.5 Thesis Overview . 12

2 Preliminaries 14
2.1 Terminology and Notation . 14
2.2 Minimizing the required amount of labeled data 16

2.2.1 Semi-supervised Learning . 16
2.2.2 Active Learning . 17

2.3 Multi-view Learning Problems . 19
2.3.1 Issues in the Multi-View Setting 21

2.4 Summary . 23

3 The Co-Testing Family of Active Learning Algorithms 24
3.1 Co-Testing vs single-view selective sampling 25
3.2 The Co-Testing family of algorithms . 28

3.2.1 Learning with strong and weak views 30
3.3 Why does Co-Testing work? . 32

3.3.1 The High-Low learning problems 33
3.3.2 Convergence properties for single-view algorithms 38

v

3.3.3 Convergence properties for multi-view algorithms 39
3.3.3.1 Views that are independent given the label 39
3.3.3.2 Views that are independent given the clump 40

3.3.4 Discussion . 41
3.4 Co-Testing for wrapper induction . 42

3.4.1 Naive Co-Testing with stalker extraction rules 43
3.4.2 Aggressive Co-Testing with strong and weak views 45

3.5 Empirical Evaluation . 48
3.5.1 Wrapper induction experiments 48

3.5.1.1 The six algorithms in the comparison 48
3.5.1.2 The experimental setup 49
3.5.1.3 The empirical results 50

3.5.2 Beyond wrapper induction . 56
3.6 Discussion . 59
3.7 Summary . 63

4 Active + Semi-Supervised = Robust Multi-View Learning 64
4.1 The Motivating Experiment . 65

4.1.1 The Semi-supervised algorithms used in the comparison 65
4.1.1.1 The Co-Training algorithm 65
4.1.1.2 The semi-supervised EM algorithm 65
4.1.1.3 The Co-EM algorithm 67

4.1.2 The empirical results . 67
4.2 Co-Testing + Co-EM = Co-EMT . 70
4.3 Empirical Evaluation . 71

4.3.1 The Experimental Setup . 71
4.3.2 Discussion . 74
4.3.3 Results on real-world problems 78

4.4 Summary . 79

5 View Validation 81
5.1 The View Validation Algorithm . 83
5.2 Features Used for View Validation . 85
5.3 Empirical Results . 87

5.3.1 The multi-view test problems . 87
5.3.2 Generating the wi and ptct Datasets 88
5.3.3 The Setup . 88
5.3.4 The Influence of ExsPerInst and Size(Lk) 90
5.3.5 The distribution of the errors . 92
5.3.6 Understanding the Predictions . 95

5.4 Summary . 98

vi

6 Related Work 99
6.1 Active learning algorithms . 99

6.1.1 Active learning by query construction 100
6.1.2 Selective sampling . 101
6.1.3 Co-Testing vs existing active learners 104

6.2 Semi-supervised concept learning . 105
6.2.1 Single-view, semi-supervised classification 105

6.2.1.1 Transductive approaches 106
6.2.1.2 Expectation Maximization 106
6.2.1.3 Unlabeled data as “background knowledge” 108

6.2.2 Multi-view, semi-supervised learning 109
6.2.3 Co-EMT vs. existing approaches 111

6.3 Meta-learning for model selection . 111
6.3.1 Experimental model selection . 112
6.3.2 Knowledge-driven model selection 113
6.3.3 Transfer of learning . 114
6.3.4 Meta-learning for model selection 115

6.3.4.1 Adaptive view validation for model selection 118

7 Conclusions 119
7.1 Main contributions . 120

7.1.1 A multi-view approach to active learning 120
7.1.2 Robust multi-view learning . 121
7.1.3 Multi-view vs. single-view model selection 122

7.2 Limitations . 122
7.3 Future work . 123

Reference List 126

Appendix A
Proofs of convergence . 138

A.1 Convergence properties for single-view algorithms 138
A.2 Convergence properties for multi-view algorithms 143

A.2.1 Views that are independent given the label 143
A.2.2 Views that are “independent given the clump” 147

Appendix B
The 60 Semi-Artificial Problems . 158

vii

List Of Tables

3.1 The 33 extraction tasks used in the empirical evaluation. 51

3.2 Algorithms used in empirical comparison on ad, courses, and tf 57

3.3 Tests of Statistical Significance . 58

4.1 Error rates on two additional real world problems. 80

B.1 The 16 newsgroups included in the domain. 160

viii

List Of Figures

1.1 An example of information agent . 4

1.2 Forward and backward extraction rules . 7

2.1 Pseudo-code for semi-supervised learning 17

2.2 Pseudo-code for selective sampling . 18

2.3 Pseudo-code for Co-Training . 20

2.4 Illustrative clumps for the courses domain 23

3.1 Illustrative Co-Testing: Step 1 . 26

3.2 Illustrative Co-Testing: Step 2 . 26

3.3 Illustrative Co-Testing: Step 3 . 26

3.4 The Co-Testing family of algorithms . 29

3.5 Forward, backward, and content-based extraction rules 31

3.6 An illustrative 1-dhl learning task. 34

3.7 Illustrative 2-dhl learning tasks. 35

3.8 Version space for 1-dhl. 38

3.9 FF, FB, and BB extraction rules . 44

3.10 The hierarchy of stalker wildcards . 45

3.11 Empirical results for Co-Testing on wrapper induction 53

3.12 Convergence results for the 33 wrapper induction tasks 54

3.13 Empirical results on the ad and tf problems 60

3.14 Empirical results on the courses problem 61

ix

4.1 High-level description of Co-Training, Semi-supervised EM, and Co-EM . 66

4.2 The results of the controlled experiment on ptcp. 69

4.3 Co-Testing vs Co-EMT . 71

4.4 The lineage of the Co-EMT algorithm. 72

4.5 Illustrative learning curves for Co-EMT. 73

4.6 Empirical results on the ptct family of problems 75

4.7 Illustrative clumps in the courses domain. 77

5.1 Motivation for view validation . 82

5.2 The View Validation Algorithm. 85

5.3 Results on view validation . 89

5.4 Varying ExsPerInst while Size(Lk) is constant 91

5.5 Varying Size(Lk) while keeping ExsPerInt constant 93

5.6 The distribution of the errors for wi and ptct 95

5.7 The distribution of the false positives and negatives for wi and ptct . . . 96

5.8 Illustrative trees for wi and ptct. 97

A.1 The two possible distributions of examples in 2-dhl. 145

A.2 Applying Co-Training to 2-dhl with independent views. 146

A.3 Ideal solution to 2-dhl with clumps. 149

A.4 Applying Co-Training to 2-dhl with clumpy views. 151

A.5 Two illustrative scenarios in which there are no contention points 153

A.6 Possible queries within a clump. 154

B.1 Generating one and two clumps per class. 159

B.2 Generating up to four clumps per class. 161

x

Abstract

Labeling training data for machine learning algorithms is tedious, time consuming, and

error prone. Consequently, it is of utmost importance to minimize the amount of labeled

data that is required to learn a target concept. In the work presented here, I focus on

reducing the need for labeled data in multi-view learning tasks. The key characteristic of

multi-view learning tasks is that the target concept can be independently learned within

different views (i.e., disjoint sets of features that are sufficient to learn the concept of

interest). For instance, robot navigation is a 2-view learning task because a robot can

learn to avoid obstacles based on either sonar or vision sensors.

In my dissertation, I make three main contributions. First, I introduce Co-Testing,

which is an active learning algorithm that exploits multiple views. Co-Testing is based

on the idea of learning from mistakes. More precisely, it queries examples on which

the views predict a different label: if two views disagree, one of them is guaranteed to

make a mistake. In a variety of real-world domains, from information extraction to text

classification and discourse tree parsing, Co-Testing outperforms existing active learners.

Second, I show that existing multi-view learners can perform unreliably if the views

are incompatible or correlated. To cope with this problem, I introduce a robust multi-

view learner, Co-EMT, which interleaves semi-supervised and active multi-view learning.

My empirical results show that Co-EMT outperforms existing multi-view learners on a

wide variety of learning tasks.

Third, I introduce a view validation algorithm that predicts whether or not two views

are adequate for solving a new, unseen learning task. View validation uses information

xi

acquired while solving several exemplar learning tasks to train a classifier that discrim-

inates between tasks for which the views are adequate and inadequate for multi-view

learning. My experiments on wrapper induction and text classification show that view

validation requires a modest amount of training data to make high accuracy predictions.

xii

Chapter 1

Introduction

All men by nature desire knowledge.

Aristotle

Induction plays a central role in a variety disciplines, from artificial intelligence and

philosophy to statistics and psychology. Inductive learning can be defined as inferring

a generalization from a series of examples, each of which is typically described by a set

of features. Inductive learning algorithms are presented with set of classified examples

and are asked to generate a class description for each of the concepts/classes of interest;

these class descriptions can be subsequently used to classify new, unseen examples. In

other words, a human labels a number of training examples from which the inductive

algorithm creates a classifier that discriminates among the various concepts of interest.

Such learning algorithms have been successfully used in a plethora of fielded applications,

from making credit decisions (Michie, 1989) and classifying celestial objects (Fayyad et

al., 1995) to reducing banding in rotogravure printing (Evans and Fisher, 1994) and

improving the separation of gas from oil (Guilfoyle, 1986).

In practice, labeling the training examples is a tedious, time consuming, error prone

process. Furthermore, in some application domains, the labeling of each example is also

extremely expensive (e.g., it may require running costly laboratory tests). Multi-view

learning algorithms represent a recent development in coping with this problem. Such

1

algorithms apply to learning problems that have multiple views; i.e., several disjoint sub-

sets of features (views), each of which is sufficient to learn the concepts of interest. For

instance, as described in (Blum and Mitchell, 1998), one can classify segments of televised

broadcast based either on the video or on the audio information; or one can classify Web

pages based on the words that appear either in the documents or in the hyperlinks

pointing to them.

Existing research on multi-view learning (Blum and Mitchell, 1998; Collins and Singer,

1999; Pierce and Cardie, 2001) focused on semi-supervised learning techniques; that is,

they learn a concept definition by combining a small set of labeled and a large set of

unlabeled examples. By themselves, the unlabeled examples do not provide any direct

information about the concepts to be learned. However, as shown in (Miller and Uyar,

1997; Nigam et al., 2000; Shahshahani and Landgrebe, 1994; Ghahramani and Jordan,

1994; Raskutti, Ferra, and Kowalczyk, 2002b), their distribution can be used to boost

the accuracy of a classifier learned from the small set of labeled examples.

Intuitively, existing multi-view algorithms proceed as follows:

- first, they use the small labeled training set to learn one classifier in each view;

- then they bootstrap the views from each other by augmenting the training set with

unlabeled examples on which the other views make high-confidence predictions.

Such algorithms try to make the best possible use of the “implicit” information provided

by the distribution of the unlabeled examples. Their focus is to improve the accuracy of

the classifiers learned only from a small set of labeled data.

In contrast to semi-supervised learning, active learning algorithms (Seung, Opper,

and Sompolinski, 1992; Cohn, Atlas, and Ladner, 1994; Lewis and Catlett, 1994; Roy

and McCallum, 2001; Tong and Koller, 2001) aim at minimizing the amount of labeled

data required to learn a concept of interest. Active learners typically detect and ask the

user to label only the most informative examples in the domain, thus reducing the user’s

involvement in the data labeling process.

2

The goal of my thesis is to reduce the user’s burden by minimizing the amount of

labeled training data without sacrificing the accuracy of the learned classifiers. To reach

this goal, I introduce the Co-Testing algorithm (Muslea, Minton, and Knoblock, 2000b),

which is a novel approach to active learning. Co-Testing is a multi-view active learner

that maximizes the benefits of labeled training data by providing a principled way to

detect the most informative examples in a domain, thus allowing the user to label only

these.

After analyzing Co-Testing’s properties from both a formal and an empirical per-

spective, I introduce two extensions that cope with its main limitations: the inability

to exploit the unlabeled examples that were not queried, and the difficulty of deciding

whether of not a learning task is appropriate for multi-view learning. To address the first

issue, I introduce a new algorithm, Co-EMT, which interleaves Co-Testing with Co-EM

(Nigam and Ghani, 2000), a semi-supervised, multi-view algorithm. This hybrid algo-

rithm combines the benefits of active and semi-supervised learning by both detecting

the most informative examples and boosting the accuracy of the classifiers by exploiting

the remaining unlabeled examples. Second, I introduce the adaptive view validation algo-

rithm, which predicts whether or not multi-view learning is appropriate for a new, unseen

learning task. The view validation algorithm is a meta-learner that makes its predictions

based on experiences acquired while solving past learning tasks.

1.1 A Motivating Problem: Wrapper Induction

With the World Wide Web, computer users have gained access to a large variety of com-

prehensive information repositories. However, the Web is based on a browsing paradigm

that makes it difficult to retrieve and integrate data from multiple sources. Information

integration systems (e.g., Ariadne (Knoblock et al., 2001), WHIRL (Cohen, 1998), and

3

Information
Mediator

MAP�ALL:
A-rated�Thai�restaurants
in�Marina�del�Rey

Figure 1.1: An example of information agent that plots on the map the location of
restaurants of interest. The agent combines the data from four information sources: the
Zagat’s restaurant reviews, the L.A. County’ Department of Health Web site, the etak
geocoder, and the tiger maps service.

4

the Information Manifold (Kirk et al., 1995)) address this problem by enabling informa-

tion from pre-specified sets of Web sites to be accessed and combined via database-like

queries.

Consider the illustrative agent in Figure 1.1, which takes as input queries such as

Show me a map with the locations of all Thai restaurants in Los

Angeles that are A-rated by the L.A. County Department of Health

Services.

In order to answer this query, the agent must combine data from several Web sources:

- from Zagat Web site, it can obtain the name and address of all Thai restaurants in

L.A.;

- from the L.A. County Web site, it can get the health rating for all the restaurants of

interest;

- from the etak Geocoder site, it can obtain the latitude and longitude of any physical

address;

- from the tiger map service, it can plot on a map the location of any geographic

location, given its latitude and longitude.

Such information agents generally rely on wrappers to extract information from semi-

structured Web pages (a document is semistructured if the location of the relevant infor-

mation can be described based on a concise, formal grammar). Each wrapper consists of

a set of extraction rules and the code required to apply those rules. As manually writing

the extraction rules is a time consuming task that requires a high level of expertise, re-

searchers designed wrapper induction algorithms that learn the extraction rules based on

user-provided examples (Muslea, Minton, and Knoblock, 2001; Kushmerick, 2000; Hsu

and Dung, 1998).

In practice, an information agent may use hundreds of extraction rules that must be

updated whenever the format of the corresponding Web documents changes. As manually

5

labeling the training examples for each extraction rule is a tedious, error prone task, it

is of utmost importance that a wrapper induction algorithm learns high accuracy rules

based on a minimal number of labeled examples. Note that both the minimal training sets

and the high accuracy rules are crucial to the successful deployment of an information

agent. The former minimizes the amount of work required to create the information

agent, thus making the task manageable. The later is required in order to ensure the

quality of the agent’s answer to each query. To illustrate the practical importance of

having high-accuracy extraction rules, consider the following two scenarios:

- if all the extraction rules for all the sources in Figure 1.1 are 100% accurate (i.e., they

extract correctly all the items of interest), it follows that all the restaurants that

satisfy the query are displayed on the map;

- in contrast, if each extraction rule is only 90% accurate, it follows that only 90% of the

Thai restaurants will be extracted from the Zagat site. Similarly, only 90% of the

health ratings of the extracted restaurants will be retrieved from the L.A. County

site, so the agent will have only 81% of the A-rated Thai restaurants. Finally, as only

90% of the etak-provided latitudes and longitudes will be extracted correctly, it

follows that only 81%×90% = 72.9% of the restaurants of interest will be displayed.

Despite the practical importance of learning highly-accurate wrappers based on a

small number of labeled examples, there has been little work on active learning for wrap-

per induction. Furthermore, existing general-purpose active learners cannot be applied in

a straightforward manner to wrapper induction. Because of its practical importance and

the lack of efficient solutions, I use wrapper induction as the main motivating problem

for my dissertation. However, the algorithms introduced in this thesis are not specific to

wrapper induction: they can be applied to all multi-view problems, including wrapper

induction.

6

1.2 My approach

In this section I use the wrapper induction problem to illustrate the three main contri-

butions of my dissertation. More precisely, I provide an intuitive, high-level description

of how the three novel algorithms that I introduce in my thesis work. In the chapters

to come, these three algorithms are applied to a variety of other multi-view learning

problems such as Web page classification, advertisement removal, text classification, and

discourse tree parsing.

1.2.1 Co-Testing: multi-view active learning

Co-Testing, which is the first multi-view approach to active learning, works as follows:

1. first, it uses a small set of labeled examples to learn one classifier in each view;

2. then it applies the learned classifiers to all unlabeled examples and asks the user to

label one of the examples on which the views predict different labels;

3. finally, it adds the newly labeled example to the training set and repeats the whole

process.

Intuitively, Co-Testing relies on the following observation: if the classifiers learned in

each view do not predict the same label for an unlabeled example, at least one of the

classifiers makes a mistake on that particular prediction. By asking the user to label

such an example, Co-Testing is guaranteed to provide useful information for the view

that made the mistake. In the real world, where noise and other effects intrude into the

learning process, translating this simple intuition into an effective algorithm raises several

interesting issues that are analyzed throughout this thesis.

In order to understand how Co-Testing works on wrapper induction, consider the

illustrative task of extracting restaurant phone numbers from documents similar to the

Web-page fragment shown in Figure 1.2. In order to extract this information, a wrapper

7

R1 R2

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

Figure 1.2: Both the forward rule R1 and the backward rule R2 detect the beginning of
the restaurant’s phone number. Forward and backward rules have the same semantics
and differ only in terms of where they are applied from (start/end of document) and in
which direction.

must detect both the beginning and the end of the phone number. For instance, in order

to find where the phone number begins, one can use the rule

R1 = SkipTo(Phone:<i>)

This rule is applied forward, from the beginning of the page, and it ignores everything

until it finds the string Phone:<i>.

Note that this is not the only way to detect where the phone number begins. An

alternative way to perform this task is to use the rule

R2 = BackTo(Cuisine) BackTo((Number))

which is applied backward, from the end of the document. R2 ignores everything until it

finds “Cuisine” and then, again, skips to the first number between parentheses.

Note that R1 and R2 represent descriptions of the same concept (i.e., beginning

of phone number) that are learned in two different views. That is, the views V1 and

V2 consist of the sequences of characters that precede and follow the beginning of the

item, respectively. The view V1 is called the forward view, while V2 is the backward

view. Based on these two views, Co-Testing can be applied in a straightforward manner

to wrapper induction. As shown in chapter 3, Co-Testing clearly outperforms existing

state-of-the-art algorithms, both on wrapper induction and a variety of other real world

domains.

8

1.2.2 Co-EMT: interleaving active and semi-supervised learning

A natural extension of Co-Testing is to further minimize the need for labeled data by also

learning from the unlabeled examples that were not queried. In this thesis I introduce a

novel algorithm, Co-EMT, which interleaves active and semi-supervised learning. More

precisely, Co-EMT combines Co-Testing with Co-EM (Nigam and Ghani, 2000), which

is a multi-view, semi-supervised algorithm. Intuitively, Co-EM represents an iterative,

2-step process: first, it uses the hypotheses learned in each view to probabilistically label

all the unlabeled examples. Then Co-EM learns one new hypothesis in each view by

training on the probabilistically labeled examples provided by the other view.

By interleaving active and semi-supervised learning, Co-EMT creates a powerful syn-

ergy. On one hand, Co-Testing boosts Co-EM’s performance by providing it with highly-

informative labeled examples, instead of randomly-chosen ones. On the other hand,

Co-EM provides Co-Testing with more accurate classifiers (in Co-EM, Co-Testing’s small

set of labeled examples is complemented by a large set of unlabeled ones), thus allowing

Co-Testing to learn more accurate hypotheses and thus make more informative queries.

However, Co-EMT cannot be directly applied to wrapper induction because stalker

is not a probabilistic learning algorithm. However, I illustrate here the main idea be-

hind Co-EMT by describing generic wrapper induction algorithm, Co − EMTWI , that

combines active and semi-supervised learning. More precisely, Co − EMTWI combines

Co-Testing with the semi-supervised wrapper induction algorithm described below.

In order to perform semi-supervised wrapper induction, one can use a third view,

which is used to evaluate the confidence of each extraction. This new, content-based view

describes the actual item to be extracted. For example, in the phone numbers extraction

task, one can use the labeled examples to learn a simple grammar that describes the field

content: “(Number) Number - Number”. Similarly, when extracting urls, one can learn

that a typical url starts with the string “http://www.”, ends with the string “.html”,

and contains no html tags.

9

Based on forward, backward, and content-based views, one can implement the follow-

ing semi-supervised wrapper induction algorithm. First, the small set of labeled examples

is used to learn a hypothesis in each of the three views. Then the forward and backward

views feed each other with unlabeled examples on which they make high-confidence ex-

tractions. These high-confidence extractions are strings that are extracted by either the

forward or the backward rule and are also compliant with the grammar learned in the

third, content-based view.

One can use Co-Testing and the semi-supervised learner above to implement Co −
EMTWI , which works as follows. First, the small set of labeled and the large set of

unlabeled examples are used for semi-supervised learning. Second, the extraction rules

that are learned in the previous step are used for Co-Testing. After making a query, the

newly labeled example is added to the training set and the whole process is repeated for a

number of iterations. The empirical study in chapter 4 shows that Co-EMT outperforms

both Co-Testing and the three semi-supervised learners considered in that comparison.

1.2.3 View Validation: are the views adequate for multi-view learning?

In this dissertation I introduce the problem of view validation: given a multi-view learning

task, how does a user choose between solving it with a multi- or a single- view algorithm?

In other words, how does one know whether or not multi-view learning will outperform

pooling all features together and applying a traditional, single-view learner? Note that

this question must be answered while having access to just a few labeled and many unla-

beled examples: applying both the single- and multi-view active learners and comparing

their relative performances is a self-defeating strategy because it doubles the amount of

required labeled data (one must label the queries made by both algorithms).

The need for a view validation algorithm is motivated by the following observation:

while applying Co-Testing to dozens of extraction tasks, I noticed that the forward and

backward views are appropriate for most, but not all of these learning problem. This view

adequacy issue is tightly related to the best extraction accuracy reachable in each view.

10

Consider, for example, an extraction task in which the forward and backward rules lead

to a high- and a low- accuracy rule, respectively. Note that Co-Testing is not appropriate

for solving such tasks: by definition, multi-view learning applies only to tasks in which

each view is sufficient for learning the target concept (obviously, the low-accuracy view

is not sufficient for accurately extracting the item of interest).

In order to cope with this problem, I introduce adaptive view validation, which is

a novel meta-learner that uses experiences acquired while solving past learning tasks

to predict whether or not the views of a new, unseen task are adequate for multi-view

learning. The view validation algorithm takes as input several solved extraction tasks

that are labeled by the user as having views that are adequate or inadequate for multi-

view learning. Then it uses these solved extraction tasks to learn a classifier that, for

new, unseen tasks, predicts whether or not the views or adequate for multi-view learning.

The (meta-) features used for view validation are based on the properties of the hy-

potheses that, for each solved task, are learned in each view: the percentage of unlabeled

examples on which the rules extract the same string, the difference in the complexity of

the forward and backward rules, the difference in the errors made on the training set,

etc. As shown in chapter 5, for both wrapper induction and an additional text classifica-

tion problem, the view validation algorithm makes high-accuracy predictions based on a

modest amount of labeled data.

1.3 Thesis statement

In this dissertation, I introduce and evaluate the first approach to multi-view active

learning. The thesis of my dissertation is the following:

Multi-view active learning maximizes the accuracy of the learned

hypotheses while minimizing the amount of labeled training data.

11

1.4 Contributions

In this thesis, I make three main contributions:

1. I introduce a novel approach to active learning. I describe Co-Testing, a family of

multi-view active learning algorithms that

- can be applied to any multi-view learning problem, regardless of the algorithm

used to learn the classifiers in each view;

- outperforms existing active learning algorithms on a variety of real world domains,

including wrapper induction, Web page classification, advertisement removal,

and discourse tree parsing.

I analyze the practical problems that arise when the multi-view assumptions are

violated, and I introduce extensions that cope with these problems.

2. I introduce a novel multi-view learning algorithm, Co-EMT, which obtains a ro-

bust behavior over a wide spectrum of problems by interleaving active and semi-

supervised multi-view learning.

3. I formalize the view validation problem, and I introduce an adaptive view validation

algorithm, which uses meta-learning to predict whether or not multi-view learning

is appropriate for a new, unseen learning task.

1.5 Thesis Overview

This dissertation is organized as follows.

- Chapter 2 presents the terminology and notation used in the rest of the dissertation. It

also discusses the intuition behind multi-view learning and the underlying assump-

tions.

12

- Chapter 3 introduces Co-Testing, a family of multi-view active learning algorithms.

After formalizing the Co-Testing approach to active learning, I present a series of

experiments that compare Co-Testing with existing (single-view) active learning

algorithms.

- Chapter 4 first describes a simple experiment that emphasizes the drawbacks of exist-

ing (semi-supervised) multi-view algorithms. Then it presents a novel multi-view

algorithm, Co-EMT, which interleaves active and semi-supervised learning.

- Chapter 5 introduces view validation, in which the goal is to predict whether or not

multi-view learning is appropriate for a new, unseen learning task.

- Chapter 6 compares and contrasts my work with related approaches.

- Chapter 7 concludes by summarizing my contributions and proposing directions for

future work.

- Appendix A provides the proofs of the formal properties presented in chapter 3.

- Appendix B describes a (semi-artificial) family of multi-view text classification tasks in

which I control the level to which the multi-view assumptions are violated. These

problems are used to evaluate the robustness of the various multi-view algorithms.

13

Chapter 2

Preliminaries

That which is static and repetitive is boring.

That which is dynamic and random is confusing.

In between lies art.

John Locke

The goal of this dissertation is to minimize the amount of labeled data required to

learn a concept of interest, thus reducing user’s burden in creating systems that use

machine learning techniques. My work is situated at the confluence of three areas of

research: active learning, semi-supervised learning, and multi-view learning. This chapter

introduces the main ideas in these three fields and familiarizes the reader with the notation

and terminology used throughout the dissertation.

2.1 Terminology and Notation

As noted in (Mitchell, 1998), machine learning involves acquiring general concepts based

on specific training examples. In concept learning, an algorithm is used to automatically

infer the definition of a concept starting from examples that are members or non-members

of the concept of interest.1 For example, consider the problem of discriminating between
1For sake of simplicity, this chapter discusses only the concept learning scenario, in which the learner

discriminates between two classes of interest. The notation and terminology generalize in a straightforward
manner for more than two classes.

14

students and faculty in a Computer Science department. Based on the descriptions of

several students and faculty, an inductive algorithm may learn that - say - only faculty

make more than $50K a year.

In this disertation I use the following terminology. For any learning problem, the set

of all possible examples is called the instance space and is denoted by X. Any x ∈ X

represents a particular example or instance. An example is represented as a feature

vector that stores the values of the various attributes or features. For instance, in the

student/faculty problem above, the feature vector may contain attributes such as name,

salary, social security number, age, and number of publications.

The concept to be learned is called the target concept, and it can be seen as a boolean

function c : X → {0, 1} that classifies any instance x as a member or a non-member

of the concept of interest. For example, in the student/faculty problem, c(x1) = 0 and

c(x2) = 1 classify the examples x1 and x2 as student or faculty, respectively.

In order to learn the target concept, the user typically provides a set of training

examples, each of which consists of an instance x ∈ X and its label, c(x). The notation

〈x, c(x)〉 denotes such a training example. Instances for which c(x) = 1 are called positive

examples, while the other ones (c(x) = 0) are called negative examples. The symbol

L is used to denote the set of labeled training examples (also known as the training

set). By definition, an algorithm that uses for training only the labeled examples in

L is called a supervised learner. Similarly, a learning algorithm that trains on both

labeled and unlabeled exampled is called semi-supervised, while an unsupervised learner

is trained solely on unlabeled examples (i.e., it clusters unlabeled examples based on their

similarities with each other).

Given a training set L for the target concept c, an inductive learning algorithm L
searches for a function h : X → {0, 1} such that ∀x ∈ X, h(x) = c(x). The learner L
searches for h within the set H of all possible hypotheses, which is (typically) determined

by the person who designs the learning algorithm. A hypothesis h is consistent with the

15

training set L if and only if ∀〈x, c(x)〉 ∈ L, h(x) = c(x). Finally, the version space V SH,L

represents the subset of hypotheses in H that are consistent with the training set L.

2.2 Minimizing the required amount of labeled data

Labeling the examples in the training set L is a tedious, time consuming, and error

prone process. Consequently, it is important to learn a target concept based on as few

as possible labeled examples. In this dissertation, I am primarily interested in two types

of techniques that reduce the need for labeled training data: semi-supervised learning

and active learning. The former boosts the accuracy of a supervised learner based on an

additional set of unlabeled examples, while the latter minimizes the amount of labeled

data by asking the user to label only the most informative examples in the domain.

Semi-supervised and active learning techniques share two important chracteristics.

First, besides the set L of labeled examples, they use an additional working set of unla-

beled examples U . The examples in U can be seen as pairs 〈x, ?〉, where “?” signifies

that the example’s label is unknown. Second, both semi-supervised and active learning

techniques try to maximize the accuracy of the supervised base learner L that is used to

learn the target concept.

2.2.1 Semi-supervised Learning

In semi-supervised learning one tries to improve the accuracy of a supervised learner

by exploiting the availability of a (large) set of unlabeled examples U . A typical semi-

supervised algorithm proceeds as follows: first, it uses the base learner L and the (small)

set of labeled examples L to learn an initial hypothesis h. Then h is applied to the

unlabeled examples in U , and some or all of these examples, together with the label

predicted by h, are added to L. Finally, the entire process is repeated for a number of

iterations.

16

Given: - the base learner L
- the sets L and U of labeled and unlabeled examples
- the number k of iterations to be performed
- the number n of examples to be added to L after each iteration

Semi-supervised Learning:

LOOP for k iterations
- let h be the classifier obtained by training L on L
- let MCP be the n examples in U on which h makes the most confident predictions
- FOR EACH x ∈ MCP DO
- remove x from U
- add 〈x, h(x)〉 to L

Figure 2.1: Semi-supervised Learning: learn a hypothesis h based on the labeled examples,
apply h to all unlabeled examples, and add its most confident predictions to the training
set. Then repeat the whole process for a number of iterations.

The intuition behind semi-supervised learning is straightforward: even though the

initial hypothesis h is learned based on a small training set, its highest confidence predic-

tions are likely to be correct. Consequently, by adding the “high confidence” examples in

U to the training set L, one obtains a larger training set, based on which one can learn

a more accurate hypothesis. In turn, the more accurate hypothesis can be used to label

more examples, and so on.

Figure 2.1 shows the pseudo-code for a typical semi-supervised learning algorithm.

This general framework covers a wide variety of algorithms, form self training (Nigam

and Ghani, 2000) to semi-supervised EM (McCallum and Nigam, 1998b; Nigam et al.,

2000). The former adds to L just a few examples per iteration (i.e., n � Size(U)), while

the latter adds to L the entire set U , which is re-labeled by h after each iteration.

2.2.2 Active Learning

By definition, a passive learning algorithm takes as input a randomly chosen training set

L. In contrast, an active learning algorithm has the ability to choose the examples in L.

In other words, active learning algorithms try to detect the most informative examples in

17

Given:- a learning algorithm L
- the sets L and U of labeled and unlabeled examples
- the number N of queries to be made
- a utility function Utility : X × H �→ �

Selective Sampling:
LOOP for N iterations
- let h be the classifier obtained by training L on L
- let q = argmaxu∈UUtility(u, h)
- remove q from U and ask the user for its label, c(q)
- add 〈q, c(q)〉 to L

Figure 2.2: Selective Sampling: learn a hypothesis h based on the labeled examples L,
and query the unlabeled example u that maximizes the utility function Utility(u, h).

the instance space X and ask the user to label only them. The examples that are chosen

for labeling are called queries.

There are two main approaches two active learning: query construction and selective

sampling. The former queries an example that is constructed by setting the value of each

attribute so that the resulting query is as informative as possible. In contrast, selective

sampling is a form of active learning in which the queries must be chosen from a given

working set of unlabeled examples U . Selective sampling is the most popular type of

active learning because:

- in many real-world problems, it is easy to obtain a large number of unlabeled examples;

- even though one may be able to artificially construct a query (i.e., an unlabeled exam-

ple) that is more informative than the examples in U , there is a high risk that the

user may not be able to label such an example because it does not correspond to a

real-world entity (see (Lang and Baum, 1992) for details).

As my work focuses exclusivly on selective sampling techniques, in this disertation the

terms active learning and selective sampling are used interchangeably.

As shown in Figure 2.2, selective sampling starts with a (small) set of labeled examples

L and a (large) set of unlabeled examples U . It uses the base learner L to induce a

18

hypothesis h and then queries the unlabeled example q ∈ U that maximizes some utility

function. After adding 〈q, c(q)〉 to L, the process is repeated for a number of iterations.

Depending on the way in which they generate the hypothesis h, there are two types

of active learning algorithms: single-hypothesis and committee-based. The former applies

to base learners L that can reliably estimate the confidence of their prediction. Single-

hypothesis active learners typically use one of the following two utility functions:

- uncertainty reduction: the user is asked to label the unlabeled example on which h

makes the least confident prediction.

- expected-error minimization: the system queries the example that maximizes the ex-

pected reduction in classification error.

In contrast, the utility function in committee-based active learning measures the

percentage of version space that is removed after each query. In the committee-based

approach, one generates M hypotheses (i.e., the committee) and queries the example

u ∈ U on which the prediction of the committee is the most split. Intuitively, each

such query removes half of the version space, thus converging to the target concept c in

log(size(V SH,L)) queries.

2.3 Multi-view Learning Problems

The previous sections presented the traditional, single-view machine learning scenario,

in which learners have access to the entire set of features in the domain. By contrast,

in the multi-view setting one can partition the domain’s features in subsets (views) that

are sufficient for learning the target concept. For instance, one can perform speech

recognition by using either the lip motions or the emited sounds; or one can determine a

robot’s position based on either vision or sonar sensors.

In a multi-view learning problem, an example x is described by a different set of

features in each view. For example, in a domain with two views V1 and V2, a labeled

example is a triple 〈x1, x2, l〉, where l is its label, and x1 and x2 are its descriptions

19

Given:- a learning problem with two views V1 and V2
- the base algorithm L
- the sets L and U of labeled and unlabeled examples
- the number k of iterations to be performed
- the number n of examples to be added to L after each iteration

Co-Training:

LOOP for k iterations
- use L, V1(L), and V2(L) to create classifiers h1 and h2

- let PL1 and PL2 be the n unlabeled examples on which h1 and h2

make the most confident predictions

- FOR EACH 〈x1, x2, ?〉 ∈ PL1
⋃

PL2 DO
- remove 〈x1, x2, ?〉 from U
- IF 〈x1, x2, ?〉 ∈ PL1 THEN add 〈x1, x2, h1(x)〉 to L

ELSE add 〈x1, x2, h2(x)〉 to L

Figure 2.3: Co-Training (repeatedly) learns a hypothesis in each view and adds to the
training set the most confident predictions made on the unlabeled examples.

in the two views. Similarly, an unlabeled example is denoted by 〈x1, x2, ?〉. For any

example x, V1(x) denotes the descriptions x1 of x in V1. Similarly, V1(L) consists of

the descriptions in V1 of the examples in L.

Previous approaches to multi-view learning consist of semi-supervised algorithms that

bootstrap the views from each other in order to boost the accuracy of a classifier learned

based on a few labeled examples. Multi-view algorithms have been succesfully applied

to a variety of real-world domains, from natural language processing (Collins and Singer,

1999; Pierce and Cardie, 2001; Sarkar, 2001) and speech recognition (de Sa and Ballard,

1998) to Web page classification (Blum and Mitchell, 1998).

To illustrate the intuition behind multi-view learning, let us briefly consider the basic

idea in the Co-Training algorithm (Blum and Mitchell, 1998). Co-Training uses a small

set of labeled examples to learn an initial classifier in the two views (see Figure 2.3). Then

each classifier is applied to all unlabeled examples, and Co-Training detects the examples

on which each classifier makes the most confident predictions. These high-confidence

20

examples are labeled with the estimated class labels and added to the training set. Based

on the updated training set, a new classifier is learned in each view, and the process is

repeated for several iterations.

Note that Co-Training is similar to the semi-supervised learner described in Figure

2.1. The main difference between the two algorithms is that in Co-Training the views are

bootrapped from each other, while in the single-view case the algorithm is “self-training”

(Nigam and Ghani, 2000). In practice, multi-view algorithms were shown to outperform

their single-view counterparts (Nigam and Ghani, 2000; Ghani, 2001; Collins and Singer,

1999; Muslea, Minton, and Knoblock, 2000b; Muslea, Minton, and Knoblock, 2002a).

The next section briefly presents the theoretical justification for using multi-view learning

instead of pooling all features together and using a single-view learning algorithm.

2.3.1 Issues in the Multi-View Setting

Blum and Mitchell (1998) proved that for a problem with two views the target concept

can be learned based on a few labeled and many unlabeled examples, provided that the

views are compatible and uncorrelated. The former condition requires that all examples

are labeled identically by the target concepts in each view. The latter means that for any

example 〈x1, x2, l〉, x1 and x2 are independent given l.

The proof in (Blum and Mitchell, 1998) is based on the following argument: one can

learn a weak hypothesis h1 in V1 based on the few labeled examples and then apply h1

to all unlabeled examples. If the views are uncorrelated, these newly labeled examples

are seen in V2 as a random training set with classification noise, based on which one can

learn the target concept in V2. Both the requirements that the views are compatible

and uncorrelated are crucial in this process.2 If the views are correlated, the training set

in V2 is not random. If the views are incompatible, the target concepts in the two views

2An updated version of (Blum and Mitchell, 1998) shows that the theoretical guarantees also hold for
partially incompatible views, provided that they are uncorrelated. However, in practice one cannot ignore
view incompatibility because one rarely, if ever, encounters real world problems with uncorrelated views.

21

label differently a large number of examples; consequently, h1 may “misslabel” so many

examples that learning the target concept in V2 becomes impossible.

To introduce the intuition behind view incompatibility and correlation, let us consider

the courses problem (Blum and Mitchell, 1998), in which Web pages are classified as

“course homepages” and “other pages.” The views V1 and V2 consist of words in the

hyperlinks pointing to the pages and words in the Web pages, respectively. Figure 2.4

shows several illustrative examples from the domain. Each of the 17 lines in Figure 2.4

represents an example; that is, each example x is depicted as a line that connects its

descriptions x1 and x2 in the two views. All but the two bottom examples (i.e., lines) are

“course homepages”; consequently, to keep Figure 2.4 simple, I do not show the examples’

labels. Note that in Figure 2.4 the same page may be referred by several hyperlinks, while

several hyperlinks that contain the same text may point to different pages.

In real world problems, the views are partially incompatible for a variety of reasons:

corrupted features, insufficient attributes, etc. For instance, as shown in Figure 2.4, of

the three hyperlinks that contain the text “Neural Nets”, two point to homepages of neural

nets classes, while the third one points to a publications page. That is, Web pages with

different labels in V2 have the same description in V1. Consequently, [“Neural Nets”,

“MIT’s CS 211: . . . ”] and [“Neural Nets”, “J. Doe’s Papers . . . ”] are incompatible because

they require that “Neural Nets” has simultaneously two different labels.

In practice, the views are also (partially) correlated because of domain clumpiness,

which can be best introduced by an example. Consider, for instance, the eight multi-view

examples of ai homepages that are depicted as lines within the “ai clump” rectangle in

Figure 2.4. Such a group of examples is called a clump because the bi-partite subgraph

that has as vertices the four hyperlinks and four Web pages, respectively, is heavily

connected by the eight edges representing the examples. Note that two clumps per class

are sufficient to violate the “uncorrelated views” assumption: for any example x, it is

highly likely that its descriptions in the two views come from the same clump. Intuitively,

22

J. Doe’s Papers on Neural Networks: ...

Neural Nets MIT’s CS 211: Intro to Neural Nets ...

USC’s CS 561: Artificial Intelligence ...

USC’s CS 591: Statistical Learning ...

USC’s CS 577: Neural Networks ...

CS 561

Algorithms

related AI classes

related theory classes

CMU’s CS 121: Intro to Algorithms ...

CMU’s CS 256: Finite Automata ...

THEORY CLUMP

AI CLUMP

UCI’s CS 561: Theory of Algorithms ...

my publications

core theory classes

statistical models

 View V1
(words in hyperlinks)

 View V2
(words in Web pages)

Figure 2.4: Two illustrative “positive clumps” (i.e., course hompages) in the courses
domain: the AI and Theory clumps consist of course hompages for AI and Theory classes,
respectively. Note that knowing an example’s description in one view provides more
information (i.e., the actual clump) than knowing the example’s label (i.e., only the
example’s class, which consists of several clumps).

this means that it is unlikely to have examples such as [“CS 561”, “UCI’s CS 561: Theory

of Algorithms”], which connects the theory and ai clumps (see Figure 2.4).

2.4 Summary

In this section I introduced the basic terminology and notation that is used throughout

this dissertation. First, I discussed the main concepts and ideas in semi-supervised and

actived learning. Then I introduced multi-view learning, and I discussed the two main

assumptions in multi-view learning: view independence and compatibility.

23

Chapter 3

The Co-Testing Family of Active Learning Algorithms

True genius lies in the capacity for evaluation of [. . .] conflicting information.”

Winston Churchill

In order to learn a classifier, supervised learning algorithms need labeled training

examples. In many applications, labeling the training data is an expensive process because

it requires human expertise and is a tedious, error prone, time consuming task. Selective

sampling reduces the number of training examples that need to be labeled by examining

a pool of unlabeled examples and selecting only the most informative ones for the human

to label. This chapter introduces Co-Testing, which is the first approach to multi-view

active learning.

Selective sampling techniques work by asking the user to label examples that maximize

the information conveyed to the learner. In a standard, single-view learning scenario, this

generally translates into finding an example that - at best - splits the version space in

half; i.e., eliminating half of the hypotheses consistent with the current training set.

In multi-view domains, one can do much better. Co-Testing trains one classifier for

each view, applies them to the pool of unlabeled examples, and selects a query based on

the degree of disagreement among the learners. Because the target concepts in each view

must agree, Co-Testing can reduce the hypothesis space faster than would otherwise be

possible. To illustrate this, consider a learning problem with two views, V1 and V2, and

24

imagine the following extreme scenario: there is an unlabeled example that is classified

as positive by a single hypothesis from the V1 version space; furthermore, assume that

the same example is classified as positive by all but one of the hypotheses from the V2

version space. If the system queries this particular example, the version space in either

V1 (if the example is positive) or V2 (in case the example is negative) collapses to a

single hypothesis, thus ending the learning process.

3.1 Co-Testing vs single-view selective sampling

Let us consider the illustrative task of classifying the employees of a CS department in

two categories: faculty and non-faculty. Let us assume that the classification can be done

either by using a person’s salary (e.g., only faculty have salaries above $65K) or office

number (e.g., only faculty office numbers are below 300). In this case, the domain has two

views: one that uses only the salary, and another one that uses only the office number.

In both views the target concept is a threshold value: $65K for salary, and 300 for the

office number. To learn the target concept in each view, one can use the following base

learner L: first, L identifies the pair of labeled examples that belong to different classes

and have the closest attribute values. Then L sets the threshold to the mean of these two

values.

Co-Testing works as follows: initially, the user provides a few labeled examples, and

a pool of unlabeled ones. In Figure 3.1, the unlabeled examples are denoted by points,

while the labeled ones appear as ⊕ and
 (the former denotes faculty, and the latter

represents non-faculty). Co-Testing uses the base learner L to create one classifier for

each view (the classifiers are geometrically represented as the dotted and the dashed lines,

respectively).

Then Co-Testing applies both classifiers to all unlabeled examples and determines

the contention points – the examples that are labeled differently by the two classifiers.

The contention points, which lay in the picture’s gray areas, are extremely informative

25

−

−
−

+

+

+

100 999

100K

7K
400

50K

Salary

Q1 Office

Figure 3.1: STEP 1: From the initial training set, Co-Testing learns the hypotheses (i.e.,
threshold values) 50K and 400 in the two views. Among the contention points, which
lay in the dark grey areas, Co-Testing queries the example Q1, on which both hypotheses
are the most confident (i.e., Q1 is the farthest away from both threshold values).

−

−
−

+

+

+

100 999

100K

7K

50K

Salary

Office−
300

Q2

Figure 3.2: STEP 2: After adding Q1 to the training set, Co-Testing learns two new
hypotheses and queries the example Q2, which - again - is the farthest away from both
threshold values.

−

−
−

+

+

+

100 999

100K

7K

Salary

Office−
300

−65K

Figure 3.3: STEP 3: After adding Q2 to the training set and learning two new hypothe-
ses, Co-Testing stops because there are no more contention points.

26

because whenever the two classifiers disagree, at least one of them must be wrong. Finally,

Co-Testing selects for labeling one of the contention points, adds it to the training set,

and repeats the whole process.

If the base learner L can evaluate the confidence of its classification, Co-Testing can

query the contention point on which both categorizers are most confident, which means

that each query maximally improves at least one of the hypotheses; that is, each query

can remove more than half of the version space. In the example above, the confidence level

of the predictions made by each view is proportional to the distance between the point

and the corresponding threshold value: the larger the distance, the higher the confidence

in the classification.

In Figure 3.1, Co-Testing asks for the label of the example Q1, which is the con-

tention point on which both categorizers are the most confident (i.e., the smallest of the

distances to the two thresholds is maximal). Once the example is labeled by the user,

Co-Training learns a new hypothesis in each view, finds the new set of contention points

(see Figure 3.2), makes another query Q2, and re-trains one more time. As shown in

Figure 3.3, the new classifiers agree on all unlabeled examples, and Co-Testing stops.

As already mentioned, in single-view active learning, the best one can hope for is

to remove half of version space with each query. To illustrate this idea, consider the

Uncertainty Sampling algorithm (Lewis and Gale, 1994), which first uses the labeled data

to learn a classifier and than queries one of the points on which the classifier is the least

confident. When using just one of the views in the example above, the lowest confidence

points are the ones that are the closest to the learned threshold value. As each query

made by Uncertainty Sampling removes approximately half of version space, it follows

that the single-view algorithm requires more queries than Co-Testing to learn the target

concept.

In comparison to single-view active learners, Co-Testing has two major advantages.

First of all, combining evidence from several views allows it to make queries that lead to

maximal improvements in one of the views. Second, by querying only contention points,

27

Co-Testing is guaranteed to always ask for the label of an example on which at least one

of the classifiers is wrong. Detecting the mistakes of the current hypotheses is of utmost

importance for base learners such as decision trees, which improve only from mistakes.

3.2 The Co-Testing family of algorithms

Figure 3.4 provides a formal description on the Co-Testing family of algorithms. Given

a base learner L, a set L of labeled examples, and a set U of unlabeled ones, Co-Testing

algorithm works as follows: first, it learns the classifiers h1 and h2 by applying the

algorithm L to the projection of the examples in L onto the two views, V1 and V2.

Then it applies h1 and h2 to all unlabeled examples in U and creates the set of contention

points, which consists of all unlabeled examples for which h1 and h2 predict a different

label. Finally, it queries one of the contention points and repeats the whole process. After

making the allowed number of queries, Co-Testing uses the hypotheses learned in each

view to create a final output hypothesis.

The various members of the Co-Testing familly differ from each other with two re-

spects: the strategy used to select the next query, and the manner in which the output

hypothesis is constructed. In other words, each Co-Testing algorithm is uniquely de-

fined by the choice of the functions SelectQuery() and CreateOutputHypothesis().

These two functions depend on the properties of both the application domain and the

base learner L.

In this disertation I consider three types of query selection strategies:

- naive: choose at random one of the contention points. This straighftforward strategy

is appropriate for base learners that lack the capability of reliably estimating the

confidence of their predictions.

- aggressive: choose the contention point on which both h1 and h2 make the most con-

fident prediction. Aggressive Co-Testing is designed for high accuracy domains, in

which there is little or no noise. On such problems, discovering unlabeled examples

28

Given: - a base learner L
- a learning problem with features V={a1, a2, . . . , aN}
- two views V1 and V2, where V=V1∪V2 and V1∩V2=Ø
- the sets L and U of labeled and unlabeled examples, respectively
- number N of queries to be made

LOOP for N iterations
- use L, V1(L), and V2(L) to create classifiers h1 and h2

- let ContentionPoints = { 〈x1, x2, ?〉 ∈ U | h1(x1) = h2(x2) }
- let 〈x1, x2, ?〉 = SelectQuery(ContentionPoints)
- remove 〈x1, x2, ?〉 from U and ask for its label l
- add 〈x1, x2, l〉 to L

- CreateOutputHypothesis(h1, h2)

Figure 3.4: The Co-Testing Family of Algorithms: repeatedly learn a classifier in each
view and query one of the contention points (i.e., an unlabeled example for which the
two views make a different prediction).

that are misclassified “with high confidence” translates into queries that remove

significantly more than half version space.

- conservative: choose the contention point on which the confidence of the predictions

made by h1 and h2 is as close as possible (i.e., with equal confidence, they predict

a different label). Conservative Co-Testing is appropriate for noisy domains, where

the aggressive strategy may end up querying mostly noisy examples.

Creating the output hypothesis also allows the user to choose from a variety of alter-

natives, such as:

- winner-takes-all: the output hypothesis is the one learned in the view that makes the

smallest number of mistakes on the N queries. This is the most obvious solution for

2-view learning problems in which the base learner cannot estimate the confidence

of its predictions.

- majority vote: Co-Testing predicts the label that was predicted by most of the hy-

potheses learned in the various views. This strategy is appropriate when more than

29

two views are available, and the base learner cannot estimate the confidence of its

predictions.

- weighted vote: combines the vote of each hypothesis, weighted by the confidence of their

respective predictions.

3.2.1 Learning with strong and weak views

In the multi-view setting one assumes that each view is sufficient to learn the target

concept. However, in practice, there are also views in which one can only learn a concept

that is strictly more general or more specific than the concept of interest. I use the terms

strong and weak views to discriminate between the views that describe the actual target

concept and the ones in which one learns a more general/specific concept.

For example, consider again the wrapper induction task described in the introduction.

As the phone number can be extracted by both the forward rule R1 and the backward

rule R2 (see Figure 3.5), it follows that the forward and backward views are strong views.

In contrast, the content-based view is a weak view: the grammar “(Number) Number

- Number” describes a concept more general than the one of interest because it cannot

discriminate between the various types of numbers that may appear in the document

(e.g., home, cellular, and fax numbers).

Despite its limitations, the content-based view can be extremely informative for Co-

Testing. For example, one can use the grammar “(Number) Number - Number” to

detect the most informative contention points; that is, the unlabeled examples on which

the two strong rules extract different strings that are both inconsistent with the content-

based grammar. In this scenario, each query represents a mistake not only in one, but in

both strong views, thus leading to faster convergence.

More formally, the weak views can be exploited by the query selection strategy. First,

in the context of learning with strong and weak views, let me redefine the contention

points as the unlabeled examples on which the strong views predict a different label. Then

one can choose to query the contention points on which the weak view most confidently

30

Name: <i> Gino’s </i><p> Phone: <i> (800) 111-1717 </i><p> Fax: (616) 111-...

BackTo(Fax) BackTo(</i>)R2:R1: SkipTo(Phone : <i>)

R3: (Number) Number - Number

Figure 3.5: Both the forward rule R1 and the backward rule R2 detect the beginning
of the restaurant’s phone number. The rule R3 consists of a grammar that describes the
content of the item to be extracted.

contradicts both strong views. Such queries are highly likely to represent a mistake in both

strong views, which implies large cuts in both strong version spaces. In section 3.4.2, I

describe an Aggressive Co-Testing algorithm for wrapper induction that uses both strong

and weak views.

The idea of combining strong and weak views clearly appears in applications other

that wrapper induction, even though it was not formalized as such and it was not used

for active learning. For example, in (Kushmerick, Johnston, and McGuinness, 2001), the

authors discuss the problem of classifying the various lines of text on a bussines card as

a person’s name, affiliation, address, phone number, fax, etc. In this application, the

strong view consists of the words that appear on each line, based on which a Naive Bayes

text classifier is learned. In the weak view, Kushmerick et al. exploit the relative order

of the lines on the card: they learn a hidden Markov Model that predicts the probability

of a particular ordering of the lines on the bussines card (e.g., name followed by address,

followed by phone number).

This weak view defines a class of concepts that is more general than the target concept:

all line orderings are possible, even though they are not equally probable. By itself, the

order of the text lines cannot be used to accurately classify the lines. However, when

combined with the strong view, the ordering information leads to a classifier that clearly

outperforms the stand-alone strong view (Kushmerick, Johnston, and McGuinness, 2001).

The idea of combining strong and weak views also appears in the discotex sys-

tem (Nahm and Mooney, 2000), which combines an information extraction system (the

strong view) with a text mining one (the weak view). In this case, the task consists of

31

extracting the relevant information from computer science job postings to the newsgroup

austin.jobs; that is, discotex must extract the job title, salary, location, programming

languages, development platforms, required degree, etc.

Nahm and Mooney (2000) propose the following approach to this problem: first, they

use the rapier algorithm (Califf and Mooney, 1999) to learn extraction rules for each item

of interest. Second, they apply the learned rules to a large, unlabeled corpus of job post-

ings and create a database that is populated with the extracted information. Third, by

applying a text mining algorithm to this database, they learn rules that predict the value

of a particular item based on the values extracted from other fields. For example, the text

mining algorithm may discover the following pattern: “IF the job requirements include

knowledge of c++ and corba THEN the development platforms include Windows”. Fi-

nally, when the information extraction system is deployed and the rapier rules fail to

extract an item of interest, the rules mined from the text are used to predict the content

of that particular item.

In this scenario, the rapier rules represent the strong view because these rules are

sufficient for extracting the data of interest. In contrast, the mined rules represent the

weak view because they cannot be learned or used by themselves. Furthermore, as dis-

cotex discards all but the most accurate of the mined rules, which are highly-specific, it

follows that the weak view can be used to learn only concepts that are more specific than

the target concept. However, Nahm and Mooney (2000) show that these overly specific

mined rules improve the extraction accuracy by capturing information that complements

the rapier extraction rules.

3.3 Why does Co-Testing work?

In order to better understand why Co-Testing works and how it compares with other

algorithms, I analyze its behavior on the High-Low learning problem, which was used in

the past to study the convergence of the Query-By-Committee active learner (Hasenjager

32

and Ritter, 1996; Freund et al., 1997; Hasenjager, 2000). More precisely, I use the

High-Low problem to compare and contrast the convergence properties of three types of

learning strategies:

- active learning: Co-Testing (Muslea, Minton, and Knoblock, 2000b), Uncertainty Sam-

pling (Lewis and Gale, 1994), Query-by-Committee (Seung, Opper, and Sompolin-

ski, 1992);

- semi-supervised learning: Co-Training (Blum and Mitchell, 1998);

- random sampling (i.e., randomly choose the examples to be labeled).

In my analysis, I focus on two variants of the High-Low problem: 2-dhl and 1-

dhl. The former can be seen as the formalization of the multi-view faculty - non-faculty

learning problem discussed in section 3.1; the latter represents the single-view version

of 2-dhl (e.g., discriminate between faculty and non-faculty based solely on a person’s

salary). I use 1-dhl and 2-dhl to illustrate the convergence properties of the single-view

and multi-view learning algorithms, respectively.

3.3.1 The High-Low learning problems

In the 1-view, discretized High-Low problem (1-dhl), the goal is to learn a target function

of the form

f : [1, H] �→ {0, 1}, f(X) =

l1 if X ≤ wTC

l2 if X > wTC

where wTC ∈ {1, 2, 3, . . . , H}, l1, l2 ∈ {0, 1}, and l1 = l2. In other words, the goal is

to learn the threshold value wTC that divides the interval [1, H] in two sub-intervals in

which the examples have the same label (i.e., l1 or l2); furthermore, the learner must also

identify which of the two labels denotes the positive and negative examples, respectively

(i.e., f(X) = 1 and f(X) = 0). Figure 3.6 illustrates such a learning task, in which

H = 7, wTC = 3, l1 = 0, and l1 = 1.

For 1-dhl, I make the following assumptions:

33

1 2 4 5 6 7

- - + +- + +
3

w = 3

Figure 3.6: Illustrative 1-dhl task (wTC = 3, H = 7, l1 = 0, and l1 = 1) with four
positive and three negative examples.

- the real-valued variable X has a uniform distribution over the interval [1, H];

- the target concept is perfectly learnable (i.e., there is no noise in the domain).

The 2-view, discretized High-Low learning problem (2-dhl) is a 2-dimensional version

of 1-dhl. In 2-dhl, the target function takes the form

g : [1, w1
TC] × [1, w2

TC]
⋃

(w1
TC , H1] × (w2

TC , H2] �→ {0, 1},

g(X, Y) =

l1 if X ≤ w1
TC and Y ≤ w2

TC

l2 if X > w1
TC and Y > w2

TC

where w1
TC ∈ {1, 2, 3, . . . , H1}, w2

TC ∈ {1, 2, 3, . . . , H2}, l1, l2 ∈ {0, 1}, and l1 = l2.

As shown in Figure 3.7.a, this translates into a 2-dimensional instance space that is di-

vided in four rectangular regions. The top-right and bottom-left quadrants are populated

by positive and negatives examples (either class can occupy either quadrant, but each

quadrant consists only of examples having the same label), while the two other quadrants

remain unpopulated because of h’s domain restriction to [1, w1
TC]× [1, w2

TC]
⋃

(w1
TC , H1]×

(w2
TC , H2].

The 1-dhl assumptions are also made in 2-dhl:

- the real-valued variables X and Y are uniformly distributed within the rectangles

[1, w1
TC] × [1, w2

TC] and (w1
TC , H1] × (w2

TC , H2];

- the target concept is perfectly learnable.

34

w

w2

1

+

-

H

H1

2

--
-

-
-- -

- --

+

+
+
+

++
+

+ +
++
+

+

++

+
+

+
+

w1

w2

Post-Doc

Assistant Professor

Associate Professor

Full Professor

Grad-Student

-
-

+

+

+

-- -
--

+
+ +

+

+
+
+

H

H1

2

a) Illustrative 2-dhl target concept. b) Domain with two classes and five clumps.

Figure 3.7: The leftmost image shows how a 2-dhl target concept splits instance space
in quadrants; for a domain in which the two views are “independent given the label”, the
light and dark grey rectangles also depict the (uniform) distribution of the examples over
negative and positive regions in instance space, respectively. In contrast, the rightmost
picture shows the (uniform) distribution of the examples within the five clumps of a 2-dhl
domain in which the two views are “independent given the clump”.

Note that, by construction, 2-dhl is a multi-view learning problem: the restriction

of the domain to [1, w1
TC] × [1, w2

TC]
⋃

(w1
TC , H1] × (w2

TC , H2] guarantees that either of

the two thresholds, w1
TC or w2

TC , is sufficient to correctly classify any example. The two

resulting views, V1 and V2, consist of the single attributes X and Y , respectively.

In keeping with the multi-view setting, 2-dhl can be decomposed into solving a 1-dhl

problem in each view. The corresponding target functions are g1 : [1, H1] �→ {0, 1} and

g2 : [1, H2] �→ {0, 1}, where

g1(X) =

l1 if X ≤ w1
TC

l2 if X > w1
TC

and

g2(Y) =

l1 if Y ≤ w2
TC

l2 if Y > w2
TC

35

The perfect learnability of the target concept g(X, Y) implies that both g1(X) and

g2(Y) are also perfectly learnable. In turn, this guarantees the compatibility of the views

V1 and V2: by definition, any pair of target concepts that label all examples identically

are compatible (see chapter 2). In terms of view correlation, I consider two main scenarios:

- given an example’s label, the views are independent. This is the original multi-

view assumption made by Blum and Mitchell (1998): for any example 〈x, y, ?〉,
given its label l, the values x and y are independent of each other. Intuitively, this

means that guessing an example’s description in V1 from it’s description in V2

is as difficult as guessing an example’s description in V1 from it’s label. In other

words, in terms of guessing an example’s description in V1, its description in V2

and its label are equally (un)informative. A similar statement holds for guessing

an example’s description in V2.

- given an example’s clump, the views are independent. This is a relaxed version

of the assumption above: as explained in chapter 2, domain clumpiness, which

corresponds to having several sub-classes for each concept of interest, violates the

original view independence assumption. For example, as depicted in Figure 3.7.b,

in the faculty - non-faculty domain, the faculty class can be seen as having three

clumps: assistant, associate, and full professors. Similarly, the non-faculty class has

two clumps: graduate students and post-docs.

In my analysis I consider only the simplest form of domain clumpiness, in which the

domain of a target concept with C clumps has the form

[1, α1] × [1, β1] ∪ (α1, α2] × (β1, β2] ∪ (α2, α3] × (β2, β3] ∪ . . . (αC−1, αC] × (βC−1, βC]

where αC = H1, βC = H2, and ∀i ∈ {1, 2, 3, . . . , C−1}, αi < αi+1&βi < βi+1 . Intuitively,

this corresponds to a “diagonal” of rectangular clumps that touch each other in a single

point; furthermore, the clumps do not have overlapping domains (see Figure 3.7.b).

36

It is easy to see that the “independent given clump” assumption imposes weaker

domain constraints than “independent given label” (i.e., it allows for more than one

clump per class). Intuitively, the former means that, in terms of guessing an example’s

description in V1, the example’s description in V2 is more informative than its label:

the example’s description in V2 determines the clump it belongs to, thus reducing the

range of possible descriptions in V1 to the ones specific to that particular clump. In

contrast, knowing the example’s label restricts the set of possible values to a larger set,

which covers all the clumps in the class.

3.3.1.0.1 The base learner. As a base learner for both 1-dhl and the two views

in 2-dhl, I use the Gibbs algorithm (Mitchell, 1998; Hasenjager, 2000), which proceeds

as follows:

- first, it searches through the labeled examples and detects the borders Min and Max

of version space. That is, Min is the smallest integer in [1, H1] that is greater than

or equal to the values of all negative examples (see Figure 3.8). Similarly, Max is

the largest integer lower-bound for the positive examples.

- then it sets the threshold w to a randomly-chosen integer in the range [Min, Max].

Note that the Gibbs algorithm is not the only possible base learned for 1-dhl. For

example, one could solve 1-dhl based on a deterministic base learner that sets w =

(Min + Max)/2. I have chosen to use the Gibbs algorithm for a straightforward reason:

Query-by-Committee (Seung, Opper, and Sompolinski, 1992), which is the only existing

active learner for which there is a theoretical proof of convergence (Freund et al., 1997),

requires a base learner that can randomly sample hypotheses from the version space. The

Gibbs algorithms is the simplest base learner that fulfills this requirement.

Three of the considered algorithms, Uncertainty Sampling, Co-Training and Aggres-

sive Co-Testing, rely on the ability of a hypothesis to evaluate the confidence of its

predictions. For the base learner above, a prediction’s confidence can be measured as

37

1 2 3 4 5 6 7

- - - - + +++

Version Space

Min Max
Figure 3.8: Using four positive and four negative examples to determine the Min and
Max borders of the version space for a 1-dhl learning problem.

follows: the closer the value of the unlabeled example to the threshold w, the lower the

confidence of the prediction. For instance, for the 1-dhl task depicted in Figure 3.6, the

predictions f(1) and f(7) are the most confident negative and positive predictions, re-

spectively. The least confident predictions are the one made near the decision threshold:

f(3 ± ε), where ε is a small, positive real number.

3.3.2 Convergence properties for single-view algorithms

In this section, I present and comment on the convergence of three single-view algorithms:

Query-by-Committee, Uncertainty Sampling, and Random sampling. The proofs of all

the results in this chapter are presented in Appendix A.

Proposition 1 On the 1-dhl problem, the Uncertainty Sampling algorithm requires

O(log(H)) queries to learn the target concept.

Proposition 2 On the 1-dhl problem, with an arbitrarily high probability, the Query-

by-Committee algorithm requires O(log(H)) queries to learn the target concept.

Proposition 3 On the 1-dhl problem, the probability that the Random Sampling al-

gorithm correctly learns the target concept based on E (randomly chosen) examples is

1 − 2×(H−2)E−(H−3)E

(H−1)E .

38

The propositions above can be summarized as follows: for the 1-dhl problem, the two

active learners converge in a number of queries logarithmic in the size of the version space.

In contrast, regardless of the number of queries made by Random Sampling, this third

algorithm converges only asymptotically to the target concept (the larger the number of

examples, the larger the probability of converging).

Note that for 1-dhl, Uncertainty Sampling and Query-by-Committee make an (near)

optimal number of queries. As 1-dhl is equivalent to finding a particular value within

a sorted array, it follows that - in the general case - one cannot do better than binary

search, which requires log(H) tests (i.e., queries). As I show in the next section, in the

multi-view setting one can converge much faster than this.

3.3.3 Convergence properties for multi-view algorithms

3.3.3.1 Views that are independent given the label

The results below show that - in the multi-view setting - one needs just a few examples

to learn the target concept. When presented with a training set that consists of one

randomly-chosen positive and one randomly-chosen negative example:

- Co-Training learns the target concept based on these two labeled and many unlabeled

examples.

- Co-Testing, besides the two examples in the initial training set, makes at most four

additional queries to learn the target concepts in both views.

In contrast, the optimal, domain-specific strategy requires just one randomly-chosen la-

beled example x: given that each of the two populated quadrants in Figure 3.7.a consists

of examples that have the same label, it follows that all examples in x’s quadrant share

its label, while the examples in the other quadrant have the other label.

Proposition 4 By using domain-specific knowledge, one can solve the 2-dhl problem

based on a single, randomly-chosen query.

39

Proposition 5 On the 2-dhl problem, the Co-Training algorithm requires only one ran-

dom positive and one random negative examples to learn the target concept.

Proposition 6 On the 2-dhl problem, when provided with one random positive and one

random negative examples, Aggressive Co-Testing requires at most four queries to learn

the target concepts in both views.

3.3.3.2 Views that are independent given the clump

The results above could be proved only because of the extremely strong (and unrealistic)

assumption that the views are independent given the label. I relax now this condition

by assuming that the views are independent given the clump, which still allows faster

converge than single-view algorithms. These theoretical results are further reinforced by

the controlled, text-classification experiment described in chapter 4.

In this section I denote the number of clumps in the domain by NmbClumps. I

also assume that the number of clumps is relatively small compared with the size of the

domain (i.e., NmbClumps � min(H1, H2)).

Proposition 7 By using domain-specific knowledge, one can solve the 2-dhl problem

based on O(log(NmbClumps)) queries.

Proposition 8 Depending on the distribution of the examples in the initial training set,

Co-Training may or may not learn the target concept for the 2-dhl problem.

Proposition 9 On the 2-dhl problem, with an arbitrarily-high probability, Aggressive

Co-Testing learns the target concept in both views by making at most 2 × NmbClumps

queries.

The intuition behind these results is the following: in order to “discover” all clumps

and label them correctly, Aggressive Co-Testing requires a number of queries linear in

NmbClumps. For NmbClumps � min(H1, H2), this means that Aggressive Co-Testing

40

convergences faster than Query-by-Committee, Uncertainty Sampling, and Random Sam-

pling.

In contrast, Co-Training cannot be guaranteed to converge unless its randomly chosen

training set contains at least a positive and a negative example from the “decision-border

clumps” (e.g., in Figure 3.7.b, the “decision-border clumps” are the ones corresponding

to post-docs and assistant professors).

Finally, the optimal, domain-specific solution converges in O(log(NmbClumps)) queries

by performing binary search in the space of clumps. In the degenerate scenario in which

the views are totally correlated (i.e., NmbClumps = H1 = H2 = H), this is equivalent

to the O(log(H)) queries made by Query-by-Committee and Uncertainty Sampling.

3.3.4 Discussion

The results above require several comments. First of all, in contrast to the single-view

learning scenario, the multi-view setting imposes powerful constraints on the distribution

of the examples in the domain. By exploiting these constraints, a multi-view learner

can converge to the target concept much faster than its single-view counterparts. Both

Co-Training and Co-Testing implicitly exploit the multi-view assumption that all the

examples should have the same label in both views; the former does it by bootstrapping

the views from each other, while the latter asks the user to label the examples that do

not seem to have the same label.

Second, the analysis above assumes that the domain is noise-free, which - in turn -

implies that the views are compatible. Extending the results for noisy domains is an

extremely difficult task, even in the single-view framework. One straightforward observa-

tion is the following: on noisy domains, an active learner is likely to make more queries

because querying a mislabeled example is either uninformative or misleading. Quantify-

ing the exact effect of the noise is tightly related to the distribution of the noisy examples

over the instance space, which - in turn - varies from one learning task to another.

41

Finally, in my analysis I have considered both the ideal scenario, in which the views are

independent given the label, and a more realistic one, in which the views are independent

given the clump. On problems with several clumps per class, Co-Training cannot be

guaranteed to work properly, while Co-Testing still converges in a number of queries that

is linear in the number of clumps. For a relatively small number of clumps this implies

faster convergence than the single-view learners. As the views become more correlated

(i.e., the number of clumps increases), the advantages of multi-view learning tend to

disappear.

3.4 Co-Testing for wrapper induction

In wrapper induction, each item of interest is described by three strings of variable length:

the item’s content, together with its prefix and suffix within the document. As this is

not a typical machine learning representation in which an example’s description in each

view consists of a fixed number of feature, I describe here in detail how Co-Testing can

be applied to wrapper induction. As a first step, I introduce the basic ideas in stalker

(Muslea, Minton, and Knoblock, 2001), which is the state of the art wrapper induction

algorithm that I use as base learner. Consider the illustrative task of extracting phone

numbers from documents similar to the Web-page fragment shown in Figure 3.5. In

stalker, an extraction rule consists of a start rule and an end rule that identify the

beginning and the end of the item, respectively. Given that start and end rules are

extremely similar, for the time being I describe only the former. For instance, in order

to find the beginning of the phone number, one can use the start rule

R1 = SkipTo(Phone :<i>)

This rule is applied forward, from the beginning of the page, and it ignores everything

until it finds the string Phone:<i>. For a slightly more complicated extraction task, in

which only the toll-free numbers appear in italics, one can use a disjunctive start rule

such as

42

R1′ = either SkipTo(Phone :<i>)

or SkipTo(Phone :)

An alternative way to detect the beginning of the phone number is to use the start

rule

R2 = BackTo(Fax) BackTo((Number))

which is applied backward, from the end of the document. R2 ignores everything until it

finds “Fax” and then, again, skips back to the first number between parentheses.

As described in (Muslea, Minton, and Knoblock, 2001), rules such as R1 and R2

can be learned based on user-provided examples of items to be extracted. Note that R1

and R2 represent descriptions of the same concept (i.e., start of phone number) that are

learned in two different views. That is, the views V1 (forward view) and V2 (backward

view) consist of the sequences of characters that precede and follow the beginning of the

item, respectively.

3.4.1 Naive Co-Testing with stalker extraction rules

As mentioned above, in order to extract an item of interest, stalker must detect both

where the item starts and where it ends. In other words, for each item, stalker learns

two target concepts: the start of the item (i.e., the start rule) and the end of the item (i.e.,

the end rule). As for both the start and end rules Co-Testing learns both a forward and

a backward rule, one can obtain several types of extraction rules by simply using various

combinations of forward/backward, start/end rules. Three of these possible combinations

turned out to be of practical importance (Muslea, Minton, and Knoblock, 2000a):

- FF extraction rules: use a Forward start rule and a Forward end rule;

- FB extraction rules: use a Forward start rule and a Backward end rule;

- BB extraction rules: use a Backward start rule and a Backward end rule.

43

Forward−Forward Rule (FF):

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

SkipTo()− Number

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

Name:<i>Gino’s</i><p>Phone:<i> (800) 111−1717 </i><p>Cuisine: ...

Forward−Backward Rule (FB):

Backward−Backward Rule (FF):

(BackTo()

Phone:<i>SkipTo()

Phone:<i>SkipTo() </i><p>CuisineBackTo()

</i><p>CuisineBackTo()

Figure 3.9: Three types of extraction rules: FF, FB, and BB.

Figure 3.9 illustrates how the FF, FB, and BB rules work. For example, a FF rule

first detects the start of the item by applying the forward start rule; then the forward

end rule is applied from the point where the start rule matched. The BB rule

works in a similar manner: first, it detects the end of the item by using the backward

end rule; then the start is found by applying the backward start rule from the point

where the end rule matched. Finally, a FB rule detects the start and end of the item

independently of each other by simply applying the start and end rules from the start

and end of the document, respectively.

Given the forward and backward views, applying Co-Testing to wrapper induction

is a straightforward process. First, stalker uses the labeled examples to learn for-

ward/backward start and end rules. Then these rules are used to create the FF, FB, and

44

BB extraction rules. The contention points are unlabeled examples on which at least two

of the three extraction rules do not extract the same string. Finally, as stalker does not

provide an estimate of the confidence of each extraction, the only Co-Testing algorithm

that can be used based on the forward and backward views is Naive Co-Testing with the

winner-takes-all output hypothesis. That is:

- each query is randomly chosen among the contention points (Naive Co-Testing);

- the output hypothesis is the one among the FF, FB, and BB rules that makes the

fewest mistakes on the queries (i.e., winner-takes-all).

3.4.2 Aggressive Co-Testing with strong and weak views

The forward and backward stalker views lead to extraction rules that rely mostly

on the context of the item to be extracted (i.e., the text surrounding the item in the

document). As described earlier, in addition to these two strong views, one can use a

third, content-based, weak view, which describes the actual item to be extracted. For

example, when extracting phone numbers, one may be able to exploit the fact that they

can be described by a simple grammar: “(Number) Number - Number”. Similarly, when

extracting urls, one can take advantage of the fact that a typical url starts with the

string “http://www.”, ends with the string “.html”, and contains no html tags.

I use the following features to describe the content of each item to be extracted:

- the length range (in tokens) of the seen examples. For instance, all phone number in

the format “(Number) Number - Number” consist of six tokens (i.e., the three

numbers together with the dash and the two parentheses).

- the token types that appear in the seen examples. This feature consists of a set of the

most specific wildcards (e.g., Number, AllCaps, etc) that match the tokens encoun-

tered in the item to be extracted. For example, in the phone number case, this

list consists of two wildcards: Number and Punctuation. The complete hierarchy of

wildcards is described in Figure 3.10.

45

AllCaps

non-Html

AnyToken

Html

AlphaNumeric Punctuation

NumberAlphabetic

Capitalized

Figure 3.10: The hierarchy of wildcards used by the stalker wrapper induction algo-
rithm. The parent-child relationship in the tree denotes the IsMoreGeneralThen relation-
ship. For example, the most general wildcard is AnyToken, which matches all possible
tokens. The nonHtml wildcard, which is a child of AnyToken, denotes all tokens than are
not html tags (i.e., alphanumeric tokens and punctuation signs).

- a start-pattern such as “http://www.” or “(Number)”, which describes the template

at the beginning of the item of interest.

- an end-pattern such as “AlphaNum .html” or “Number - Number”, which describes the

template at the end of the item of interest.

In order to learn the content-based description of an item, I use a base learner that

can be seen as a simplified version of the DataPro algorithm (Lerman and Minton, 2000;

Knoblock et al., 2002). After tokenizing each of the user-provided examples of the item

to be extracted, the weak-view learner proceeds as follows:

- the length range is determined by finding the examples that contain the largest and the

smallest number of tokens;

- the token types is obtained by going through the tokens that appears in the labeled

examples and adding to the set of “seen types” the most specific wildcard that

covers it.

46

- a start-pattern of length one consists of the most specific wildcard that covers the first

token in all labeled examples (note: in case all examples start with the same token,

such as “” in the phone number example, the actual token is preffered to the most

specific wildcard). A start-pattern of length k can be generated by repeating the

procedure above for the first, second, third, . . . , up to k-th position.

- the end-pattern is learned in the same manner as the start pattern, but using the k

tokens at the end of the item.

Given the forward, backward, and content-based views, one can implement an ag-

gressive version of Co-Testing for wrapper induction. First, stalker uses the labeled

examples to learn forward/backward start and end rules, which are then used to create

the FF, FB, and BB extraction rules. Based one the same examples, one can also use

the weak-view learner above to generate the corresponding content-based rule. The con-

tention points are, again, unlabeled examples on which at least two of the three extraction

rules do not extract the same string. Based on the three views above, I now present a

more sophisticated version of Co-Testing:

- the next query is the contention point of which most of the FF, FB, and BB rules

violate as many as possible of the constraints learned in the weak view. That

is, the extracted strings are longer/shorter than the seen examples, they contain

types of tokens that were not encountered in the training set, and the start- and

end- patterns do not match. This is an agressive query selection strategy1 because

violating as many as possible of the constraints learned in the weak views means

that the content-based hypothesis is maximally confident that the stalker rules

are not extracting the correct string.

- the output hypothesis is obtained by majority voting. More precisely, given a new,

unseen document, the FF, FB, and BB rules are applied to the document and

1Remember that by an agressive query selection strategy I mean querying the contention point on
which the hypotheses make the most confident prediction.

47

the “winner” is the stalker rule that violates the smallest number of constraints

learned in the weak view. Note that this is an extremely flexible approach, which

allows Co-Testing to use the most appropriate type of rule (i.e., FF, FB, or BB)

for each individual document.

3.5 Empirical Evaluation

This section describes several set of experiments in which I compare Co-Testing with

other active learning algorithms. First I present results for wrapper induction, which

is my main motivating problem. Then I discuss the experiments conducted on three

additional real-world domains in which the features can be naturally partitioned in two

views.

3.5.1 Wrapper induction experiments

3.5.1.1 The six algorithms in the comparison

In practice, it is difficult to find algorithms against which to meaninfully compare the

performance of Co-Testing: despite the importance of learning high-accuracy wrappers

based on a minimal number of labeled examples, there are no reported results on active

learning for wrapper induction.2 Furthermore, most of the existing active learners cannot

be applied in a straightforward manner to base learners such as the stalker wrapper

induction algorithm:

- Uncertainty Sampling (Lewis and Gale, 1994) cannot be used because stalker is

unable to evaluate the confidence of its predictions;

- Query-by-Committee (Seung, Opper, and Sompolinski, 1992) cannot be applied because

stalker cannot randomly sample hypotheses from the version space;
2The only related approaches, (Thompson, Califf, and Mooney, 1999) and (Soderland, 1999), were

designed for systems that learn extraction rules from free text. These active learners are similar to Uncer-
tainty Sampling (Lewis and Gale, 1994) and were crafted based on heuristics specific to their respective
base learners, rapier and whisk.

48

- sg-net (Cohn, Atlas, and Ladner, 1994) cannot be used because stalker cannot gen-

erate most specific and most general extraction rules;

- Query-by-Boosting (Abe and Mamitsuka, 1998) cannot be applied because stalker

rarely makes mistakes on the training set, thus annihilating the ability of the boost-

ing algorithm (Schapire, 1990; Bauer and Kohavi, 1999) to generate a diverse com-

mittee.

Query-by-Bagging (Abe and Mamitsuka, 1998) is the only existing active learning

algorithm that can be applied in a straighftforward manner to stalker (and, more

generally, to wrapper induction). Query-by-Bagging works by generating a committee of

extraction rules and querying unlabeled examples on which the committee is the most

split (i.e., the rules in the committee extract the largest number of distinct strings). The

committee of extraction rules is created by repeatedly re-sampling (with substitution)

the examples in the original training set L.

In the empirical evaluation below, I compare Naive and Aggressive Co-Testing with

Random Sampling and Query-by-Bagging. Random Sampling, which is used as straw-

man, is identical with Naive Co-Testing with winner takes all, except that it randomly

queries one of the unlabeled examples from the working set. For Query-by-Bagging, I cre-

ate a committee of 10 extraction rules, each of which is obtained by running stalker on

a training set generated by re-sampling L.3 The output hypothesis for Query-by-Bagging

works by majority voting the 10 extraction rules. Given that stalker can generate three

types of extraction rules (i.e., FF, FB, and BB), I run Query-by-Bagging for each type

of rule and report three sets of results: Query-by-Bagging(FF), Query-by-Bagging(FB),

and Query-by-Bagging(BB).

3For Query-by-Bagging, I use a relatively small committee (i.e., a 10-rule committee) because of the
scarcity of the training data: as wrapper induction algorithms are expected to learn the extraction rules
based on a handful of examples, sampling-with-replacement from the small original training set leads to
few possible training sets for the members of the committee.

49

3.5.1.2 The experimental setup

In order to empirically compare the algorithms above, I use the wrapper induction testbed

introduced by Kushmerick (1998, 2000). It consists of 206 extraction tasks from 30 Web-

based information sources4. As shown in (Muslea, Minton, and Knoblock, 2001), on most

of these 206 tasks stalker learns a 100% accurate extraction rule based on just one or

two randomly chosen labeled examples. In this empirical evaluation I consider the 33

most difficult extraction tasks in the testbed:

- the 28 tasks on which, based on 20 random examples, stalker fails to learn 100%-

accurate rules of at least one of the three types (i.e., FF, FB, and BB);

- the five additional tasks on which stalker requires a larger than usual number of

randomly-chosen examples to learn 100%-accurate rules of all three types (i.e., at

least seven examples).

For each of the 33 tasks, Table 3.1 provides the following information:

- task identifier (for example, S1-0 designates task 0 from source S1);

- original source name from (Kushmerick, 2000);

- name of the item to be extracted;

- total number of examples in the domain;

Table 3.1 also provides information about the performance of stand-alone stalker (i.e.,

with up to 20 randomly chosen examples). Columns 5-7 show the number of examples

required to reach 100% accuracy for FF, FB, and BB rules, respectively. If a 100%-

accurate rule is not learned, Table 3.1 shows instead the accuracy reached based on 20

random examples.

For each of the 33 learning tasks, I use 20-fold cross-validation to compare the per-

formance of Co-Testing with that of its randomized counterpart and the three versions
4All these datasets, together with a detailed description of each extraction task, can be obtained from

the RISE repository, which is located at http://www.isi.edu/∼muslea/RISE/index.html.

50

Task Source Item Nmb stalker
ID name name exs FF FB BB

S1-0 Price 404 8 8 8
S1-1 Computer ESP URL 404 98.76% 96.53% 96.53%
S1-2 Item 404 7 96.53% 95.78%
S2-0 URL 501 99.00% 99.00% 99.00%
S2-1 CNN/Time Source 501 97.99% 97.39% 94.82%
S2-2 AllPolitics Title 499 79.63% 93.89% 93.79%
S2-3 Date 492 91.63% 91.63% 97.74%
S3-0 URL 175 99.43% 9 9
S3-1 Name 175 99.43% 99.43% 99.43%
S3-3 Film.com Size 175 99.43% 99.43% 99.43%
S3-4 Search Date 175 5 14 14
S3-5 Time 175 98.85% 98.85% 14
S6-1 PharmaWeb WWLPS University 27 96.15% 92.31% 96.15%
S9-10 Internet Arival Time 44 95.35% 95.35% 95.35%
S9-11 Travel Network Availability 39 97.37% 97.37% 13
S11-1 Internet Email 91 13 13 6
S11-2 Address Update 91 7 71.11% 71.11%
S11-3 Finder Organization 72 98.59% 71.83% 71.83%
S15-1 NewJour: EJ&N Name 355 99.15% 99.15% 99.15%
S19-1 Shops.Net Score 201 99.00% 99.00% 99.00%
S19-3 Item Name 201 97.00% 97.00% 97.00%
S20-3 Democratic Score 91 99.18% 99.18% 97.55%
S20-5 Party Online File Type 328 99.18% 99.18% 99.18%
S24-0 Foreign Language 690 8 8 8
S24-1 Languages for URL 424 16 98.87% 95.04%
S24-3 Travelers Translation 690 94.34% 94.34% 85.90%
S25-0 U.S. Tax Code URL 328 98.47% 14 14
S26-3 Price 377 98.94% 99.20% 99.20%
S26-4 CD Club Artist 377 96.01% 94.02% 94.82%
S26-5 Web Server Album 377 90.69% 90.69% 37.33%
S28-0 Cyberider URL 751 97.73% 99.07% 99.07%
S28-1 Cycling WWW Relevance 751 98.40% 3 19
S30-1 Congress Qrtrly Person Name 30 7 6 7

Table 3.1: The 33 extraction tasks used in the empirical evaluation.

51

of Query-by-Bagging that learn FF, FB, and BB rules, respectively. All six algorithms

start with two randomly chosen examples and make 18 successive queries. The reported

error rate is averaged over the 20 folds.

3.5.1.3 The empirical results

Figure 3.11 shows illustrative learning curves obtained on three of the 33 learning tasks.

These graphs correspond to the three main scenarios encountered in practice:

- the two Co-Testing algorithms learn 100% accurate rules, while all the other four algo-

rithms fail to do so. This scenario is depicted on the top graph, and it occurs in 10

of the 33 tasks.

- the two Co-Testing algorithms and at least another algorithm learn a 100% accurate

rule, but Co-Testing requires fewer queries. This scenario is depicted in the middle

graph, and it occurs on 18 of the 33 tasks.

- none of the six considered algorithms learns a 100% accurate rule (five tasks).

Figure 3.12 summarizes the performance of the six algorithms over the 33 extraction

tasks. In each of the six graphs, the X axis shows the number of queries made by the

algorithm, while the Y axis shows the number of tasks for which a 100% accurate rule

was learned based on exactly X queries. All algorithms start with 2 random examples and

make 18 additional queries; by convention, the “19 queries” data point corresponds to

the tasks on which the algorithm cannot learn a 100% accurate rule based on 20 labeled

examples.

As shown in Figure 3.12. the two Co-Testing algorithms clearly outperform their

single-view counterparts, with Aggressive Co-Testing doing significantly better than Naive

Co-Testing. Aggressive Co-Testing learns 100% accurate rule on 30 of the 33 tasks, and,

what is more, all these 30 extraction rules are learned based on at most seven queries.

Note than in one third of the tasks (11 of 33), a single, “aggressively-chosen” query is

sufficient to learn the correct extraction rule. In contrast, Naive Co-Testing succeeds at

52

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

er
ro

r
ra

te
 (

%
)

labeled examples

S2-1

Aggressive Co-Testing
Naive Co-Testing

qBag(FB)
qBag(FF)
qBag(BB)

Random

0
5

10
15
20
25
30
35
40
45

2 4 6 8 10 12 14 16 18 20

er
ro

r
ra

te
 (

%
)

labeled examples

S24-3

Aggressive Co-Testing
Naive Co-Testing

qBag(FB)
qBag(FF)
qBag(BB)

Random

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20

er
ro

r
ra

te
 (

%
)

labeled examples

S26-5

Aggressive Co-Testing
Naive Co-Testing

qBag(FB)
qBag(FF)
Random

Figure 3.11: Illustrative results on three wrapper induction tasks: S2-1, S24-3, and
S26-5. For clarity, the bottom graph does not include the results for qBag(BB), which
reaches an error rate of only 70%.

53

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Aggressive Co-Testing

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Naive Co-Testing

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Random Sampling

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Query-by-Bagging (FB)

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Query-by-Bagging (FF)

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Query-by-Bagging (BB)

Figure 3.12: Convergence results for the 33 wrapper induction tasks.

54

converging in a single query on just four of the 33 tasks, while the single-view algorithms

are not able to do so even for a single task.

Naive Co-Testing learns 100% accurate rules on 28 of the 33 tasks. On 26 of these 28

tasks, the extraction rules are learned based on at most six queries. In contrast, Random

Sampling leads to only seven rules that are 100% accurate, with Query-by-Bagging slightly

outperforming it: when learning FF, FB, and BB extraction rules, Query-by-Bagging

obtains 12, 10, and 10 rules that are 100% accurate, respectively. In other words, the two

Co-Testing algorithms learn the correct target concept in more than twice as many tasks

than Query-by-Bagging.

Remember that on two of the 33 tasks, S11-3 and S26-5, Aggressive Co-Testing

fails to learn a 100% accurate rule. In fact, on S11-3, both Query-by-Bagging(FF) and

Random Sampling obtain more accurate rules than Aggressive Co-Testing (error rates of

0% and 1.41%, as opposed to 4.23%). Furthermore, on both S11-3 and S26-5 , at least

one of the single-view algorithms also outperforms Naive Co-Testing. This situation is

due to the fact that, on both extraction tasks, the backward view is significantly less

accurate than the forward one (see Table 3.1). Such circumstances lead to a large

number of contention points that are mislabeled by the “bad view,” in which one cannot

learn the correct rule even if provided with all available examples. Consequently, the

distribution of the queries is skewed towards mistakes of the “bad view”, which are not

informative for either view: the “good view” makes the correct prediction on them, while

the “bad view” is inadequate to learn the target concept. In order to cope with this

problem, in chapter 5 I introduce a view validation algorithm that predicts whether or

not the views are appropriate for a particular task.

Finally, to conclude the discussion on wrapper induction, I will briefly compare the

results above with the ones obtained by wien (Kushmerick, 2000), which is the only wrap-

per induction system for which there are published empirical results for all the extraction

tasks in the testbed used here. As the two experimental setups are not identical5, this is

5wien was not evaluated based on cross-validation, but rather by randomly spliting of the available
examples into training and test sets of various sizes.

55

just an informal comparison. However, this comparison puts our results into perspective

by contrasting Co-Testing with another approach to wrapper induction.

The results can be summarized as follows: wien, which uses random sampling, fails

to learn an extraction rule for 18 of the 33 task (as apposed to stalker, wien does not

return any extraction rule unless it works perfectly on the training set). This set of 18

tasks includes both the three tasks on which Aggressive could not learn a 100% accurate

rule and the five tasks on which Naive Co-Testing failed to learn perfect rules. On the

remaining 15 of the 33 tasks, wien requires between 25 and 90 examples6 to learn the

correct rule. For the same 15 tasks, both Aggressive and Naive Co-Testing learn 100%

accurate rules based on at most eight examples (two random plus at most six queries).

3.5.2 Beyond wrapper induction

In order to further investigate Co-Testing’s performance, I applied it to three additional

real-world domains for which there is a natural, intuitive way to create two views:

- ad (Kushmerick, 1999) is a classification problem with two classes, 1500 attributes,

and 3279 examples. In ad, images that appear in Web pages are classified into ads

and non-ads. The view V1 consists of all textual features that describe the image;

e.g., 1-grams and 2-grams from the caption, from the url of the page that contains

the image, from the url of the page the image points to, etc. In turn, V2 describes

the properties of the image itself: length, width, aspect ratio, and “origin” (i.e., are

the image and the page that contains it coming from the same Web server?).

- courses (Blum and Mitchell, 1998) is a domain with two classes, 2206 features, and

1042 examples. The learning task consists of classifying Web pages as course

homepages and other pages. In courses the two views consist of words that

6In the wien framework, an example consists of a document in which all items of interest are labeled.
For example, a page that contains a list of 100 names, all labeled, represents a single labeled example. In
contrast, for stalker the same labeled document represents 100 labeled examples. In order to compare
the wien and stalker results, I convert the wien data to stalker-like data by multiplying the number
of labeled wien pages by the average number of item occurences in each page.

56

appear in the page itself and words that appear in hyperlinks pointing to them,

respectively.

- tf (Marcu, Carlson, and Watanabe, 2000) is a classification problem with seven classes,

99 features and 11,193 examples. In the context of a machine translation system, it

uses the shift-reduce parsing paradigm to learn how to rewrite Japanese discourse

trees as English-like discourse trees. In this case, V1 uses features specific to a

shift-reduce parsing paradigm: the elements in the input list and the partial trees

in the stack. V2 consists of features specific to the Japanese tree given as input.

Table 3.2 shows the learning algorithms used in the empirical comparison. For each

domain, the base learner L is the one that obtains the best performance over the entire

data set (10-fold cross-validation). That is, ib (Aha, 1992b) for ad, Naive Bayes (Blum

and Mitchell, 1998) for courses, and mc4, the MLC++ (Kohavi, Sommerfield, and

Dougherty, 1997) implementation of c4.5, for tf. The five single-view algorithms from

Table 3.2 use all available features (i.e., V1∪V2) to learn the target concept.

On all three domains, Random Sampling (Rnd) is used as strawman. Because mc4

does not provide an estimate for the confidence in its predictions, Uncertainty Sampling

(Lewis and Gale, 1994) (for short, US) can be applied only on ad and courses. Query-

by-Bagging and -Boosting (Abe and Mamitsuka, 1998), denoted by qBag and qBst, are

run on all three domains, while Query-by-Committee (QBC) can be applied only on

courses.7 For Query-by-Committee I use a (typical) two-hypothesis committee, while

the committees in Query-by-Bagging and -Boosting consist of five hypotheses.8

As ib and mc4 do not reliably estimate the confidence in a predicted label, on ad and

tf use Naive Co-Testing with a winer-takes-all output hypothesis; that is, each query

7Query-by-Committee cannot be used on ad and tf because there is no known method for sampling
from the ib or mc4 version spaces. For Naive Bayes, I use an idea from (McCallum and Nigam, 1998b),
where a committee is created by sampling hypotheses according to the (Gamma) distribution of the Naive
Bayes parameters estimated from the training set L.

8For Query-by-Bagging and -Boosting, I use a (relatively small) 5-hypothesis committees because of
the cpu constraints: the running time increases linearly with the number of learned hypotheses, and, in
some domains, it takes more than 50 cpu hours to complete the experiments.

57

Co-Testing Single-view Algorithms
Domain L Query Output

Selection Hypothesis QBC qBag qBst US Rnd

ad ib naive winner − √ √ √ √

tf MC4 naive winner − √ √ − √

Naive naive weighted
courses Bayes conservative vote

√ √ √ √ √

Table 3.2: Algorithms used in empirical comparison on ad, courses, and tf. QBC,
qBag, qBst, US, and Rnd denote Query-by-Committee, Query-by-Bagging, Query-by-
Boosting, Uncertainty Sampling and Random Sampling, respectively.

is randomly selected among the contention points, and the output hypothesis is the one

learned in the view that makes the fewest mistakes on the queries. In contrast, for

courses I follow the the methodology in (Blum and Mitchell, 1998), where the output

hypothesis consists of the weighted vote of the classifiers learned in each view. Further-

more, on courses I also investigate two of the Co-Testing query selection strategies:

naive and conservative.

The performance of all algorithms is evaluated based on 10-fold, stratified cross vali-

dation. On ad, each algorithm starts with 150 randomly chosen examples and makes 10

queries after each of the 40 learning episodes. On courses, the algorithms start with 6

randomly chosen examples and make one query after each of the 175 learning episodes.

Finally, on tf the algorithms start with 110 randomly chosen examples and make 20

queries after each of the 100 learning episodes.

Figures 3.13 and 3.14 display the learning curves of the various algorithms on ad, tf,

and course. On all three domains, Co-Testing reaches the highest accuracy (i.e., smallest

error rate). Table 3.3 summarizes the statistical significances results (t-test confidence

of at least 95%) obtained in a pair-wise comparison of the various algorithms. These

comparisons are performed on the right-most half of each learning curve (i.e., towards

convergence). The best way to explain the results in Table 3.3 is via examples: the

results of comparing Naive Co-Testing and Random Sampling on ad appear in the first

three columns of the first row. The three numbers (i.e., 0, 0, and 19) mean that on (all)

58

Naive Co-Testing Conservative Co-Testing
Algorithm ad tf courses

Loss Tie Win Loss Tie Win Loss Tie Win
Random Sampling 0 0 19 0 21 70 0 0 49
Uncertainty Sampling 0 2 17 0 2 89 - - -
Query-by-Committee - - - 0 60 31 - - -
Query-by-Bagging 0 18 1 0 6 85 0 28 21
Query-by-Boosting 0 15 4 0 0 91 0 0 49
Naive Co-Testing - - - - - - 0 21 28

Table 3.3: Statistical significance results in the empirical (pair-wise) comparison of the
various algorithms on the three domains.

19 comparison points Naive Co-Testing outperforms Random Sampling in a statistically

significant manner. Similarly, comparing Naive and Conservative Co-Testing on courses

(the last three columns on the last row) leads to the following results: on 28 of the com-

parison points Conservative Co-Testing outperforms Naive Co-Testing in a statistically

significant manner; on 21 other points the differences are statistically insignificant; finally,

on no comparison point Naive Co-Testing outperforms its Conservative counterpart.

The results in Table 3.3 can be summarized as follows. First of all, no single-view

algorithm outperforms Co-Testing in a statistically significant manner on any of the com-

parison points. Furthermore, except for the comparison with Query-by-Bagging and

-Boosting on ad, where the difference in accuracy is statistically insignificant on almost

all comparison points, Co-Testing clearly outperform all algorithms on all domains.

3.6 Discussion

The work on Co-Testing was inspired by the original Co-Training paper (Blum and

Mitchell, 1998), in which the authors formalized for the first time the idea of multi-view

learning. Previously, this topic was largely ignored, though the idea clearly shows up in

applications such as word sense disambiguation (Yarowsky, 1995) and speech recognition

(de Sa and Ballard, 1998). Rather than considering active learning methods, Blum and

59

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

150 200 250 300 350 400 450 500

er
ro

r
ra

te
 (

%
)

labeled examples

AD

Naive Co-Testing
Uncertainty Sampling

 Rnd

3

4

5

6

7

8

9

10

150 200 250 300 350 400 450 500

er
ro

r
ra

te
 (

%
)

labeled examples

AD

Naive Co-Testing
 qBag
 qBst
 Rnd

18

20

22

24

26

28

30

32

110 510 910 1310 1710 2110

er
ro

r
ra

te
 (

%
)

labeled examples

TF

Naive Co-Testing
 qBag
 qBst
 Rnd

Figure 3.13: Empirical results on the ad and tf problems

60

2

4

6

8

10

12

20 60 100 140 180

er
ro

r
ra

te
 (

%
)

labeled examples

courses

Conservative Co-Testing
Uncertainty Sampling

QBC
Rnd

2

4

6

8

10

12

20 60 100 140 180

er
ro

r
ra

te
 (

%
)

labeled examples

courses

Conservative Co-Testing
qBag
qBst
Rnd

2

4

6

8

10

12

20 60 100 140 180

er
ro

r
ra

te
 (

%
)

labeled examples

courses

Conservative Co-Testing
Naive Co-Testing

Figure 3.14: Empirical results on the courses problem

61

Mitchell use the two views to learn hypotheses that feed each other with the unlabeled

examples on which their classification is the most confident.

My empirical results show that Co-Testing is a powerful approach to active learning.

The experiments described above use four extremely different base learners (i.e., stalker,

ib, Naive Bayes, and mc4) on four different types of domains: wrapper induction, text

classification (courses), ad removal (ad), and discourse tree parsing (tf). In all these

scenarios, Co-Testing clearly outperforms the single-view, state of the art active learning

algorithms. Furthermore, except for Query-by-Bagging, Co-Testing is the only algorithm

that can be applied to all the problems considered in the empirical evaluation. In contrast

to Query-by-Bagging, which has a poor performance on courses and wrapper induction,

Co-Testing obtains the highest accuracy among the considered algorithms.

I conjecture that Co-Testing works so well because of its ability to discover the mis-

takes made in each view. As each contention point is mislabeled in at least one of the

views, it follows that each query is extremely informative for the view that misclassi-

fied it. That is, mistakes are more informative than correctly labeled examples. This is

particularly true for base learners such as stalker and mc4, which do not improve the

current hypothesis unless they are provided with examples of misclassified instances.

There are two main requirements for successfully applying Co-Testing. First, the

views should be sufficiently uncorrelated to lead to a non-empty set of contention points.

That is, even if the views are not independent given the label, as long as the hypotheses

disagree on some unlabeled examples, Co-Testing can make new queries. Second, the

views should be sufficiently compatible to allow learning from mistakes. In other words,

as long as the the target concept can be learned with a high accuracy in each view, most

Co-Testing queries will be informative because they represent mistakes that can be fixed.

As a limitation, Co-Testing can be applied only to multi-view tasks; that is, unless the

user can provide two views, Co-Testing cannot be used at all. However, researchers have

shown that besides the four problems above, multiple views exist in a variety of real world

problems, such as named entity classification (Collins and Singer, 1999), statistical parsing

62

(Sarkar, 2001), speech recognition (de Sa and Ballard, 1998), Web page classification

(Blum and Mitchell, 1998), word sense disambiguation (Yarowsky, 1995), or base noun

phrase bracketing (Pierce and Cardie, 2001).

The other concern about Co-Testing is related to the potential violations of the two

multi-view assumptions, namely that the views are both uncorrelated and compatible.

For example, in case of correlated views, the hypotheses learned in each view may be so

similar that there are no contention points among which to select the next query. In terms

of view incompatibility, remember that in some of the wrapper induction tasks one of the

views was so innacurate that the Co-Testing could not outperform Random Sampling. In

chapters 4 and 5, I empirically investigate both issues; I show that, in fact, Co-Testing

compensates for view corelation, and I introduce a view validation algorithm that predicts

whether or not the views are sufficiently compatible for performing multi-view learning

on a new, unseen task.

3.7 Summary

In this section I introduced Co-Testing, a novel approach to active learning. Co-Testing,

which is a multi-view algorithm, learns one hypothesis in each view and queries unlabeled

examples on which the hypotheses predict a different label. Such queries are extremely

informative because when two hypotheses disagree, at least one of them must be wrong,

thus allowing Co-Testing to identify the mistakes made by the views. Co-Testing is a

family of algorithms that differ from each other based on two criteria: the query selection

strategy and output hypothesis.

The empirical evaluation shows that Co-Testing learns high-accuracy classifiers based

on a small number of labeled examples. Co-Testing clearly outperforms single-view, state

of the art sampling algorithms on a variety of domains. Furthermore, in contrast to

single-view approaches, Co-Testing could be used with all four base learners considered

in the experimental comparison.

63

Chapter 4

Active + Semi-Supervised = Robust Multi-View Learning

They are ill discoverers that think there is no land, when they can see nothing but sea.

Sir Francis Bacon

The theoretical foundation of multi-view learning (Blum and Mitchell, 1998) is based

on the assumptions that the views are both compatible and uncorrelated. Intuitively, a

problem has compatible views if all examples are labeled identically by the target con-

cepts in each view. On the other hand, two views are uncorrelated if, given the label

of any example, its descriptions in each view are independent. In real-world problems,

both assumptions are likely to be violated for a variety of reasons such as correlated or

insufficiently informative features.

In this chapter I study the robustness of several multi-view algorithms with respect

to view incompatibility and correlation. As in practice it is difficult to measure these two

factors, I use a parameterized family of text classification problems, ptcp, in which I con-

trol both view incompatibility and correlation. I first describe a motivating experiment

that shows the lack of robustness of the existing multi-view algorithms. In order to cope

with this problem, I introduce a new algorithm, Co-EMT, which outperforms the algo-

rithms in the motivating experiment and has a robust behavior over the entire spectrum

64

of considered problems. This new algorithm interleaves active and semi-supervised learn-

ing; more precisely, it uses Co-Testing to select the labeled examples for the multi-view,

semi-supervised Co-EM (Nigam and Ghani, 2000).

4.1 The Motivating Experiment

In this section I describe the experiment that motivates my work on Co-EMT. I em-

pirically show that semi-supervised EM (Nigam and Ghani, 2000), Co-Training (Blum

and Mitchell, 1998), and Co-EM (Nigam and Ghani, 2000) are extremely sensitive to

view compatibility and correlation. This experiment also demonstrates that there are

settings in which Co-Testing underperforms semi-supervised learning: if the number of

labeled examples is extremely small, choosing them smartly (i.e., by active learning) is

not as effective as suplementing them with a large number of unlabeled examples. Before

describing the actual results, I provide a high-level description of the semi-supervised

algorithms that are used in this experiment.

4.1.1 The Semi-supervised algorithms used in the comparison

4.1.1.1 The Co-Training algorithm

Co-Training (Blum and Mitchell, 1998) is a semi-supervised, multi-view algorithm that

uses the initial training set to learn a (weak) classifier in each view. Then each classifier

is applied to all unlabeled examples, and Co-Training detects the examples on which

each classifier makes the most confident predictions. These high-confidence examples are

labeled with the estimated class labels and added to the training set (see Figure 4.1).

Based on the new training set, a new classifier is learned in each view, and the whole

process is repeated for several iterations. At the end, a final hypothesis is created by a

voting scheme that combines the prediction of the classifiers learned in each view.

65

Given: - a base learner L
- a learning problem with two views V1 and V2
- the sets L and U of labeled and unlabeled examples
- the number k of iterations to be performed

Co-Training:
- for each class Ci, let ni be the number of of examples to be labeled after each iteration
LOOP for k iterations
- use L, V1(L), and V2(L) to create classifiers h1 and h2

- FOR EACH class Ci DO
- let PL1 be the ni examples in U on which h1 makes the most confident predictions for Ci

- let PL2 be the ni examples in U on which h2 makes the most confident predictions for Ci

- U = U − PL1 − PL2

- L = L
⋃{〈u, h1(u)〉|u ∈ PL1}

⋃{〈u, h2(u)〉|u ∈ PL2}
- combine the prediction of h1 and h2 (weighted vote)

Semi-supervised EM:
- let All = L

⋃
U

- let h be the classifier obtained by training L on L
LOOP for k iterations
- New = ProbabilisticallyLabel(All, h)
- h = Lmax−a−posteriori(New)

Co-EM:
- let All = L

⋃
U

- let h1 be the classifier obtained by training L on L
LOOP for k iterations
- New1 = ProbabilisticallyLabel(All, h1)
- h2 = Lmax−a−posteriori(V2(New1))
- New2 = ProbabilisticallyLabel(All, h2)
- h1 = Lmax−a−posteriori(V1(New2))

- combine the prediction of h1 and h2 (weighted vote)

Figure 4.1: A high-level description of Co-Training, Semi-supervised EM, and Co-EM.

66

4.1.1.2 The semi-supervised EM algorithm

Semi-supervised EM (Nigam and Ghani, 2000), which is the only single-view algorithm

considered in this empirical comparison, is used as baseline because of its well-known

ability to combine labeled and unlabeled data. As shown in Figure 4.1, semi-supervised

EM (Nigam and Ghani, 2000) applies a probabilistic learning algorithm L to a small set

of labeled examples and a large set of unlabeled ones. First, semi-supervised EM creates

an initial classifier h based solely on the labeled examples. Then it repeatedly performs

a two-step procedure: first, use h to probabilistically label all unlabeled examples; then,

learn a new maximum a posteriori (MAP) hypothesis h based on the examples labeled

in the previous step. Intuitively, EM tries to find the most likely hypothesis that could

generate the distribution of the unlabeled data. Semi-supervised EM can be seen as

clustering the unlabeled data “around” the examples in the original training set.

4.1.1.3 The Co-EM algorithm

Co-EM (Nigam and Ghani, 2000; Ghani, 2002) is a semi-supervised, multi-view algorithm

that uses the hypothesis learned in one view to probabilistically label the examples in the

other one (see Figure 4.1). Intuitively, Co-EM runs EM in each view and, before each

new EM iteration, inter-changes the probabilistic labels generated in each view.

Co-EM can be seen as a probabilistic version of Co-Training. In fact, both algorithms

are based on the same underlying idea: they use the knowledge acquired in one view (i.e.,

the probable labels of the examples) to train the other view. The major difference between

the two algorithms is that Co-EM does not commit to a label for the unlabeled examples;

instead, it uses probabilistic labels that may change from one iteration to another.1 By

contrast, Co-Training’s commitment to the high-confidence predictions may add to the

1In (Nigam and Ghani, 2000), Co-EM and Co-Training are contrasted as being iterative and incremen-
tal, respectively. This description is equivalent to the one above: Co-EM iteratively uses the unlabeled
data because it does not commit to the labels from the previous iteration. By contrast, Co-Training
incrementally uses the unlabeled data by committing to a few labels per iteration.

67

training set a large number of mislabeled examples, especially during the first iterations,

when the hypotheses may have little predictive power.

4.1.2 The empirical results

In order to study the influence of view incompatibility and correlation to the performance

of multi-view learners, I use the ptcp parameterized family of learning problems (Muslea,

Minton, and Knoblock, 2002a). ptcp consists of 60 text classification tasks in which one

can control the amount of view correlation and incompatibility. More precisely, ptcp

contains learning problems with one, two, and four clumps per class2 and 0, 10, 20, 30, and

40% view incompatibility (i.e., between 0% and 40% of the examples are incompatible).

Each learning task in ptcp is a binary classification problem over an instance space of

10448 features.

In this empirical study, I apply semi-supervised EM, Co-Training, Co-EM, and Co-

Testing to the tasks in ptcp. The three semi-supervised algorithms are trained based on

40 randomly chosen labeled examples and 600 unlabeled ones. In contrast, Co-Testing

starts with 10 random examples, makes 30 queries (for a total of 40 labeled examples)

and uses no unlabeled data for training.3

The results of my experiments are shown in Figure 4.2. Each of the three graphs

displays the learning curves obtained on problems with a fixed number of clumps per

class and various levels of domain incompatibility. The X axis shows the percentage of

incompatible examples in the problems, while the Y axis represents the error rates. These

results lead to two important observations.

First of all, when the labeled data is scarce and the instance space is high-dimensional

(e.g., 40 labeled examples for learning with 10448 features), a large set of unlabeled
2As discussed in sections 2.3.1 and 3.3.1, a learning problem is said to have several clumps per class

if each class consists of several distinct sub-classes. For example, in the courses problem, the course
homepage class consists of the clumps theory classes, ai classes, and systems classes. Similarly, in the
faculty - non-faculty problem from the previous chapter, the faculty class consists of the clumps assistant,
associate, and full professor.

3To keep the presentation succinct, I discuss here only the information critical to making my case.
The experimental framework and the complete results are presented in detail in section 4.3.1. The ptcp
parameterized family of problems is described in detail in Appendix A.

68

0

5

10

15

20

25

30

0 10 20 30 40
er

ro
r

ra
te

 (
%

)
incompatibility level (%)

One clump per class

Co-Test
Co-EM

Co-Train
EM

5

10

15

20

25

30

35

0 10 20 30 40

er
ro

r
ra

te
 (

%
)

incompatibility level (%)

Two clumps per class

Co-Test
Co-EM

Co-Train
EM

5

10

15

20

25

30

35

0 10 20 30 40

er
ro

r
ra

te
 (

%
)

incompatibility level (%)

Four clumps per class

Co-Test
Co-EM

Co-Train
EM

Figure 4.2: A controlled experiment with Co-Testing, Co-Training, Co-EM, and (semi-
supervised) EM. The learning tasks from each graph have the same number of clumps
per class (i.e., one, two, and four) and various levels of views incompatibility (i.e., 0%,
10%, 20%, 30%, and 40% of the examples are labeled differently in the two views).
Given the scarcity of the labeled examples (40 examples) and the high-dimensionality
of the learning tasks (10448 features), Co-Testing, which does not exploit the unlabeled
examples, obtains the worst results. The other algorithms have a non-robust behavior:
they perform well on some tasks, and poorly on the other ones.

69

examples can dramatically boost the classification accuracy. This is illustrated by the

semi-supervised algorithms outperforming Co-Testing: even though Co-Testing selects

and uses a more informative training set, its inabililty to exploit the unlabeled data when

learning the hypotheses in each view undermines its performance.

Second, the three semi-supervised algorithms are extremely sensitive to view in-

compatibility and correlation. For example, Co-Training and Co-EM outperform semi-

supervised EM on problems with uncorrelated views (i.e., one clump per class). In con-

trast, as the views become incompatible and correlated (i.e., four clumps per class and

30-40% incompatibility), the two multi-view algorithms underperform semi-supervised

EM, with Co-EM doing clearly worse than Co-Training.

These results motivate the need for a new algorithm that has a robust behavior over

the entire correlation - incompatibility space. In the next section, I introduce Co-

EMT, which reaches this goal by combining active and semi-supervised learning (i.e.,

Co-Testing and Co-EM, respectively).

4.2 Co-Testing + Co-EM = Co-EMT

As shown in Figure 4.3, Co-EMT is a novel algorithm that combines the strengths of

both active and semi-supervised learning by interleaving Co-EM and Co-Testing.4 As

opposed to a typical Co-Testing algorithm, which learns h1 and h2 based solely on labeled

examples, Co-EMT induces the two hypotheses by running Co-EM on both labeled and

unlabeled examples. Depending on the type of Co-Testing used within Co-EMT (e.g.,

naive, conservative, or aggressive query selection strategy, combined with winner-takes-

all, majority vote, or weighted vote for the output hypothesis), one can obtain a variety

of Co-EMT algorithms.

4I have chosen to combine Co-Testing with Co-EM rather than Co-Training because of the difficulties
encountered while fine-tuning the latter, which is sensitive to changes in the number of examples added
after each iteration.

70

In order to put Co-EMT in a larger context, Figure 4.4 shows Co-EMT’s relationship

with the other algorithms considered in this chapter. One one side, Co-EMT is a semi-

supervised variant of Co-Testing, which - in turn - was inspired from Co-Training. On

the other side, Co-EMT builds on Co-EM, which is a state-of-the art, semi-supervised

algorithm that combines the basic ideas from Co-Training and EM.

Note that interleaving Co-EM and Co-Testing leads to an interesting synergy. On

one hand, Co-Testing boosts the accuracy of Co-EM by selecting a highly informative

set of labeled examples (stand-alone Co-EM chooses them at random). On the other

hand, as the hypotheses learned by Co-EM are more accurate than the ones learned just

from labeled data, compared with stand-alone Co-Testing, Co-EMT uses more accurate

hypotheses to select the queries.

4.3 Empirical Evaluation

4.3.1 The Experimental Setup

In order to evaluate Co-EMT, I apply it on the ptcp parameterized family of text classi-

fication problems and compare its results with the ones obtained by semi-supervised EM,

Co-Training, Co-EM, and Co-Testing. All five algorithms use as base learner a Naive

Bayes classifier for text classification (Nigam and Ghani, 2000). As a Naive Bayes clas-

sifier can evaluate the confidence of its prediction, both for stand-alone Co-Testing and

within Co-EMT, I use Conservative Co-Testing with weighted vote (i.e., the algorithm

that was also used in the previous chapter for the courses problem).

The accuracy of the five algorithms is estimated based on four runs of 5-fold cross-

validation; consequently, each training and test set consist of 640 and 160 examples,

respectively. For the three semi-supervised algorithms, the 640 training examples are

split randomly into two groups: 40 of them are used as labeled examples, while the

remaining 600 are unlabeled (i.e., I hide their labels). To keep the comparison fair, Co-

EMT and Co-Testing start with 10 randomly chosen labeled examples and query 30 of the

71

Given: - a base learner L
- a learning problem with two views V1 and V2
- the sets L and U of labeled and unlabeled examples
- number N of queries to be made

Co-Testing:

LOOP for N iterations
- use L, V1(L), and V2(L) to create classifiers h1 and h2

- let ContentionPoints = { x ∈ U , h1(x) = h2(x) }
- let x = SelectQuery(ContentionPoints)
- remove x from U , ask for its label l
- ad 〈x, l〉 to L

- CreateOutputHypothesis(h1, h2)

Co-EMT:

- let iters be the number of Co-EM iterations within Co-EMT
REPEAT N times

- run Co-EM(L, V1, V2, L, U , iters) to learn h1 and h2

- let ContentionPoints = {x ∈ U, h1(x) = h2(x) }
- let x = SelectQuery(ContentionPoints)
- remove x from U , ask for its label l
- ad 〈x, l〉 to L

- CreateOutputHypothesis(h1, h2)

Figure 4.3: The Co-Testing and Co-EMT algorithms differ from each other only with
respect to the technique used to learn the hypotheses in each view. Co-Testing uses the
supervised base learner L, while Co-EMT uses the semi-supervised Co-EM algorithm.

72

EM (1977)Co−Training (1998)

Co−EM (2000)

Co−EMT (2002)

Co−Testing (2000)
active learning

probabilistic, multi−view, active learning

probabilistic, multiview learning

multi−view learning probabilistic learning

Figure 4.4: The lineage of the Co-EMT algorithm. The doted line from Co-Training
to Co-Testing denotes a change in learning paradigm, from semi-supervised to active
learning.

4

6

8

10

12

14

16

18

10 20 30 40

er
ro

r
ra

te
 (

%
)

labeled examples

clumps per class = 1
clumps per class = 2
clumps per class = 4

Figure 4.5: Illustrative learning curves for Co-EMT on tasks with no incompatibility and
1, 2, and 4 clumps per class. Co-EMT starts with 10 randomly-chosen labeled examples
and makes 30 queries, for a total of 40 labeled examples.

73

630 unlabeled ones, for a total of 40 labeled examples. Figure 4.5 depicts three illustrative

learning curves that show how Co-EMT’s error rate decreases as the algorithm makes a

larger fraction of the allowed 30 queries.

For semi-supervised EM, Co-Training, and Co-EM, I have implemented the versions

described in (Nigam and Ghani, 2000). EM and Co-EM are run for seven and five

iterations, respectively. Co-Training, which requires significant fine tuning, labels 40

examples after each of the seven iterations. To avoid prohibitive running time, within

Co-EMT, I perform only two Co-EM iterations after each Co-Testing query (on each of

the 60 problems, Co-EMT runs Co-EM after each of the 600 queries: 4 runs × 5 folds ×
30 queries per fold).

As already mentioned, ptcp covers 15 points in the correlation - incompatibility

space (i.e., three level of clumpiness and five levels of view incompatibility); for each of

these 15 points in the correlation - incompatibility space, ptcp contains four text

classification problems, for a total of 60 problems (see Appendix A for details). At each

point in the correlation - incompatibility space, the reported error rate is averaged

over four corresponding text classification problems.

Figure 4.6 shows the performance of Co-EMT, Co-Testing, Co-EM, Co-Training, and

EM on the parameterized family of problems. The five graphs correspond to the five

levels of views incompatibility: 0%, 10%, 20%, 30%, and 40%. In each graph, the X and

Y axes show the number of clumps per class and the error rate, respectively.

On all 15 points in the correlation-incompatibility space, Co-EMT obtains the

lowest error rates. In a pairwise comparison with Co-Testing, Co-Training, Co-EM, and

EM, the results are statistically significant with 95% confidence on 15, 13, 10, and 12

of the points, respectively. The remaining points represent extreme situations: for Co-

Training and Co-EM, conditional independent views (one clump per class); for EM highly

correlated and incompatible views (four clumps per class, and 20%, 30%, 40% incompat-

ibility).

74

2

4

6

8

10

12

14

16

18

1 2 3 4

er
ro

r
ra

te
 (

%
)

clumps per class

Incompatibility: 0%

8

10

12

14

16

18

20

22

1 2 3 4

er
ro

r
ra

te
 (

%
)

clumps per class

Incompatibility: 10%

15
16
17
18
19
20
21
22
23
24
25
26

1 2 3 4

er
ro

r
ra

te
 (

%
)

clumps per class

Incompatibility: 20%

18

20

22

24

26

28

30

1 2 3 4

er
ro

r
ra

te
 (

%
)

clumps per class

Incompatibility: 30%

20

22

24

26

28

30

32

34

1 2 3 4

er
ro

r
ra

te
 (

%
)

clumps per class

Incompatibility: 40%

Co-EMT

Co-Test

Co-EM

Co-Train

EM

Figure 4.6: Empirical results on the ptct family of problems. Each graph shows the
results for learning tasks of a fixed level of view incompatibility and various degrees of
domain clumpiness.

75

4.3.2 Discussion

These empirical results deserve several comments. First, Co-EMT, which combines Co-

Testing and Co-EM, clearly outperforms both its components. Intuitively, Co-EMT’s

power comes from Co-Testing and Co-EM compensating for each other’s weaknesses. On

one hand, by exploiting the unlabeled data, Co-EM boosts the accuracy of the classifiers

learned by Co-Testing. On the other hand, Co-Testing improves Co-EM’s accuracy by

providing a highly informative set of labeled examples.

Co-EMT is not the first algorithm that combines semi-supervised and active learn-

ing: in (McCallum and Nigam, 1998b), various combinations of semi-supervised EM and

Query-by-Committee (QBC) are shown to outperform both EM and QBC.5 I expect

that using other active learning algorithms to select the labeled examples for Co-EM,

Co-Training, and EM would also improve their accuracy. Finding the best combination

of active and semi-supervised learning is beyond the scope of this chapter. My main

contribution here is to show that interleaving active and semi-supervised learning leads

to a robust performance over the entire spectrum of problems.

Second, Co-EM and Co-Training are highly sensitive to domain clumpiness. On prob-

lems with uncorrelated views (i.e., one clump per class), Co-EM and Co-Training clearly

outperform EM. In fact, Co-EM is so accurate that Co-EMT can barely outperform it.

This behavior is consistent with theoretical argument in (Blum and Mitchell, 1998): given

two uncorrelated views, even in the presence of view incompatibility, a concept can be

learned based on a few labeled and many unlabeled examples.

In contrast, on problems with four clumps per class, EM clearly outperforms both Co-

EM and Co-Training. The two multi-view algorithms perform poorly on clumpy domains

because rather than being disseminated over the entire instance space, the information

5The best of these EM and QBC combinations is not appropriate for multi-view problems because
it uses a sophisticated heuristic that estimates the density of various regions in the single-view instance
space (the density of a multi-view instance space is a function of the “local” densities within each view).
Instead, I have implemented another (single-view) algorithm from (McCallum and Nigam, 1998b), which,
similarly to Co-Testing, interleaves QBC and EM. As this algorithm barely improved EM’s accuracy
on the parameterized problems, I decided not to show the corresponding learning curves on the already
crowded Figure 4.6.

76

exchanged between the views remains localized within each clump. The fact that Co-

EMT is almost insensitive to clumpiness suggests that Co-Testing compensates for domain

clumpiness.6

Third, the performance of all algorithms degrades as the views become less compatible.

The multi-view algorithms are sensitive to view incompatibility because the information

exchanged between views becomes misleading as more examples are labeled differently in

the two views. In order to cope with this problem, in the next chapter I introduce a view

validation technique (Muslea, Minton, and Knoblock, 2002b) that detects whether or not

two views are “sufficiently compatible” for multi-view learning.

Note that, at first glance, Co-EMT should perform poorly on problems with highly

incompatible views: on such domains, it looks likely that Co-EMT will query incompatible

examples, which convey little information and are misleading for Co-EM. To understand

how Co-EMT avoids making such queries, let us reconsider the illustrative courses

domain in Figure 4.7, which was introduced in chapter 2 (Figure 2.4) and is repeated

here for convenience.

Remember that two hyperlinks containing either the same text (“Neural Nets”) or sim-

ilar fragments of text (e.g., “Artificial Neural Nets” and “Artificial Neural Networks”) can

point to Web pages having different labels. Because of the ambiguity of such examples,

the hypotheses learned in the “hyperlink view” have a low confidence in predicting their

labels. As Co-EMT uses the conservative query selection strategy (i.e., it queries con-

tention points on which the views make equally confident predictions), it follows that an

incompatible example is queried only if the other view also has an equally low confidence

on its prediction.

In summary, I expect Co-EMT to perform well on most domains. The areas of

the correlation - incompatibility space in which it does not clearly outperform all

other four algorithms have either uncorrelated views (one clump per class) or correlated,

incompatible views (four clumps per class, 30%-40% incompatibility). On the former it

6Remember that Co-EMT is simply Co-EM using labeled examples chosen via Co-Testing queries.

77

J. Doe’s Papers on Neural Networks: ...

Neural Nets MIT’s CS 211: Intro to Neural Nets ...

USC’s CS 561: Artificial Intelligence ...

USC’s CS 591: Statistical Learning ...

USC’s CS 577: Neural Networks ...

CS 561

Algorithms

related AI classes

related theory classes

CMU’s CS 121: Intro to Algorithms ...

CMU’s CS 256: Finite Automata ...

THEORY CLUMP

AI CLUMP

UCI’s CS 561: Theory of Algorithms ...

my publications

core theory classes

statistical models

 View V1
(words in hyperlinks)

 View V2
(words in Web pages)

Figure 4.7: Two illustrative clumps in the courses domain.

78

barely outperforms Co-EM, but such domains are unlikely to occur in practice. On the

latter it barely outperforms EM, and one may expect EM to outperform Co-EMT at

higher incompatibility levels. To cope with this problem, in the next chapter I introduce

the view validation algorithm (Muslea, Minton, and Knoblock, 2002b), which predicts

whether or not two views are sufficiently compatible for multi-view learning.

4.3.3 Results on real-world problems

I believe that most real-world, multi-view problems display some (low) level of view

incompatibility and correlation. As this is the spectrum of problems where Co-EMT

most clearly outperforms the other four algorithms, I conjecture that Co-EMT has the

best potential of all algorithms discussed here.

In support of this conjecture, I present an additional experiment in which I apply

the five algorithms above to two of the three real-world domains used in section 3.5.2:

courses and ad. The third domain, tf, could not be used in this experiment because

it is not a text classification problem: for Co-EMT, Co-EM, and EM, the experiments

above use implementations specific for text classification.

As courses is a text classification problem, I use the same two views as before:

words that appear in the pages and in the hyperlinks pointing to them, respectively. In

contrast, for the ad task I redefine its views as two text classification problems. Originally

(see section 3.5.2), the view V1 consisted of all textual features, while V2 described the

geometric properties of the image (e.g., length, width, aspect ratio). In this experiment, I

ignore the features in the “geometric view” V2 and define two new views as follows. View

V1 describes the image itself (e.g., words in the image’s url and caption), while view V2

characterizes related pages (e.g., words from the URLs to the pages that contain the image

or are pointed-at by the image). As all features in ad are boolean (i.e., presence/absence

of word in document, rather than wor counts), I use Naive Bayes with the multi-variate

Bernoulli model(McCallum and Nigam, 1998a).

79

Algorithm courses ad

Co-EMT 3.98± 0.6 5.75±0.4
Conservative Co-Testing 4.80 ± 0.5 7.70 ± 0.4

Co-EM 5.08 ± 0.7 7.80 ± 0.4
EM 5.32 ± 0.6 8.55 ± 0.4

Co-Training 5.18 ± 0.6 7.54 ± 0.4

Table 4.1: Error rates on two additional real world problems.

For both domains I perform two runs of 5-fold cross validation. On courses, the Co-

EM, Co-Training, and EM use 65 labeled examples, while Co-EMT and Co-Testing start

with 10 labeled examples and make 55 queries. For ad, the semi-supervised algorithms

use 100 labeled examples, while Co-EMT and Co-Testing start with 60 labeled examples

and make 40 queries. EM, Co-EM and Co-Training are run for seven, five and four

iterations, respectively (Co-Training adds 100 examples after each iteration). Finally,

within Co-EMT, I perform two Co-EM iterations after each Co-Testing query.

Table 4.1 shows that Co-EMT again obtains the best accuracy of the five algorithms.

Co-EMT outperforms the other four algorithms on seven of the eight the pair-wise com-

parisons (results are statistically significant with at least 95% confidence). The only

result that is not statistically significant consists of Co-EMT outperforming Conservative

Co-Testing on the courses domain.

4.4 Summary

In this chapter I used a family of parameterized problems to analyze the influence of

view correlation and incompatibility on the performance of several multi-view algorithms.

I have shown that existing algorithms are not robust over the whole correlation -

incompatibility space. To cope with this problem, I introduced a new multi-view al-

gorithm, Co-EMT, which interleaves active and semi-supervised learning. I have shown

80

that Co-EMT clearly outperforms the other algorithms both on the parameterized prob-

lems and on two additional real world domains. My experimental results suggest that the

robustness of Co-EMT comes from active learning compensating for the view correlation.

81

Chapter 5

View Validation

For the things we have to learn before we can do them, we learn by doing them.

Aristotle

This chapter concludes my study on the influence of view correlation and incompat-

ibility on multi-view learning. In the previous chapter I have shown that Co-Testing

compensates for domain clumpiness, but cannot do the same for view incompatibility.

Consequently, I focus here on the view incompatibility issue, which is closely related to

the accuracy of the hypotheses learned in the two views: the more accurate the views, the

fewer examples can be incompatible (i.e., labeled differently in the two views). Figure 5.1

illustrates the relationship between the incompatibility of the views and the applicability

of the multi-view algorithms: as the difference between the accuracy of the hypothe-

ses learned in the two views increases (i.e., the views become more incompatible), the

single-view algorithm outperforms its multi-view counterpart. This observation imme-

diately raises the following question: for a new, unseen learning task, should one use a

multi-view or a single-view learning algorithm?

The question above can be restated as follows: given two views and a set of learning

tasks, how can one identify the tasks for which these two views are sufficiently compatible

for multi-view learning? In order to answer this question, I introduce a view validation

algorithm that, for a given pair of views, discriminates between the tasks for which the

82

5

10

15

20

25

30

0 10 20 30 40

er
ro

r
ra

te
 (

%
)

difference in the accuracy of the two views (%)

multi-view algorithm
single-view algorithm

Figure 5.1: As the difference in the accuracy of the two views increases, the views become
more incompatible, and the single-view algorithm outperforms its multi-view counterpart.

views are sufficiently and insufficiently compatible for multi-view learning. In other words,

view validation judges the usefulness of the views for a particular learning task (i.e., it

validates the views for a task of interest).

View validation is suitable for applications such as wrapper induction (Muslea, Minton,

and Knoblock, 2000b) and Web page classification (Blum and Mitchell, 1998), where the

same views are repeatedly used to solve a variety of unrelated learning tasks. Consider,

for instance, the Web page classification problem, in which the two views consist of “words

that appear in Web pages” and “words in hyperlinks pointing to them”. Note that, in prin-

ciple, one can use these two views in learning tasks as diverse as distinguishing between

homepages of professors and students or distinguishing between articles on economics and

terrorism. However, for any of these learning tasks, it may happen that the text in the

hyperlinks is so short and uninformative that one is better off using just the words in the

Web pages. To cope with this problem, one can use view validation to predict whether

or not multi-view learning is appropriate for a task of interest.

83

This chapter presents a general, meta-learning approach to view validation. In this

framework, the user provides several exemplar learning tasks that were solved using the

same views. For each solved learning task, my algorithm generates a view validation ex-

ample by analyzing the hypotheses learned in each view. Then it uses the C4.5 algorithm

(Quinlan, 1993) to identify common patterns that discriminate between the learning tasks

for which the views are sufficiently and insufficiently compatible for multi-view learning.

An illustrative example of such a pattern is the following: “IF for a task T the difference in

the training errors in the two views is larger than 20% and the views agree on less than 45% of the

unlabeled examples THEN the views are insufficiently compatible for applying multi-view learn-

ing to T .” I consider two application domains: text classification and wrapper induction

(a commercially important multi-view problem). On both domains, the view validation

algorithm makes high accuracy predictions based on a modest amount of training data.

View validation represents a first step towards my long-term goal of automatic view

detection, which would dramatically widen the practical applicability of multi-view al-

gorithms. Instead of having to rely on user-provided views, one can use view detection

to search for adequate views among the possible partitions of the domain’s features. In

this context, a view validation algorithm becomes a key component that verifies whether

or not the views that are generated during view detection are sufficiently compatible for

applying multi-view learning to a learning task.

5.1 The View Validation Algorithm

Before introducing view validation, let me briefly present the terminology used in this

chapter. By definition, a multi-view problem is a collection of learning tasks that use

the same views; each such learning task is called an instance of the multi-view problem

or a problem instance. For example, consider again multi-view problem that consists of

all Web page classification tasks in which the views are “words in Web pages” and “words

in hyperlinks pointing to the pages.” One can use these two views to learn a classifier

84

that distinguishes between homepages of professors and students, another classifier that

distinguishes between articles on gun control and terrorism, and so forth. Consequently,

all these learning tasks represent instances of the same multi-view problem.

Note that, in practice, one cannot expect a pair of views to be sufficiently compatible

for all learning tasks. For instance, in the problem above, one may encounter tasks in

which the text in the hyperlinks is too short and uninformative for the text classification

task. More generally, because of corrupted or insufficient features, it is unrealistic to ex-

pect the views to be sufficiently compatible for applying multi-view learning to all problem

instances. One way to address this problem is to use a view validation algorithm, which,

for any problem instance, predicts whether or not the views are sufficiently compatible

for using multi-view learning for that particular task.

In practice, the level of “acceptable” view incompatibility depends on both the do-

main features and the base learner L that is used to learn the hypotheses in each view.

Consequently, I apply view validation to a given multi-view problem (i.e., pair of views)

and learning algorithm L. Note that this is a natural scenario for multi-view problems

such as text classification and wrapper induction, in which the same views are used for a

wide variety of learning tasks.

The view validation algorithm (see Figure 5.2) implements a three-step process. First,

the user provides several pairs 〈Ik, lk〉, where Ik is a problem instance, and lk is a label

that specifies whether or not the views are sufficiently compatible for using multi-view

learning to solve Ik. The label lk is generated automatically by comparing the accuracy

of a single- and multi-view algorithm on a test set. Second, for each instance Ik, I

generate a view validation example (i.e., a feature-vector) that describes the properties

of the hypotheses learned in the two views. Finally, I apply C4.5 to the view validation

examples, and I use the learned decision tree to discriminate between learning tasks for

which the views are sufficiently or insufficiently compatible for multi-view learning,

In keeping with the multi-view setting, I assume that for each instance Ik the user

provides a (small) set Lk of labeled examples and a (large) set Uk of unlabeled examples.

85

Given:
- a multi-view problem P with views V1 and V2

- a learning algorithm L
- a set of pairs { 〈I1, L1〉, 〈I2, L2〉, . . . , 〈In, Ln〉 }, where Ik

are instances of P , and lk labels Ik as having or not views
that are sufficiently compatible for multi-view learning

FOR each instance Ik DO
- let Lk and Uk be labeled and unlabeled examples in Ik

- use L, V1(Lk), and V2(Lk) to learn classifiers h1 and h2

- CreateV iewV alidationExample(h1, h2, Lk, Uk, lk)

- train C4.5 on the view validation examples
- use the learned classifier to discriminates between problem

instances for which the views are sufficiently and insufficiently
compatible for multi-view learning

Figure 5.2: The View Validation Algorithm.

For each instance Ik, I use the labeled examples in Lk to learn a hypothesis in each view

(i.e., h1 and h2). Then I generate a view validation example that is labeled lk and consists

of a feature-vector that describes the hypotheses h1 and h2. In the next section, I present

the actual features used for view validation.

5.2 Features Used for View Validation

Ideally, besides the label lk, a view validation example would consist of a single feature:

the percentage of examples that are labeled differently in the two views. Based on this

unique feature, one could learn a threshold value that discriminates between the prob-

lem instances for which the views are sufficiently/insufficiently compatible for multi-view

learning. In Figure 5.1, this threshold corresponds to the point in which the two learning

curves intersect. In practice, using this unique feature requires knowing the labels of all

examples in a domain. As this is an unrealistic scenario, I have chosen instead to use

several features that are potential indicators of the how incompatible the views are.

86

Each view validation example is described by the following seven features:

- f1: the percentage of unlabeled examples in Uk that are classified identically by h1 and

h2;

- f2: min(TrainingErrors(h1), T rainingErrors(h2));

- f3: max(TrainingErrors(h1), T rainingErrors(h2));

- f4: f3 − f2;

- f5: min(Complexity(h1), Complexity(h2));

- f6: max(Complexity(h1), Complexity(h2));

- f7: f6 − f5.

Note that features f1-f4 are measured in a straightforward manner, regardless of the

algorithm L used to learn h1 and h2. More precisely, f1 can be computed based on its

definition. For measuring f2, f3, and f4, one must first count the number of (labeled)

training examples that are mislabeled by h1 and h2 (i.e., the training errors) and then

apply the formulas above.

By contrast, features f5-f7 dependent on the representation used to describe these

two hypotheses. For instance, the complexity of a boolean formula may be expressed in

terms of the number of disjuncts and literals in the disjunctive or conjunctive normal

form; or, for a decision tree, the complexity measure may take into account the depth

and the breadth (i.e., number of leaves) of the tree.

The intuition behind the seven view validation features is the following:

- the fewer unlabeled examples from Uk are labeled identically by h1 and h2, the larger

the number of potentially incompatible examples;

- the larger the difference in the training error of h1 and h2, the less likely it is that the

views are equally accurate;

87

- the larger the difference in the complexity of h1 and h2, the likelier it is that the most

complex of the two hypotheses overfits the (small) training set Lk. In turn, this

may indicate that the corresponding view is significantly less accurate than the

other one.

In practice, features f1-f4 are measured in a straightforward manner; consequently,

they can be always used in the view validation process. In contrast, measuring the com-

plexity of a hypothesis may not be always possible or meaningful (consider, for instance,

the case of a k nearest-neighbor classifier). In such situations, one can simply ignore

features f5-f7 and rely on the remaining features.

5.3 Empirical Results

5.3.1 The multi-view test problems

I evaluate the view validation algorithm on two multi-view problems: wrapper induction

(wi), which consists of the 33 extraction tasks described in section 3.5.1.2, and the ptct

family of 60 parameterized text classification tasks used in chapter 4.1

For wrapper induction, the base learner is stalker. Consequently, the view validation

features are measured as follows: f1 represents that percentage of (unlabeled) documents

from which the two extraction rules extract the same string; for f2-f4, I count the labeled

documents from which the extraction rules do not extract the correct string. Finally, to

measure f5-f7, I define the complexity of an extraction rule as the maximum number of

disjuncts that appear in either the start or the end rule.

For ptct, I use as base learner the Naive Bayes algorithm (Nigam and Ghani, 2000).

As there is no obvious way to measure the complexity of a Naive Bayes classifier, for ptct

I do not use the features f5-f7. The other features are measured in a straightforward

manner: f1 represents the percentage of unlabeled examples on which the two Naive

1I would have preferred to use a second real-world multi-view problem instead of ptct. Unfortunately,
given that multi-view learning represents a relatively new field of study, most multi-view algorithms were
applied to just a couple problem instances.

88

Bayes classifiers agree, while f2-f4 are obtained by counting the training errors in the two

views.

5.3.2 Generating the wi and ptct Datasets

To label the 33 problem instances for wrapper induction (wi), I compare the performance

of Naive Co-Testing with stand-alone stalker (i.e., stalker learning FF rules based on

randomly chosen labeled examples). On the six extraction tasks in which the difference in

the accuracy of the rules learned in the two views is larger than 10%, single-view stalker

does at least as well as its multi-view counterpart. I label these six problem instances as

having views that are insufficiently compatible for multi-view learning.

In order to label the 60 instances in ptct, I compare single-view, semi-supervised em

with Co-Training, which is the most widely used semi-supervised multi-view algorithm

(Collins and Singer, 1999; Pierce and Cardie, 2001; Sarkar, 2001). I use the empirical

results from the previous chapter to identify the instances on which semi-supervised em

performs at least as well as Co-Training. I label the 40 such instances as having views

that are insufficiently compatible for multi-view learning.

For both wi and ptct, I have chosen the number of examples in Lk (i.e., Size(Lk))

according to the experimental setups described in (Muslea, Minton, and Knoblock, 2001)

and (Muslea, Minton, and Knoblock, 2002a), in which wi and ptct were introduced. For

wi, in which an instance Ik may have between 91 and 690 examples, Size(Lk)=6 and

Uk consists of the remaining examples. For ptct, where each instance consists of 800

examples, the size of Lk and Uk is 70 and 730, respectively.

5.3.3 The Setup

In contrast to the approach described in Figure 5.2, where a single view validation example

is generated per problem instance, in the experiments I create several view validation

examples per instance. That is, for each instance Ik, I generate ExsPerInst = 20 view

validation examples by repeatedly partitioning the examples in Ik into randomly chosen

89

10

15

20

25

30

35

40

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

ViewValidation(WI)
Baseline(WI)

ViewValidation(PTCT)
Baseline(PTCT)

Figure 5.3: View validation clearly outperforms the baseline algorithm.

sets Lk and Uk of the appropriate sizes. The motivation for this decision is two-fold.

First, the empirical results should not reflect a particularly (un)fortunate choice of the

sets Lk and Uk. Second, if I generate a single view validation example per instance, for

both wi and ptct I obtain a number of view validation examples that is too small for a

rigorous empirical evaluation (i.e., 33 and 60, respectively). To conclude, by generating

ExsPerInst = 20 view validation examples per problem instance, I obtain larger number

of view validation examples (660 and 1200, respectively) that, for each problem instance

Ik, are representative for a wide variety of possible sets Lk and Uk.

To evaluate view validation’s performance, for both wi and ptct, I partition the

problem instances into training and test instances. For each such partition, I create the

training and test sets for C4.5 as follows: all ExsPerInst = 20 view validation examples

that were created for a training instance are used in the C4.5 training set; similarly, all

20 view validation examples that were created for a test instance are used in the C4.5

test set. In other words, all view validation examples that are created based on the same

problem instance belong either to the training set or to the test set, and they cannot be

90

split between the two sets. In the experiments, I train on 1
6 , 1

3 , and 2
3 of the instances

and test on the remaining ones. For each of these three ratios, I average the error rates

obtained over N = 20 random partitions of the instances into training and test instances.

Figure 5.3 shows the view validation results for the wi and ptct datasets. The

empirical results are excellent: when trained on 66% of the available instances, the view

validation algorithm reaches an accuracy of 92% on both the wi and ptct datasets.

Furthermore, even when trained on just 33% of the instances (i.e., 11 and 20 instances

for wi and ptct, respectively), view validation still obtains a 90% accuracy. Last but

not least, for both wi and ptct, view validation clearly outperforms a baseline algorithm

that simply predicts the most frequent label in the corresponding dataset.

5.3.4 The Influence of ExsPerInst and Size(Lk)

The results in Figure 5.3 raise an interesting practical question: how much can I reduce

the user’s effort without harming the performance of view validation? In other words,

can one label only a fraction of the ExsPerInst view validation examples per problem

instance and a subset of Lk, and still obtain a high-accuracy prediction? To answer this

question, I designed two additional experiments in which I vary one of the parameters at

a time.

To study the influence of the ExsPerInst parameter, I keep Size(Lk) constant (i.e.,

6 and 70 for wi and ptct, respectively), and I consider the values ExsPerInst =

1, 5, 10, 20. That is, rather than including all 20 view validation examples that I gen-

erate for each instance Ik, the C4.5 training sets consist of (randomly chosen) subsets

of one, five, 10, or 20 view validation examples for each training instance. Within the

corresponding C4.5 test sets, I continue to use all 20 view validation examples that are

available for each test instance.

Figure 5.4 displays the learning curves obtained in this experiment. The empiri-

cal results suggest that the benefits of increasing ExsPerInst become quickly insignif-

icant: for both wi and ptct, the difference between the learning curves corresponding

91

6

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

WI

ExsPerInst = 1
ExsPerInst = 5
ExsPerInst = 10
ExsPerInst = 20

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

PTCT

ExsPerInst = 1
ExsPerInst = 5
ExsPerInst = 10
ExsPerInst = 20

Figure 5.4: Keeping Size(Lk) constant and varying the value of ExsPerInst (1, 5, 10,
and 20).

92

to ExsPerInst = 10 and 20 is not statistically significant, even though for the latter

I use twice as many view validation examples than for the former. This implies that a

(relatively) small number of view validation examples is sufficient for high-accuracy view

validation. For example, the view validation algorithm reaches a 90% accuracy when

trained on 33% of the problem instances (i.e., 11 and 20 training instances, for wi and

ptct, respectively). For ExsPerInst = 10, this means that C4.5 is trained on just 110

and 200 view validation examples, respectively.

In order to study the influence of the Size(Lk) parameter, I designed an experiment

in which the hypotheses h1 and h2 are learned based on a fraction of the examples in the

original set Lk. Specifically, for wi I use two, four, and six of the examples in Lk; for

ptct I use 20, 30, 40, 50, 60, and 70 of the examples in Lk. For both wi and ptct, I

keep ExsPerInst = 20 constant.

Figure 5.5 shows the learning curves obtained in this experiment. Again, the results

are extremely encouraging: for both wi and ptct I reach an accuracy of 92% without

using all examples in Lk. For example, the difference between Size(Lk) = 4 and 6 (for

wi) or Size(Lk) = 60 and 70 (for ptct) are not statistically significant.

The experiments above suggest two main conclusions. First, for both wi and ptct,

the view validation algorithm makes high accuracy predictions. Second, my approach

requires a modest effort from the user’s part because both the number of view validation

examples and the size of the training sets Lk are reasonably small.

5.3.5 The distribution of the errors

In order to study the errors made by the view validation algorithm, I designed an addi-

tional experiment. For both wi and ptct, I use for training all-but-one of the problem

instances, and I test the learned decision tree on the remaining instance.2 That is, in

this leave one instance out experiment, I test the learned decission tree on the 20 labeled

2For each problem instance I use the entire training set Lk and all ExsPerInst = 20 view validation
examples.

93

6

8

10

12

14

16

18

20

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

WI

Size(Tk) = 2
Size(Tk) = 4
Size(Tk) = 6

8

10

12

14

16

18

20

22

15 20 25 30 35 40 45 50 55 60 65 70

er
ro

r
ra

te
 (

%
)

problem instances used for training (%)

PTCT

Size(Tk) = 20
 = 30
 = 40
 = 50
 = 60
 = 70

Figure 5.5: For ExsPerInt = 20, I consider several values for Size(Lk): 2/4/6 for wi,
and 20/30/40/50/60/70 for ptct.

94

examples comming from the “left out” problem instance. This setup allows me to study

view validation’s performance on each individual problem instance.

The graphs in Figure 5.6 display the results on the wi and ptct datasets, respectively.

On the X axis, I show the number of view validation examples that are misclassified by

view validation (remember that each test set consists of the ExsPerInst = 20 view

validation examples generated for the problem instance used for testing). On the Y axis

I have the number of problem instances on which the algorithm misclassifies a particular

number of view validation examples.

Consider, for example, the graph that shows the results on the 33 problem instances

in wi (see Figure 5.6). The leftmost bar in the graph has the following meaning: on 22 of

the problem instances, the algorithm makes zero errors on the view validation examples

in the corresponding 22 test sets; that is, view validation correctly predicts the labels of

all ExsPerInst = 20 examples in each test set. Similarly, the second bar in the graph

means that on two other problem instances, view validation misclassifies just one of the

20 examples in the test set.

These results require a few comments. First, for more than half of the problem

instances in both wi and ptct, the algorithm labels correctly all view validation ex-

amples; i.e., regardless of the particular choice of the sets Lk and Uk that are used to

generate a view validation example, the algorithm predicts the correct label. Second,

for most instances of wi and ptct (29 and 44 of the 33 and 60 instances, respectively),

view validation has an accuracy of at least 90% (i.e., it misclassifies at most two of the

ExsPerInst = 20 view validation examples). Finally, for all but one problem instance,

the algorithm labels correctly at least 60% of the view validation examples generated for

each problem instance.

For an in-depth perspective of the results above, in Figure 5.7 I split the view valida-

tion errors into two classes: false positives and false negatives. The former are the errors

in which the algorithm predicts “apply multi-view algorithm” even though the views are

95

0

5

10

15

20

0 2 4 6 8 10 12 14 16

pr
ob

le
m

 in
st

an
ce

s

misclassified view validation examples

WI

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

pr
ob

le
m

 in
st

an
ce

s

misclassified view validation examples

PTCT

Figure 5.6: The distribution of the errors for wi (top) and ptct (bottom).

insufficiently compatible for multi-view learning; the latter are errors in which the algo-

rithms predicts “don’t apply multi-view algorithm” even though the views are sufficiently

compatible for multi-view learning. The results are excellent both on wi and ptcp:

- for wi, where the default, most-frequent-label prediction is “use multi-view learning”,

the false positives are of little concern because, by default, all negative examples

would have been false positives. Among the 21 problem instances in which view

validation could have potentially predicted false negatives, it did so only on six of

them. Furthermore, even for these six instances the error rate is at most 20% (i.e.,

at most 4 of the 20 examples are misslabeled as negatives).

- for ptcp, where the default, most-frequent-label prediction is “do NOT use multi-view

learning”, it is the the false negatives that are of little concern (by default, all positive

examples would have been false negatives). Among the 40 problem instances in

which view validation could have potentially predicted false positives, it did so only

on 15 of them. Furthermore, except for one of these 15 instances, the error rates

are - again - at most 20% (i.e., at most 4 of the 20 examples are misslabeled as

positives).

96

0

5

10

15

20

0 2 4 6 8 10 12 14 16

pr
ob

le
m

 in
st

an
ce

s

false positives

WI (false positives)

0

5

10

15

20

0 1 2 3 4

pr
ob

le
m

 in
st

an
ce

s

false negatives

WI (false negatives)

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

pr
ob

le
m

 in
st

an
ce

s

false positives

TC (false positives)

0

5

10

15

20

25

0 1 2 3 4 5 6 7
pr

ob
le

m
 in

st
an

ce
s

false negatives

TC (false negatives)

Figure 5.7: The distribution of the false positives and negatives for wi (top) and ptct
(bottom).

5.3.6 Understanding the Predictions

In practice, it is important to provide users with the intuition behind a view validation

prediction. The decision trees learned by C4.5 are extremely useful with this respect.

Figure 5.8 shows two illustrative pruned decision trees (one for each domain) that were

learned using 66% of the problem instances. For each node in the trees, I show the

following information: the view validation feature used to make the decision (i.e., one of

the seven features described in Section 4); the error rate on the test set; and the number

of test examples that are classified based on the node’s descendents.

Consider, for instance, the ptct decision tree, which misclassifies 4.5% of the 400 test

examples (see the tree’s root). The decision tree reads as follows: if the hypotheses h1

and h2 agree on more than 62% of the unlabeled examples in Uk (i.e., if f1 > 62%), then

97

f6
 error: 9.09% (220)

Sufficiently Compatible
 error: 5.98% (184)

<= 1

f1
 error: 25.00% (36)

> 1

f6
 error: 46.67% (15)

> 83

Insufficiently Compatible
 error: 9.52% (21)

<= 83

Sufficiently Compatible
 error: 58.33% (12)

<= 2

Insufficiently Compatible
 error: 0.00% (3)

> 2

f1
error: 4.50% (400)

f1
error: 5.60% (250)

<= 62%

Sufficiently Compatible
error: 2.67% (150)

> 62%

Insufficiently Compatible
error: 2.33% (215)

<= 59%

f4
error: 25.71% (35)

> 59%

Insufficiently Compatible
error: 24.24% (33)

<= 6

Sufficiently Compatible
error: 50.00% (2)

> 6

Figure 5.8: Illustrative trees for wi (top) and ptct (bottom). The node labels “f1”, “f4”,
and “f6” reffer to the view validation features described in section 5.2. That is, “f1” is
the agreement level between the hypotheses learned in the two views; “f4” is the absolute
value of the difference between the training errors in the two views; finally, “f6” is the
largest of the complexities of the hypotheses learned in the two views.

98

the problem instance has views that are sufficiently compatible for multi-view learning.

Based on this criterion, 150 of the 400 examples are labeled “sufficiently compatible”,

with an error rate of 2.67% (i.e., only four examples are misclassified).

If the two hypotheses agree on at most 59% of the unlabeled examples (i.e., f1 ≤ 59%),

the views are insufficiently compatible for learning. Finally, if the agreement level is

between 59% and 62%, the decision is taken based on the feature f4: the views are

sufficiently compatible if and only if the difference in training error in the two views is

larger than 10% (i.e., seven of the 70 examples in Lk). This counter-intuitive decision,

which is due to overfitting, produces half the errors on the entire test set (i.e., nine of the

18 misclassified examples).

5.4 Summary

In this chapter I described the first approach to view validation. My view validation

algorithm uses several solved problem instances to train a classifier that discriminates

between instances for which the views are sufficiently/insufficiently compatible for multi-

view learning. For both test domains, wrapper induction and text classification, view

validation requires a modest amount of training data to make high-accuracy predictions.

View validation represents a first step towards the long-term goal of creating a view

detection algorithm that automatically partitions the domain’s features in views that are

adequate for multi-view learning.

99

Chapter 6

Related Work

One cannot conceive anything so strange and so implausible that

it has not already been said by one philosopher or another.

Rene Descartes

In this chapter I review the research efforts that are related to my dissertation. First,

I discuss existing work on various types of active learners. Then I continue by presenting

the main approaches to semi-supervised learning and meta-learning.

6.1 Active learning algorithms

The idea of active learning can be seen as a natural development from the earlier work on

optimum experimental design (Fedorov, 1972). In the early 1980s, the machine learning

community started recognizing the advantages of inductive systems that are capable of

querying their instructors. For example, in order to detect errors in Prolog programs,

the Algorithmic Debugging System (Shapiro, 1981; Shapiro, 1982) was allowed to ask

the user several types of queries. Similarly, concept learning systems such as Marvin

(Sammut and Banerji, 1986) and cat (Gross, 1991) used queries as an integral part of

their respective learning strategies.

My review of the existing approaches to active learning is structured as follows. First,

I discuss the early, mostly theoretical results in query construction. Then I focus on

100

selective sampling algorithms, which - rather than constructing a query - select as the

next query one of the unlabeled examples from the working set.

6.1.1 Active learning by query construction

The earliest approaches to formalizing active learning appeared in the seminal papers of

Angluin (1982; 1988) and Valiant (1984), who focused on exact concept induction and

learning in the pac framework, respectively. This theoretic work focused on learning

classes of concepts such as regular sets, monotone dnf expressions, and µ−expressions.

Besides membership queries such as “is this an example of the target concept?,” Angluin

also used more sophisticated types of queries such as equivalence queries (“is this concept

equivalent with the target concept?”) or superset queries (“is this concept a superset of the

target concept?”).

These early active learners took a constructive approach to query generation in the

sense that each query is (artificially) constructed by setting the values of the attributes

so that the query is as informative as possible. In practice, this may raise some serious

problems; for example, as discussed in (Lang and Baum, 1992), consider a hand-writing

recognizer that must discriminate between the 10 digits. In this scenario, an informative

query may consist of an image that represents a “fusion” of two similarly-looking digits,

such as “3” and “5.” When presented with such an image, a user cannot label it properly

because it does not represent a recognizable digit. Consequently, a query is “wasted” on

a totally irrelevant image. Similar situations appear in many real world tasks such as text

classification, information extraction, or speech recognition: whenever the active learner

artificially builds a query for such a domain, it is highly unlikely that the newly created

object has any meaning for the human user.

Despite this practical applicability issue, the constructive approach to active learning

leads to interesting theoretical insights about the merits of various types of queries. For

example, researchers considered learning with:

101

- incomplete queries, for which the query’s answer may be “I don’t know.” (Angluin

and Slonim, 1991; Goldman and Mathias, 1992; Sloan and Turan, 1994; Blum et

al., 1998);

- malicious queries, for which the answer to the queries may be erroneous (Angluin et

al., 1997; Angluin and Krikis, 1994; Angluin, 1994).

New learning problems were also considered, from unrestricted dnf expression (Jack-

son, 1994; Blum et al., 1994) and unions of boxes (Goldberg, Goldman, and Mathias,

1994) to tree patterns (Amoth, Cull, and Tadepalli, 1998; Amoth, Cull, and Tadepalli,

1999) and Horn clauses (Reddy and Tadepalli, 1997). Researchers also reported results

on applying active learning to neural networks (Hwang et al., 1991; Baum, 1991; Watkin

and Rau, 1992; Hasenjager and Ritter, 1998) and for combining declarative bias (prior

knowledge) and active learning (Tadepalli, 1993; Tadepalli and Russell, 1998).

6.1.2 Selective sampling

Selective sampling represents an alternative active learning approach. It typically applies

to classification tasks in which the learner has access to a large number of unlabeled

examples. In this scenario, rather than constructing an informative query, the active

learner asks the user to label one of the existing unlabeled examples. Depending on the

source of unlabeled examples, there are two main types of sampling algorithms: stream-

and pool- based. The former assumes that the active learner has access to an (infinite)

stream of unlabeled examples (Freund et al., 1997; Argamon-Engelson and Dagan, 1999;

Dagan and Engelson, 1995); as successive examples are presented to it, the active learner

must decide which of them should be labeled by the user. In contrast, in the pool-

based scenario (Lewis and Gale, 1994; Lewis and Catlett, 1994; McCallum and Nigam,

1998b; Muslea, Minton, and Knoblock, 2000b; Muslea, Minton, and Knoblock, 2002a),

the learner is presented with a working set of unlabeled examples; in order to make a

102

query, the active learner goes through the entire pool and selects the example to be

labeled next.

Based on the criterion used to select the next query, selective sampling algorithms fall

under three main categories:

- uncertainty reduction: the system queries the example on which the current hypothesis

makes the least confident prediction;

- expected-error minimization: the system queries the example that maximizes the ex-

pected reduction in classification error;

- version space reduction: the system queries the example that, once labeled, removes as

much as possible of the version space.

The uncertainty reduction approach to selective sampling works as follows: first, one

uses the labeled examples to learn a classifier; then the system queries the unlabeled

example on which this classifier makes the least confident prediction. This straightforward

idea can be applied to any base learner for which one can estimate the confidence of its

predictions. Confidence-estimation heuristics were proposed for a variety of base learners

such as logistic regression (Lewis and Gale, 1994; Lewis and Catlett, 1994), partially

hidden Markov Models (Scheffer and Wrobel, 2001), support vector machines (Schohn and

Cohn, 2000; Campbell, Cristianini, and Smola, 2000), and inductive logic programming

(Thompson, Califf, and Mooney, 1999).

The second, more sophisticated approach to selective sampling, expected-error mini-

mization, is based on the statistically optimal solution to the active learning problem. In

this scenario, the intuition is to query the unlabeled example that minimizes the error

rate of the (future) classifier on the test set. Even though for some (extremely simple)

base learners one can find such optimal queries (Cohn, Ghahramani, and Jordan, 1996),

this is not true for most inductive learners. Consequently, researchers proposed methods

to estimate the error reduction for various types of base learners. For example, (Roy

and McCallum, 2001) use a sample estimation method for the Naive Bayes classifier;

103

similar approaches were also described for parameter learning in Bayesian nets (Tong

and Koller, 2000a) and for nearest neighbor classifiers (Lindenbaum, Markovitch, and

Rusakov, 1999).

The heuristic approach to expected-error minimization can be summarized as follows.

First, one chooses a loss function that is used to estimate the future error rate (see (Roy

and McCallum, 2001) for a description of the log and 0-1 loss functions). Then each

unlabeled example x in the working set is considered as the possible next query, and the

system estimates the expected reduction of the error rate for each possible label that x

may take. Finally, the system queries the unlabeled example that leads to the largest

estimated reduction in the error rate.

Finally, a typical version space reduction active learner works as follows: it generates

a committee of several hypotheses, and it queries the unlabeled examples on which the

predictions of the committee’s members are the most split. In a 2-class learning problem,

this strategy translates into making queries that remove approximately half of version

space. Depending on the method used to generate the committee, one can distinguish

several types of active learners:

- Query-by-Committee selects a committee by randomly sampling hypotheses from ver-

sion space. Query-by-Committee was applied to a variety of base learners such as

perceptrons (Freund et al., 1997), Naive Bayes (McCallum and Nigam, 1998b), and

Winnow (Liere and Tadepalli, 1997). Furthermore, Argamon-Engelson and Dagan

(1999; 1995) introduce an extension to Query-by-Committee for Bayesian learning

(Mitchell, 1998). In the Bayesian framework, one can create the committee by

sampling classifiers according their posterior distributions; that is, the better a hy-

pothesis explains the training data, the more likely it is to be sampled. The main

limitation of Query-by-Committee is that it can be applied only to base learners

for which it is feasible to sample hypotheses from a version space.

104

- sg-net (Cohn, Atlas, and Ladner, 1994) creates a 2-hypothesis committee that con-

sists of a “most-general” and a “most-specific” classifier. These two hypotheses are

generated by modifying the base learner so that it learns a classifier that labels as

many as possible of the unlabeled examples in the working set as positive or nega-

tive, respectively. This approach has an obvious drawback: it requires the user to

modify the base learner so that it can generate “most-general” and “most-specific”

classifiers.

- Query-by-Bagging and Query-by-Boosting (Abe and Mamitsuka, 1998) create the com-

mittee by using the well-known bagging (Breiman, 1996) and boosting (Schapire,

1990) algorithms, respectively. These algorithms were introduced for the c4.5 base

learner, for which both bagging and boosting are known to work extremely well.

In general, committee-based sampling tends to be associated with the version space

reduction approach. However, for base learners such as support vector machines, one can

use a single hypothesis to make queries that remove (approximately) half of version space

(Tong and Koller, 2001; Tong and Koller, 2000b). Conversely, committee-based sampling

can also be seen as relying on the uncertainty reduction principle: after all, the unlabeled

example on which the committee is the most split can be also seen as the example that

has the least certain classification.

6.1.3 Co-Testing vs existing active learners

There are two main differences between Co-Testing and the other approaches to selective

sampling. First of all, Co-Testing is the only multi-view active learner; all other active

learning algorithms work in the single-view framework.

Second, Co-Testing takes a “problem-oriented” approach to selective sampling; that

is, Co-Testing can be applied to any multi-view problem, regardless of the base learner

of choice. In contrast, all single-view algorithm are designed for a particular (class of)

base learner(s). For example, Query-by-Committee applies to learners for which one

105

can sample hypotheses from version space, while Uncertainty Sampling applies to base

learners that can evaluate the confidence of their predictions.

Co-Testing’s “problem-oriented” approach to active learning has both advantages and

disadvantages. On one hand, Co-Testing cannot be applied on problems that do not have

at least two views. On the other hand, for any multi-view problem, Co-Testing can be

used in a straightforward manner with the base learner that works the best for that

particular type of task. In contrast, in the single-view framework, one often must either

create a new active learning method that can accommodate a particular base learner or,

even worse, modify an existing base learner so that it can be used in conjunction with an

existing sampling algorithm.

Finally, a few more observation that contrast Co-Testing with other active learners.

First, Co-Testing can be seen as a committee-based approach to selective sampling: Co-

Testing generates a committee that consists of one hypothesis from each view and queries

examples on which the committee’s predictions are split (i.e., contention points). How-

ever, as opposed to single-view approaches, Co-Testing does not generate the committee

based on properties inherent to the base learner, but rather based on properties pertaining

to the problem to be solved (i.e., the multiple views).

Second, Co-Testing can be combined with virtually any of the single-view active learn-

ers. That is, among the contention points, a Co-Testing algorithm can choose the next

query based on any of the heuristics used by the single-view selective samplers. For exam-

ple, Aggressive Co-Testing, which queries the contention point on which both views make

the most confident prediction, can be seen as “borrowing” the heuristic from Uncertainty

Sampling. Novel members of the Co-Testing family can be created in a similar manner

by relying on heuristics such as expected-error minimization or version space reduction.

106

6.2 Semi-supervised concept learning

In this section I discuss two main classes of algorithms that combine labeled and unlabeled

data: single-view and multi-view semi-supervised learners. I begin with the single-view

classifiers, which represent the traditional approach to semi-supervised learning. Then I

focus on the (recent) developments in multi-view, semi-supervised learning.

6.2.1 Single-view, semi-supervised classification

Based on the way in which they used the unlabeled examples, there are three major

approaches to single-view, semi-supervised classification: transduction, expectation max-

imization, and “background knowledge injection.” Transduction maximizes the classi-

fication accuracy on a particular test set by using as the working set the (unlabeled)

examples in the actual test set. In contrast, the other two approaches aim at improving

the classifiers’s accuracy over the entire instance space. In order to achieve this goal,

they supplement the training set with unlabeled examples from a working set, which is

distinct from the test set. In expectation maximization, the working set is used to create

a generative model for the data; that is, a model that is likely to have generated the seen

data. In contrast, the “background knowledge injection” approach uses the unlabeled

data to synthesize some sort of knowledge that can be used to improve the accuracy of

the supervised learner.

6.2.1.1 Transductive approaches

The best way to introduce the intuition behind the transductive learning framework

(Vapnik, 1998) is to contrast it with inductive learning. In inductive learning, one searches

for a hypothesis that has the smallest error rate over the entire instance space. In contrast,

transductive learning generates a classifiers that is as accurate as possible on a particular

test set; that is, given a set of labeled examples, in the transductive framework one learns

a distinct, maximally-accurate classifier for each test set of interest. In practice, this

107

translates into combining the labeled examples in the training set with the unlabeled

ones from the test set.

Research in transductive learning lead to some interesting and contradictory results.

On one hand, Zhang and Oles (2000) provide both theoretical and empirical evidence

that, in general, transductive support vector machines (tsvm) are unlikely to improve

the classification accuracy. On the other hand, several papers (Joachims, 1999; Bennett

and Demiriz, 1998; Bennett and Demiriz, 2000) contradict the results in (Zhang and Oles,

2000) by showing that tsvms can reduce the need for labeled data by up to 95%.

In (Szummer and Jaakkola, 2000), the authors describe a transductive learning algo-

rithm for kernel density estimation. In their scenario, the labeled and unlabeled data are

used to evaluate the density of the instance space. This instance density is subsequently

used to estimate the importance of each individual labeled example, thus improving the

classification accuracy.

Transductive classification was also applied to learning with Probabilistic Relation

Models (prms)(Taskar, Segal, and Koller, 2001). As prms exploit the relational structure

in the data, it is crucial to have access to the (unlabeled) data in the test set: in the

absence of the test data, one misses not only the relational information pertaining to it,

but also the (highly informative) relational information that “connects” the labeled and

unlabeled examples.

6.2.1.2 Expectation Maximization

Within the statistics community, the problem of learning generative models from both

labeled and unlabeled data has received significant attention (Hartley and Rao, 1968; Day,

1969; MacLachlan, 1975) for at least a decade before the seminal work on Expectation

Maximization (em) (Dempster, Laird, and Rubin, 1977). The em paper, which had

a tremendous influence on the machine learning community, formalizes the idea of an

iterative approach to likelihood maximization in the presence of missing data; that is,

an iterative approach to finding the generative model that is the most likely to have

108

generated the seen examples. In the concept learning framework, this translates into

searching for the classifier that explains the best the data from the training and working

set.

The em algorithm stimulated an impressive amount of both theoretical and practical

work. On the theoretical side, researchers focused mainly on answering the following ques-

tion: “how many unlabeled examples is a labeled example worth?” (Cover and Thomas,

1991; Ratsaby and Venkatesh, 1995). Under strong assumptions (e.g., knowing the para-

metric form of the target function, and having no “local optimum” points in the search

space), convergence results were proved for various types of mixtures of two Gaussians

(Ganesalingam and McLachlan, 1969; O’Neill, 1978; Ratsaby and Venkatesh, 1995). One

of the most intuitive and best known results can be summarized as follows: under certain

assumptions,

- if an infinite amount of unlabeled data is available, labeled examples reduce the classi-

fication error exponentially fast (Castelli and Cover, 1995);

- if only a finite amount of labeled and unlabeled data is available, the labeled examples

are exponentially more informative than the unlabeled ones (Castelli and Cover,

1996).

The semi-supervised em algorithm was applied to a variety of real world domains,

from face orientation discrimination (Baluja, 1998) to text classification (Nigam et al.,

1998) and English text tagging (Merialdo, 1994). These em implementations were created

for base learners such as Naive Bayes (Nigam et al., 1998; Baluja, 1998), dependency

trees (Baluja, 1998), and hidden Markov models (Merialdo, 1994). A known drawback

(Merialdo, 1994; Nigam et al., 2000; Cozman and Cohen, 2002) of these approaches is

the following: if the data does not conform to the generative model (i.e., if the base

learner cannot perfectly learn the target concept), the unlabeled examples may actually

decrease the classification accuracy. In order to cope with this problem, researchers

proposed two main approaches. First, one can use more sophisticated base learners, such

109

as multiple mixture components for each domain class (Nigam et al., 2000; Shahshahani

and Landgrebe, 1994; Miller and Uyar, 1996). Second, the labeled examples can be

assigned more importance than the unlabeled ones (Nigam et al., 2000), thus mitigating

the effect of not using the ideal base learner.

6.2.1.3 Unlabeled data as “background knowledge”

A third approach to single-view, semi-supervised classification can be characterized as

using the unlabeled examples as some sort of background knowledge. For example, Ze-

likovitz and Hirsh (2000) introduce a novel strategy to boost the accuracy of a nearest

neighbor classifier. Rather than directly measuring how similar sets of test and a train-

ing examples are, the new algorithm compares their relative similarities to a group of

unlabeled examples from the working set. The intuition in (Zelikovitz and Hirsh, 2000)

is straightforward: instead of relying on an imperfect metric for the similarity of two

examples, the authors use the stronger evidence of the two examples being similar to an

entire group of (unlabeled) examples.

Another approach to using the unlabeled examples as background knowledge is pre-

sented in (Raskutti, Ferra, and Kowalczyk, 2002b). The authors use the unlabeled ex-

amples to enrich the original set of features with some additional, highly-informative

attributes. In a first step towards creating the new features, a clustering algorithm is

applied to the examples in the training and working sets, and then all but the N largest

clusters are discarded. In the second phase, for each example x and each remaining clus-

ter C, the algorithm adds to x novel features such as a binary attribute that answers the

question “is C the closest cluster to x?,” a numeric attribute that measures similarity of

x to the centroid of the cluster C, etc. Raskutti et al. (2002b) show that by using the

enriched set of features, one can significantly improve the classification accuracy.

Finally, the assemble algorithm (Bennett, Demiriz, and Maclin, 2002) uses the un-

labeled examples to create a diverse committee that consists of hypotheses that make

highly consistent predictions; that is, most hypotheses predict the same label for any

110

unlabeled examples. By construction, such a committee prevents overfitting, thus in-

creasing assemble’s generalization power. assemble iteratively creates the committee

in the following manner: first, it uses the current committee to label the unlabeled data

in the working set. Second, assemble learns a new hypothesis from both the training

and (newly labeled) working sets. This new hypothesis is added to the committee, and

the whole process is repeated for a number of iterations. Note that assemble’s com-

mittee is similar to the one that would consists of the hypotheses learned after each em

iteration. However, there are two main difference between the two approaches. First of

all, instead of using Expectation Maximization, assemble simply trains the base learner

on the labeled examples. Consequently, assemble can be used with any base learner,

not only with generative models. Second, rather than aiming to incrementally learn a

“better” hypothesis in an em-like manner, assemble focuses on creating a committee in

which all/most members label identically the examples in the working set.

6.2.2 Multi-view, semi-supervised learning

As I already mentioned, Blum and Mitchell (1998) provided the first formalization of

learning in the multi-view framework. They proved that two independent, compatible

views can be used to pac-learn (Valiant, 1984) a concept based on few labeled and many

unlabeled examples. Blum and Mitchell also introduced the Co-Training, which is the

first general-purpose, multi-view algorithm.

Collins and Singer (1999) proposed a version of Co-Training that is biased towards

learning hypotheses that predict the same label on most of the unlabeled examples.

They introduce an explicit objective function that measures the compatibility of the

learned hypotheses and use a boosting algorithm to optimize this objective function. In

a related paper (Dasgupta, Littman, and McAllester, 2001), the authors provide pac-like

guarantees for this novel Co-Training algorithm (the assumption is, again, that the views

are both independent and compatible). Intuitively, Dasgupta et al. show that the ratio

111

of contention points1 to unlabeled examples is an upper-bound on the error rate of the

classifiers learned in the two views.

In a recent development, Abney (2002) extends the work of Dasgupta et al. by

relaxing the view independence assumption. More precisely, Abney shows that even with

views that are weakly dependent, the ratio of contention points to unlabeled examples still

represents an upper-bound on the two view’s error rate. Unfortunately, (Abney, 2002)

introduces just a theoretical definition for the weak dependence of the views, without

providing an intuitive explanation of practical consequences of this weak dependence.

Researchers proposed two main types of extensions to the original Co-Training algo-

rithm: modifications of the actual algorithm and changes aiming to extend its practical

applicability. The former cover a wide variety of scenarios:

- Co-EM (Nigam and Ghani, 2000) uses Expectation Maximization (Dempster, Laird,

and Rubin, 1977) for multi-view learning. Co-EM can be seen as the closest imple-

mentation of the theoretical framework proposed in (Blum and Mitchell, 1998).

- Ghani (2002) uses Error-Correcting Output Codes to allow Co-Training and Co-EM to

scale up well to problems with a large number of classes.

- Corrected Co-Training (Pierce and Cardie, 2001) asks the user to manually correct the

labels of the bootstrapped examples. This approach is motivated by the observation

that the quality of the bootstrapped data is the key factor in the convergence of

Co-Training.

- Co-Boost (Collins and Singer, 1999) and Greedy Agreement Algorithm (Abney, 2002)

are Co-Training algorithms that explicitly minimize the number of contention points.

The second group of extensions to Co-Training is motivated by the fact that, in

practice, one also encounters many problems for which there is no straightforward way

to split the features in two views. In order to cope with this problem, Nigam and Ghani
1Remember that a contention point is an unlabeled example for which the hypotheses learned in the

two views predict a different label.

112

(2000) show that, for “bag-of-words” text classification, one can create two views by

arbitrarily splitting the original set of features into two sub-sets. Such an approach fits

well the text classification domain, in which the features are abundant, but it is unlikely

to work on other types of problems.

An alternative solution is proposed in (Raskutti, Ferra, and Kowalczyk, 2002a), where

the authors create a second view that consists of a variety of features that measure the

examples’ similarity with the N largest clusters in the domain. In fact, (Raskutti, Ferra,

and Kowalczyk, 2002a) is tightly related to (Raskutti, Ferra, and Kowalczyk, 2002b),

which was discussed in section 6.2.1.3: the two papers show that the clusters-based

features are highly informative both in the multi- and single- view framework, respectively.

Finally, (Goldman and Zhou, 2000) advocates the use of multiple biases instead of mul-

tiple views. The authors introduce an algorithm similar to Co-Training, which bootstraps

from each other hypotheses learned by two different base learners. The only assumption

is that the these base learners generate hypotheses that partition the instance space into

equivalence classes.

6.2.3 Co-EMT vs. existing approaches

The only approach similar to Co-EMT was proposed by McCallum and Nigam (1998b),

who introduced a family of algorithms that combine active and semi-supervised learning.

More precisely, they use the highly informative (labeled) examples chosen by an active

learner (Seung, Opper, and Sompolinski, 1992) as the training set for the semi-supervised

em algorithm.

There are two main distinction between the algorithms in (McCallum and Nigam,

1998b) and Co-EMT (Muslea, Minton, and Knoblock, 2002a). First of all, the algo-

rithms introduced by McCallum and Nigam (1998b) are single-view, while Co-EMT is

multi-view. Second, the experiments in (McCallum and Nigam, 1998b) show interleaving

active and semi-supervised learning does not lead to a higher accuracy than applying

113

the algorithms after each other. In contrast, our results showed that - in the multi-

view setting - interleaving the two algorithms dramatically outperforms applying them

in sequence.

6.3 Meta-learning for model selection

In this section I discuss the “learning to learn” (Thrun and Pratt, 1997) paradigm, which

is closely related to my View Validation algorithm (Muslea, Minton, and Knoblock,

2002b). Given the breadth of the “learning to learn” topic, I first discuss the larger

context and present a few illustrative examples of existing approaches; then I focus on

meta-learning model selection algorithms, of which the View Validation is an example.

The seminal work on the no free lunch theorems (Schaffer, 1993a; Schaffer, 1994;

Wolpert, 1996; Wolpert and Macready, 1997) showed that there is no learning algorithm

that can outperform random guessing on all possible classifications of an instance space.

These results lead to two main directions of research: model combination and model

selection. For a given learning task, the former aims at combining the predictive power of

several learners. Algorithms such as bagging (Breiman, 1996), boosting (Schapire, 1990),

or stacked generalization (Wolpert, 1992) represent highly successful approaches to model

combination.

The main focus of this section is on model selection methods. A typical model selection

algorithm is given a learning task T and a number of learning algorithms l1, l2, . . . , ln,

and it is required to predict which of the n learners obtains the best accuracy on the task

T . There are four main approaches to model selection: experimental, knowledge-driven,

transfer of learning, and meta-learning.

6.3.1 Experimental model selection

The main idea in experimental model selection is based on the following assumption: if an

algorithm trained on a subset of the training data makes accurate predictions, it is likely

114

to also make high accuracy predictions when trained on the entire dataset. A typical

approach to experimental model selection is to use cross-validation (Schaffer, 1993b) to

estimate the accuracy of each learner on the task T ; then the system solves the task T

by applying the learner lw that has obtains the highest accuracy during cross-validation.

In a related approach (Petrak, 2000), the author introduces a subsampling algorithm

for error estimation. This methodology is motivated by the work in data mining, where

extremely large datasets make cross-validation impractical. Petrak (2000) shows that by

estimating the error rate based on a single subsample of a large dataset, one obtains a

good estimate of an algorithm’s performance. The results in (Petrak, 2000) also indicate

that, for error estimation, it is much more important to have a large test set than a large

training set.

Finally, the wrapper method (Kohavi and John, 1995) is used in to find the optimal

value of the parameters for a given learning algorithm. The authors use best-first search

and cross-validation to explore the space of parameters settings. The wrapper method can

be seen as applying cross validation at two different levels: once for parameter estimation

and once for the actual error estimation.

6.3.2 Knowledge-driven model selection

The knowledge-driven approach to model selection is based on the idea of extracting

meta-knowledge from the user and using it to select the most appropriate algorithm for a

particular task. The meta-knowledge can be seen as a set of heuristics that can be used

for model selection. For example, Shavlik et al. (1991) perform an extensive empirical

evaluation of the id3, perceptron, and back-propagation algorithms on five datasets and

analyzed the effect of several factors (e.g., classification noise and type of features) on

the accuracy of each learner. The authors found some interesting heuristics, such as

“back-propagation outperforms ID3 on datasets with numerical features.”

Similarly, in (King, Feng, and Shutherland, 1995), the authors perform a larger scale

experiment, in which they compare 17 algorithms on 12 datasets. For each dataset, they

115

measure 12 statistical characteristics (e.g., the homogeneity of the covariances, and the at-

tributes’s skew and kurtosis) that are used to define a set of heuristics for model selection.

For example, one such heuristic states that “domains with extreme distributions

(skew>1 and kurtosis>7) and with many binary/discrete attributes (>38%)

favor symbolic learners.” A similar approach is used in (Engels and Theusinger,

1998) for finding heuristics for pre-processing a dataset (e.g., eliminate redundant and

uninformative attributes).

In (Brodley, 1995), the author takes the idea above to a higher level. She introduces

the Model Class Selection (MCS) system, which creates a tree-structure hybrid classifier

that applies different classifiers (i.e., linear discriminant functions, decision trees, and

instance-based learning) in various regions of the instance space. Intuitively, MCS can

be seen as a 3-step process: first, the user proposes several heuristics for model selec-

tion, which are similar to the one described above. The heuristics are used by MCS to

recursively builds the hybrid, tree-like classifier that splits the instance space into regions

that are well-suited for a particular learner. In the second step, a few datasets are used

to (iteratively) debug the heuristics: MCS builds a hybrid classifier, whose performance

is compared with that of the three individual learners; if the hybrid classifier does not

perform at least as well as the best of the three learners, the user finds and repairs the

faulty heuristics, and the whole process is repeated. Finally, when the system is deployed,

the hybrid tree-like classifier is used to apply the appropriate classifier to each region of

the instance space.

There are two main disadvantages to experimental and knowledge-driven model selec-

tion. First of all, they represent time consuming processes that do not scale well to the

plethora of learning algorithms and the number of parameters than must be tuned for

each of them. Second, they both ignore a powerful source of knowledge: the experience

acquired while solving other related learning tasks. These drawbacks are addressed by

the other two approaches to model selection: transfer of learning and meta-learning.

116

6.3.3 Transfer of learning

Transfer of learning refers to finding a model that is appropriate for a group of related

tasks. For example, Baxter (1996; 1997) introduces a Bayesian framework for learning

to predict which is the most appropriate model for an environment of similar tasks. The

main intuition is the following: when solving several tasks from the same environment,

one can exploit the information from all these tasks to find the model that is the most

appropriate for the entire class of problems. Baxter provides both theoretical and empir-

ical evidence that his approach reduces the amount of data required for training on each

particular task.

Multitask Learning (Caruana, 1997) takes a different approach to transfer of learning.

Multitask Learning simultaneously learns both the concept of interest (the main concept)

and a set of other, related concepts (the auxiliary concepts). For instance, consider the

task of predicting, prior to hospitalization, the patient risk of people diagnosed with pneu-

monia. As explained in (Caruana, 1996), a typical single-task approach to this problem

is to use a set of 30 basic measurements (e.g., age, sex, pulse) to make a prediction. In

contrast, Multitask Learning also considers an additional set of 35 lab tests (e.g., blood

cells counts, and blood gases) that are available only for patients that were hospitalized

in the past. Even though these features cannot be directly used for predictions, which

must be made prior to hospitalization, Multitask Learning uses them as auxiliary learn-

ing tasks: from the 30 available attributes, Multitask Learning simultaneously learns to

predict both the patient risk and all these 35 additional measurements. Caruana shows

that Multitask Learning for neural networks (Caruana, 1995), decision trees (Caruana,

1996), and k-nearest neighbor (Caruana, 1996) outperform their respective single-task

counterparts.

The main problem with transfer of learning approaches is that they cannot be applied

to new, unseen tasks. In other words, given a set of related task, transfer of learning finds

the model that is the most appropriate to all of them. However, when presented with

a new, unseen learning task, transfer of learning cannot predict which learner should

117

be used for this task. This issue is central to the meta-learning approaches to model

selection, which are discussed in the next section.

6.3.4 Meta-learning for model selection

Meta-learning is the process of learning how to guide a user in applying machine learning

techniques. Meta-learning captures valuable knowledge from meta-data (i.e., how, for

a particular learner, different factors influence its success or failure); this knowledge is

then used to increase the efficiency of the learning process. In other words, meta-learning

refers to “learning how to learn well.”

Meta-learning is used for a variety of tasks such as feature selection (Kamolvilassatian,

2002), discriminating between a base learner’s correct and incorrect predictions (Bay

and Pazzani, 2000), finding the best way to deal with missing attributes (Feng, 2000),

detecting concept drift in online learning (Widmer, 1997), selecting the best classifier

for each example in a domain (Wolpert, 1992; Chan and Stolfo, 1997; Todorovski and

Dzeroski, 2000; Ting and Witten, 1999; Gama and Brazdil, 2000; Kaynak and Alpaydin,

2000), and learning when, how much, and how to prune decision tree (Bensusan, 1998).

My focus here is on meta-learning for model selection; that is, how can one learn to

predict which is the most appropriate learner for a new, unseen dataset?

For sake of simplicity, in the remainder of this section I use the term meta-learning

to denote “meta-learning for model selection.” The vbms system (Rendell, Seshu, and

Tcheng, 1987), which predicts the best learning algorithm to solve a task, represents

the first approach to meta-learning for model selection. vbms can be seen as a proof-

of-concept system: based on only two meta-features (i.e., the number of examples, and

attributes in the domain), it chooses the best among three algorithms. The only criterion

based on which an algorithm is preferred to the others is its execution time (the three

algorithms reach similar accuracy on the considered tasks).

118

A typical meta-learning process consists of three main steps: first, one must choose

the meta-features to be used. Second, a set of “training tasks” are used to create meta-

examples; that is, one meta-example is created for each training task. Each such meta-

example is described by the values of the meta-features, together with a label that des-

ignates the most appropriate learner for the corresponding “training task.” Finally, a

machine learning algorithm is used to learn a classifier that predicts the learner to be

applied to a new, unseen task. As the selection of the algorithm that is applied to the

meta-data is in itself subject to the use of meta-learning (i.e., meta-meta-learning), the

best way to discriminate between the various approaches to meta-learning is by analyzing

the type of meta-features used by a system.

At the highest level, one can distinguish between two main types of meta-features:

application-related constraints and dataset measurements. The former are mostly related

to defining the “scope” of the meta-learner: the meta-learner’s search space can be dra-

matically reduced by taking into account the user’s requirements for the learners among

which the meta-learner must choose. Such requirements may consist of constraints on the

running time and accuracy of each learner, the understandability of the learned classifiers,

or the learners’ ability to cope with noise, uncertainty, or redundant data.

The second type of meta-features are created by dataset measurements. These meta-

features fall under three main categories: general dataset characteristics, classifier-based

features, and landmarking features. The general dataset characteristics can be further

divided in the following categories:

- simple features, such as the number of classes, attributes, and examples in the domain,

or the number of symbolic, binary, and numeric attributes.

- features based on discriminative analysis, such as the number of discriminant func-

tions, the relative importance of the largest eigenvalue, or the canonical correlation

between the most significant discriminant function and the class distribution.

119

- statistical features, such as default accuracy (i.e., the relative size of the most populated

class), the amount of classification noise, the frequency of the missing values, or

standard deviation, skewness, and kurtosis of each class.

- information-based features, such as the class, attribute, and joint entropy, the mutual

information entropy, or the information gain.

Based on (subsets of) the meta-features above, researchers have created meta-learners

that use the cn2 rule-generating algorithm (Aha, 1992a), case-based reasoning (Lindner

and Studer, 1999), nearest neighbor (Gama and Brazdil, 1995), the c4.5 decision tree

learner (Brazdil, Gama, and Henery, 1984; Gama and Brazdil, 1995), inductive logic

programming (Todorovski and Dzeroski, 1999), or regression (Koepf, Taylor, and Keller,

2000; Gama and Brazdil, 1995) to predict the most appropriate learner for a new, unseen

task. The Zoomed Ranking algorithm (Soares and Brazdil, 2000) uses the same type of

meta-features, but takes a more sophisticated approach to meta-learning. First, it uses a

k-nearest neighbor algorithm to detect the k most similar training domains to the one on

which the prediction must be made. Then it uses the candidate algorithms’ performance

on these k domains to rank their predicted performance on the new domain.

The classifier-based meta-features are created by applying a learner to the dataset and

measuring various properties of the learned hypothesis. For example, the entrencher

system (Bensusan, 1999) learns a decision tree from the dataset and uses as meta-features

descriptors such as the number of tree nodes per domain attribute, the average strength

of support of each leaf in the tree, the maximum depth of the tree, or the shape of the

decision tree. In a related paper (Bensusan, Giraud-Carrier, and Kennedy, 2000), the

authors take this idea one step farther: rather than extract the classifier-based meta-

features from each tree, they use a higher-order inductive algorithm that learns directly

from the decision trees.

120

Finally, landmarking (Pfahringer, Bensusan, and Giraud-Carrier, 2000; Bensusan,

Giraud-Carrier, and Pfahringer, 2000; Bensusan and Giraud-Carrier, 2000) creates meta-

features that consist of the accuracies reached by several simple and efficient learners

on the dataset. Based on these meta-features, the meta-learner learns rules that predict

the winner in a pair-wise comparison of the algorithms to be applied on a new, unseen

dataset. Landmarking can be seen as extending the classifier-based meta-features from

one type of classifier to a variety of simple classifiers. In contrast to measuring dataset

characteristics, landmarking is extremely efficient: some of the dataset characteristics

meta-features are computed in O(N3) complexity, where N is the number of examples in

the domain.

6.3.4.1 Adaptive view validation for model selection

The adaptive view validation algorithm (Muslea, Minton, and Knoblock, 2002b) is the first

meta-learning approach to deciding whether or not multi-view learning is appropriate for

new, unseen tasks. Furthermore, view validation is also the only meta-learner designed for

domains in which only a few of the examples are labeled. Consequently, view validation

requires meta-features that are appropriate for the multi-view scenario, in which one

learns from few labeled and many unlabeled examples.

The meta-features used for view validation fall under two broad categories. First, the

meta-features that measure the training error in each view can be seen as landmarking

features; that is, the hypotheses learned in each view represent “landmarkers” in the sense

described above. Second, the features that describe the agreement and complexity of the

hypotheses learned in each view can be seen as classifier-based meta-features: after all,

they measure properties of the learned classifiers.

121

Chapter 7

Conclusions

A whole is what has beginning, middle, and end.

Aristotle

Machine learning algorithms start with collections of data from which they extract

knowledge that is subsequently used to improve a system’s performance. From a human

perspective, labeling large amounts of data is a tedious, time consuming, error prone

activity. In this thesis, I introduce a suite of algorithms that aim at reducing the amount

of data required for learning a concept of interest. In particular, I focus on solving multi-

view learning problems, in which the domain features can be split in several disjoint

subsets, each of which is sufficient for learning.

My dissertation spans three major areas of research: active learning, semi-supervised

learning, and meta-learning. In active learning, one minimizes the amount of labeled data

by asking the user to label only the most informative examples in the domain. In contrast,

a semi-supervised learner compensates for the scarcity of labeled data by exploiting a

(large) set of unlabeled examples. Finally, meta-learning algorithms predict which is the

most appropriate learner for a particular learning task, thus implicitly minimizing the

amount of data that must be labeled (even if another learner could solve the task equally

well, it would require more data to actually do it).

122

In this thesis I make three main contributions:

1. I introduce Co-Testing, which is the first multi-view approach to active learning. I

show that Co-Testing clearly outperforms existing single-view active learners.

2. I show that existing multi-view learners are not robust with respect to the violation

of the multi-view assumptions. In order to cope with this problem, I introduce a

robust multi-view learner, Co-EMT, which interleaves active and semi-supervised

multi-view learning.

3. I introduce an approach to deciding whether or not multi-view learning is appro-

priate for a new, unseen learning task. My adaptive view validation algorithm is a

meta-learner that uses past experiences to learn a classifier that predicts whether

or not a multi-view learner is likely to outperform a single-view one.

These contributions, which are discussed in detail in the next section, provide evidence

that the thesis of my dissertation is correct:

Multi-view active learning maximizes the accuracy of the learned

hypotheses while minimizing the amount of labeled training data.

7.1 Main contributions

7.1.1 A multi-view approach to active learning

In this dissertation, I introduce Co-Testing, which is multi-view approach to active learn-

ing. Co-Testing is a family of active learners that select the next query among the

contention points; that is, the unlabeled examples on which the hypotheses learned in

the various views predict a different label. This querying strategy is based on the fol-

lowing intuition: if each view is sufficient for learning the target concept, the existence

of contention points shows that the views still make mistakes. Consequently, labeling a

contention point helps fixing mistakes in at least one of the views.

123

I also extend the idea of multi-view learning to learning from both strong and weak

views. The former are typical views, which are sufficient to learn the concept of interest.

The latter are views in which one can learn only concepts that are strictly more gen-

eral/specific than the target concept. I empirically show that learning from strong and

weak views outperforms both single-view learning and learning from strong views only.

In this thesis, I provide a formal analysis of why Co-Testing works. More precisely,

I prove that, under certain assumptions, Co-Testing converges significantly faster than

single-view learners. Furthermore, I show that this is not true of semi-supervised, multi-

view learners such as Co-Training.

Finally, I provide extensive empirical evidence that Co-Testing outperforms state-of-

the-art, single-view active learners. The empirical results cover a variety of base learners

(i.e., stalker, c4.5, Naive Bayes, and instance-based learning) and real-world domains

(e.g., wrapper induction, Web page classification, advertisement removal, and discourse

tree parsing).

7.1.2 Robust multi-view learning

As a part of my second main contribution, I provide empirical evidence that existing

multi-view learners are not robust to the violation of the multi-view assumptions, namely

that the views are compatible and uncorrelated. More precisely, I show that depending

on which assumption is violated and by how much, existing multi-view learners outper-

form and are outperformed by each other in various regions of the incompatibility -

correlation space. Such a behavior is clearly undesirable: when a user must solve a new,

unseen task, it is unclear which of the existing algorithms should be used for learning.

I introduce Co-EMT, a new multi-view learner that is robust to the assumption viola-

tions. Co-EMT can be described as interleaving active and semi-supervised learning (i.e.,

Co-Testing and Co-EM, respectively). In other words, Co-EMT combines the best of

both worlds. On one hand, its labeled training set consists of the most informative exam-

ples in the domain, which are selected by active learning (i.e., Co-Testing). On the other

124

hand, besides using the (small) training set, it also exploits a (large) set of unlabeled

examples (i.e., Co-EM). I empirically show that Co-EMT clearly outperforms existing

multi-view learners. Furthermore, I provide evidence that Co-EMT’s robustness comes

from Co-Testing’s ability to query the most informative examples, which compensate for

view correlation.

7.1.3 Multi-view vs. single-view model selection

My third main contribution consists of formalizing the view validation problem, in which

one tries to predict whether or not multi-view learning is appropriate for solving new,

unseen tasks. I introduce a meta-learning view validation algorithm, which uses experi-

ences acquired while solving past learning tasks to learn a classifier that predicts whether

or not the views are sufficiently compatible for multi-view learning.

View validation departs from the typical approach to meta-learning, in which one

assumes that the datasets consist of (large) sets of labeled examples. More precisely,

view validation is the only meta-learner that is designed for domains in which one has

access to a small set of labeled data and a large set of unlabeled ones. Consequently,

in order to cope with this difficulty, I introduce a new set of meta-features, which are

appropriate for multi-view learning from labeled and unlabeled data.

7.2 Limitations

Despite their advantages, the algorithms introduced in this dissertation also have several

limitations:

- the multi-view learning framework assumes that the domain features can be split in

several views that are sufficient for learning the target concept. In other words, if the

user cannot provide at least two views, multi-view learning cannot be applied at all.

There are two recent attempts to address this issue (Raskutti, Ferra, and Kowalczyk,

125

2002a; Nigam and Ghani, 2000), but they are specific to text classification, and it

is unclear whether they can be applied to other types of domains.

- as the Co-Testing family of algorithms consists of a large number of active learners,

it is still unclear which of the Co-Testing algorithms is the most appropriate for a

particular learning task. I provided a few rules of thumb on how to decide which

algorithm to use in a particular scenario, but more work is clearly required in this

area.

- existing approaches to active learning, including Co-Testing, take a myopic approach to

querying; that is, they select one informative query and then immediately re-induce

the classifier. This is an extremely time consuming approach that is not appropriate

for scenarios in which the base learner is slow relatively to the time constraints of

the application (e.g., it may be unacceptable to have a user wait for 10 minutes

between two consecutive queries).

- in its current version, the view validation algorithm must be applied separately to each

multi-view problem of interest. If one is interested in a wide variety of multi-view

problems, individually collecting view validation examples for each problem puts a

serious burden on the user.

7.3 Future work

I intend to continue the work presented here along several main directions:

- first of all, I am interested in creating a view detection algorithm that partitions a do-

main’s features in views that are adequate for multi-view learning. Given that such

a partition must be created starting with a few labeled and many unlabeled exam-

ples, this is an extremely difficult problem. A possible first step would be to extend

the “view generation” approach from (Raskutti, Ferra, and Kowalczyk, 2002a) to

domains other than text classification. Alternatively, I could start by creating a

126

view detection algorithm for relational domains (Getoor et al., 2001a; Jensen and

Neville, 2002), in which the search through the space of possible feature partitions

can be guided by the domain structure (e.g., hyperlinks, hubs and authorities in

Web-based domains (Getoor et al., 2001b), or abstracts, keywords, citing and cited

papers in a bibliographic domain (Taskar, Segal, and Koller, 2001)).

- I plan to work on providing a better understanding of the scenarios for which the

various Co-Testing algorithms are the best suited. One possible approach would be

to modify the view validation algorithm so that it predicts the most appropriate

Co-Testing algorithm for a new, unseen learning task.

- I intend to extend the Co-Testing framework in several directions. First, in order to

reduce the computational costs, I am interested in Co-Testing algorithms that use

a “look-ahead” approach to making several highly informative and diverse queries.

Second, I plan to investigate the applicability of Co-Testing to regression problems,

in which the learner predicts the value of a continuous variable. This scenario is

extremely appropriate for Aggressive Co-Testing: the largest the difference of the

values predicted by the two views, the biggest the mistake made by one of them.

Finally, I intend to apply Co-Testing to semi-supervised clustering (Basu, Banerjee,

and Mooney, 2002). In clustering, the goal is to use (unlabeled) examples to detect

the domain structure; semi-supervised clustering algorithms exploit the availability

of a few labeled examples to guide their search through the structure space. By

using Co-Testing to select a highly-informative set of labeled examples, I expect to

maximize the benefits of using labeled data.

- I intend to continue my work on view validation along three directions. First, I would

like to find more meta-features (remember, view validation currently uses only seven

meta-features). Second, I plan to further reduce the number of view validation ex-

amples required for training by using active and semi-supervised learning. Given

127

that in the view validation scenario one assumes that there is a large number prob-

lem instances to be solved, it makes perfect sense to ask user to label only the most

informative instances, while also allowing the view validation algorithm to exploit

the remaining, unlabeled view validation examples. Finally, I am interested in cre-

ating a new, general-purpose view validation algorithm that is trained only once

and covers a variety of multi-view learning problems.

128

References

Abe, Naoki and Hiroshi Mamitsuka. 1998. Query learning using boosting and bagging.
In Proceedings of the 15th International Conference on Machine Learning (ICML-98),
pages 1–10.

Abney, Stephen. 2002. Bootstrapping. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 360–367.

Aha, David. 1992a. Generalizing from case studies: A case study. In Proceedings of the
9th International Conference on Machine Learning (ICML-92), pages 1–10.

Aha, David. 1992b. Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. International Journal of Man-Machine Studies, 36(1):267–287.

Amoth, Thomas, Paul Cull, and Prasad Tadepalli. 1998. Exact learning of tree patterns
from queries and counterexamples. In Proceedings of the Conference on Computa-
tional Learing Theory (COLT-98), pages 175–186.

Amoth, Thomas, Paul Cull, and Prasad Tadepalli. 1999. Exact learning of unordered tree
patterns from queries. In Proceedings of the Conference on Computational Learing
Theory (COLT-99), pages 323–332.

Angluin, Dana. 1982. A note on the number of queries needed to identify regular lan-
guages. Information Control, 51:76–87.

Angluin, Dana. 1988. Queries and concept learning. Machine Learning, 2:319–342.

Angluin, Dana. 1994. Exact learning of µ−DNF formulas with malicious membership
queries. Technical Report YALEU/DCS/TR-1020, Yale University.

Angluin, Dana and Martins Krikis. 1994. Malicious membership queries and exceptions.
Technical Report YALEU/DCS/TR-1019, Yale University.

Angluin, Dana, Martins Krikis, Robert Sloan, and Gyorgy Turan. 1997. Malicious
omissions and errors in answers to membership queries. Machine Learning, 28:211–
255.

Angluin, Dana and Donna Slonim. 1991. Randomly fallible teachers: learning monotone
DNF with an incomplete membership oracle. Machine Learning, 14(1):7–26.

Argamon-Engelson, Shlomo and Ido Dagan. 1999. Committee-based sample selection for
probabilistic classifiers. Journal of Artificial Intelligence Research, 11:335–360.

Baluja, Shumeet. 1998. Probabilistic modeling for face orientation discrimination: Learn-
ing from labeled and unlabeled data. In Advances in Neural Information Processing
Systems, volume 11, pages 854–860.

Basu, Sugato, Arindam Banerjee, and Raymond Mooney. 2002. Semi-supervised clus-
tering by seeding. In Proceedings of the 19th International Conference on Machine
Learning (ICML-2002), pages 19–27.

129

Bauer, Eric and Ron Kohavi. 1999. Empirical comparison of boosting, bagging, and
variants. Machine Learning, 36(1-2):105–139.

Baum, E.B. 1991. Neural net algorithms that learn in polynomial time from examples
and queries. IEEE Transactions on Neural Networks, 2:5–19.

Baxter, Jonathan. 1996. Learning model bias. In Advances in Neural Information
Processing Systems, volume 9, pages 169–175.

Baxter, Jonathan. 1997. A bayesian/information theoretic model of learning to learn via
multiple task sampling. Machine Learning, 28:7–39.

Bay, Stephen and Michael Pazzani. 2000. Characterizing model errors and differences. In
Proceedings of the 17th International Conference of Machine Learning (ICML-2000),
pages 49–56.

Bennett, Kristin and Ayan Demiriz. 1998. Semi-supervised support vector machines. In
Advances in Neural Information Processing Systems, volume 11, pages 368–374.

Bennett, Kristin and Ayan Demiriz. 2000. Optimization approaches to semi-supervised
learning. In M. C. Ferris, O. L. Mangasarian, and J. S. Pang, editors, Applications
and Algorithms of Complementarity. Kluwer Academic Publishers.

Bennett, Kristin, Ayan Demiriz, and Rich Maclin. 2002. Exploiting unlabeled data
in ensemble methods. In Proceedings of the SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Bensusan, Hilal. 1998. God doesn’t always shave with occam’s razor - learning when and
how to prune. In Proceedigs of the 10th European Conference on Machine Learning,
pages 119–124, Berlin, Germany. Springer.

Bensusan, Hilal. 1999. Automatic bias learning: An inquiry into the inductive basis of
induction. Ph.D. thesis, School of Cognitive and Computing Sciences, University of
Sussex.

Bensusan, Hilal and Christophe Giraud-Carrier. 2000. Discovering task neighbour-
hoods through landmark learning performances. In D. Zighed, J. Komorowski, and
J. Zytkow, editors, Proceedings of the 4th European Conference on Principles and
Practice of Knowledge Discovery in Databases, pages 325–331, Heidelberg. Springer.

Bensusan, Hilal, Christophe Giraud-Carrier, and Claire Kennedy. 2000. A higher-order
approach to meta-learning. In Proceedings of the ECML-2000 workshop on Meta-
Learning: Building Automatic Advice Strategies for Model Selection and Method Com-
bination.

Bensusan, Hilal, Christophe Giraud-Carrier, and Bernhard Pfahringer. 2000. What
works well tells us what works better. In Proceedings of ICML’2000 workshop on
What Works Well Where, pages 1–8.

130

Blum, Avrim, Prasad Chalasani, Sally Goldman, and Donna Slonim. 1998. Learning with
unreliable boundary queries. Journal of Computer and System Sciences, 56(2):209–
222.

Blum, Avrim, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. 1994. Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. In Proceedings of the 26th ACM Symposium on the
Theory of Computing, pages 253–262.

Blum, Avrim and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-
training. In Proceedings of the 1988 Conference on Computational Learning Theory
(COLT-98), pages 92–100.

Brazdil, Pavel, Joao Gama, and R. Henery. 1984. Characterizing the applicability of
classification algorithms using meta level learning. In F. Bergadano and L. de Raedt,
editors, Machine Learning - ECML-94 (LNAI 784). Springer.

Breiman, Leo. 1996. Bagging predictors. Machine Learning, 24(2):123–140.

Brodley, Carla. 1995. Recursive automatic bias selection for classifier construction. Ma-
chine Learning, 20:63–94.

Califf, Mary Elain and Raymond Mooney. 1999. Relational learning of pattern-match
rules for information extraction. In Proceedings of the Sixteenth National Conference
on Artificial Intelligence (AAAI-99), pages 328–334.

Campbell, Colin, Nello Cristianini, and Alex Smola. 2000. Query learning with large
margin classifiers. In Proceedings of the 17th International Conference on Machine
Learning (ICML-2000), pages 111–118.

Caruana, Rich. 1995. Learning many related tasks at the same time with backprop-
agation. In Advances in Neural Information Processing Systems, volume 8, pages
657–664.

Caruana, Rich. 1996. Algorithms and applications for multitask learning. In Proceedings
of the 13th International Conference on Machine Learning (ICML-96), pages 87–95.

Caruana, Rich. 1997. Multitask learning. Machine Learning, 28(1):41–75.

Castelli, Vittorio and Thomas Cover. 1995. On the exponential value of labeled examples.
Pattern Recognition Letters, 16(1):105–111.

Castelli, Vittorio and Thomas Cover. 1996. The relative value of labeled and unlabeled
samples in pattern recognition with an unknown mixing parameter. IEEE Transac-
tions on Information Theory, 42(6):2101–2117.

Chan, Philip and Salvatore Stolfo. 1997. On the accuracy of meta-learning for scalable
data mining. Journal of Intelligent Information Systems, 8(1):5–28.

131

Cohen, William. 1998. A web-based information system that reasons with structured
collections of text. In Proceedings of the Second International Conference on Au-
tonomous Agents (AA-98), pages 400–407.

Cohn, David, Les Atlas, and Richard Ladner. 1994. Improving generalization with active
learning. Machine Learning, 15:201–221.

Cohn, David, Zoubin Ghahramani, and Michael Jordan. 1996. Active learning with
statistical models. In Advances in Neural Information Processing Systems, volume 9,
pages 705–712.

Collins, Michael and Yoram Singer. 1999. Unsupervised models for named entity clas-
sification. In Proceedings of the Empirical NLP and Very Large Corpora Conference,
pages 100–110.

Cover, Thomas and Joy Thomas. 1991. Elements of Information Theory. John Wiley &
Sons.

Cozman, Fabio and Ira Cohen. 2002. Unlabeled data can degrade classification per-
formance of generative classifiers. In Proceedings of the 15th International FLAIRS
Conference.

Dagan, Ido and Sean Engelson. 1995. Committee-based sampling for training proba-
bilistic classifiers. In Proceedings of the 12th International Conference on Machine
Learning, pages 150–157.

Dasgupta, Sanjoy, Michael Littman, and David McAllester. 2001. PAC generalization
bounds for co-training. In Neural Information Processing Systems.

Day, N. 1969. Estimating the components of a mixture of normal distributions.
Biometrika, 56(3):463–474.

de Sa, Virginia and Dana Ballard. 1998. Category learning from multi-modality. Neural
Computation, 10(5):1097–1117.

Dempster, A., N. Laird, and D. Rubin. 1977. Maximum likelihood from incomplete data
vie the em algorithm. Journal of Royal Statistical Society, 39:1–38.

Engels, Robert and C. Theusinger. 1998. Using a data metric for preprocessing advice
for data mining applications. In Proceedings of the European Conference on Artificial
Intelligence (ECAI-98), pages 430–434.

Evans, B. and D. Fisher. 1994. Overcoming process delays with decission trees induction.
IEEE Expert, 9:60–66.

Fayyad, Usama, Padhraic Smyth, N. Weir, and S. Djorgovski. 1995. Automated analysis
and exploration of image databases: results, progress, and challenges. Journal of
Intelligent Information Systems, 4:1–19.

Fedorov, V. V. 1972. Theory of optimal experiment. Academic Press.

132

Feng, J. P. 2000. Meta-CN4 for unknown values processing via combiner and stacked
generalization. In I. Buha and A. Famili, editors, KDD-2000 Workshop on Post-
processing in machine learning and data mining.

Freund, Yoav, H. Sebastion Seung, Eli Shamir, and Naftali Tishby. 1997. Selective
sampling using the query by committee algorithm. Machine Learning, 28:133–168.

Gama, Joao and Pavel Brazdil. 1995. Characterization of classification algorithms. In
C. Pinto Ferreira and N. Mamede, editors, Progress in Artificial Intelligence (LNAI
990). Springer.

Gama, Joao and Pavel Brazdil. 2000. Cascade generalization. Machine Learning,
41(3):315–343.

Ganesalingam, S. and Geoff McLachlan. 1969. The efficiency of a linear discriminant
function based onn unclassified initial examples. Biometrika, 65:658–662.

Getoor, Lise, Nir Friedman, Daphne Koller, and Avi Pfeffer. 2001a. Learning probabilis-
tic relational models. In Saso Dzeroski and Nada Lavrac, editors, Relational Data
Mining. Springer.

Getoor, Lise, Eran Segal, Ben Taskar, and Daphne Koller. 2001b. Probabilistic models of
text and link structure for hypertext classification. In Proceedings of the IJCAI-2001
Workshop on Text Learning: Beyond Supervision.

Ghahramani, Zoubin and Michael Jordan. 1994. Supervised learning from incomplete
data via an EM approach. In Advances in Neural Information Processing Systems,
volume 7, pages 120–127.

Ghani, Rayid. 2001. Combining labeled and unlabeled data for text classification with
a large number of categories. In Proceedings of IEEE Conference on Data Mining
(ICDM-2001).

Ghani, Rayid. 2002. Combining labeled and unlabeled data for multiclass text classi-
fication. In Proceedings of the 19th International Conference on Machine Learning
(ICML-2002), pages 187–194.

Goldberg, Paul, Sally Goldman, and David Mathias. 1994. Learning unions of boxes
with membership and equivalence queries. In Proceedings of the Conference on Com-
putational Learing Theory (COLT-94), pages 198–207.

Goldman, Sally and David Mathias. 1992. Learning k -term DNF formulas with an
incomplete membership oracle. In Proceedings of the Conference on Computational
Learing Theory (COLT-92), pages 77–84.

Goldman, Sally and Yan Zhou. 2000. Enhancing supervised learning with unlabeled data.
In Proceedings of the 17th International Conference on Machine Learning (ICML-
2000), pages 327–334.

133

Gross, Klaus. 1991. Concept acquisition through attribute evolution and experiment
selection. Ph.D. thesis, School of Computer Science, Carnegie Mellon University.

Guilfoyle, C. 1986. Ten minutes to lay the foundations. Expert Systems User, August:16–
19.

Hartley, H. and J. Rao. 1968. Classification and estimation in analysis of variance
problems. Review of International Statistical Institute, 36:141–147.

Hasenjager, Martina. 2000. Active Data Selection in Supervised and Unsupervised Learn-
ing. Ph.D. thesis, Faculty of Technology, University of Bielefeld, Germany.

Hasenjager, Martina and Helge Ritter. 1996. Active learning of the generalized high-low-
game. In Proceedings of the International Conference on Artificial Neural Networks
(ICANN-96), volume 1112 of Lecture Notes in Computer Science, pages 501–506.

Hasenjager, Martina and Helge Ritter. 1998. Active learning with local models. Neural
Processing Letters, 7:107–117.

Hsu, Chun-Nan and Ming-Tzung Dung. 1998. Generating finite-state transducers for
semi-structured data extraction from the web. Journal of Information Systems,
23(8):521–538.

Hwang, J.-N., J.J. Choi, S. Oh, and R.J. Marks. 1991. Query-based learning applied
to partially trained multilayer perceptrons. IEEE Transactions on Neural Networks,
2:131 –136.

Jackson, Jeffrey. 1994. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. In Proceedings of the IEEE Symposium on Foun-
dations of Computer Science, pages 42–53.

Jensen, David and Jennifer Neville. 2002. Schemas and models. In Proceedings of the
SIGKDD-2002 Workshop on Multi-relational Learning.

Joachims, Thorsten. 1996. A probabilistic analysis of the rocchio algorithm with tfidf
for text categorization. In Computer Science Tech. Report CMU-CS-96-118.

Joachims, Thorsten. 1999. Transductive inference for text classification using support
vector machines. In Proceedings of the 16th International Conference on Machine
Learning (ICML-99), pages 200–209.

Kamolvilassatian, Noppadon. 2002. Property-based feature engineering and selection.
Master’s thesis, Department of Computer Sciences, University of Texas at Austin.

Kaynak, C. and E. Alpaydin. 2000. Multistage cascading of multiple classifiers: One
man’s noise is another man’s data. In Proceedings of the 17th International Conference
on Machine Learning (ICML-2000), pages 455–462.

King, R., C. Feng, and A. Shutherland. 1995. STATLOG: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence, 9(3):259–287.

134

Kirk, T., A. Levy, Y. Sagiv, and D. Srivastava. 1995. The information manifold. In Pro-
ceedings of the AAAI Spring Symposium: Information Gathering from Heterogeneous
Distributed Environments, pages 85–91.

Knoblock, Craig, Kristina Lerman, Steven Minton, and Ion Muslea. 2002. Accurately and
reliably extracting data from the web:a machine learning approach. In P. Szczepaniak,
editor, Intelligent exploration of the Web. Springer.

Knoblock, Craig, Steven Minton, Jose-Luis Ambite, Naveen Ashish, Ion Muslea, and
Andrew Philpot. 2001. The Ariadne approach to Web-based Information Integration.
International Journal of Cooperative Information Sources, 10(1/2):145–169.

Koepf, C., C. Taylor, and J. Keller. 2000. Meta-analysis: From data characterisation for
meta-learning to meta-regression. In P. Brazdil and A. Jorge, editors, Proceedings of
the PKDD-00 Workshop on Data Mining, Decision Support,Meta-Learning and ILP.

Kohavi, Ron and George John. 1995. Automatic parameter selection by minimizing
estimated error. In Proceedings of the 12th International Conference on Machine
Learning (ICML-95), pages 304–312.

Kohavi, Ron, Dan Sommerfield, and James Dougherty. 1997. Data mining using mlc++,
a machine learning library in c++. International Journal of AI Tools, 6(4):537–566.

Kushmerick, Nicholas. 1999. Learning to remove internet advetisements. In Proceedings
of the Third International Conference on Autonomous Agents (Agents-99), pages 175–
181.

Kushmerick, Nicholas. 2000. Wrapper induction: efficiency and expressiveness. Artificial
Intelligence Journal, 118(1-2):15–68.

Kushmerick, Nicholas, Edward Johnston, and Stephen McGuinness. 2001. Information
extraction by text classification. In The IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining.

Lang, K.J. and E.B. Baum. 1992. Query learning can work poorly when a human oracle is
used. In Proceedings of the IEEE International Joint Conference on Neural Networks.

Lerman, Kristina and Steven Minton. 2000. Learning the common structure of data. In
The 17th National Conference on Artificial Intelligence (AAAI-2000), pages 609–614.

Lewis, David and Jason Catlett. 1994. Heterogeneous uncertainty sampling for su-
pervised learning. In Proceedings of the 11th International Conference on Machine
Learning (ICML-94), pages 148–156.

Lewis, David and William Gale. 1994. A sequential algorithm for training text classifiers.
In Proceedings of Research and Development in Information Retrieval, pages 3–12.

Liere, Ray and Prasad Tadepalli. 1997. Active learning with committees for text cat-
egorization. In The 14th National Conference on Artificial Intelligence (AAAI-97),
pages 591–596.

135

Lindenbaum, Michael, Shaul Markovitch, and Dmitry Rusakov. 1999. Selective sampling
for nearest neighbor classifiers. In Proceedings of the 15th National Conference on
Artificial Intelligence AAAI-99, pages 366–371.

Lindner, Guido and Rudi Studer. 1999. AST: Support for algorithm selection with a CBR
approach. In Principles of Data Mining and Knowledge Discovery, pages 418–423.

MacLachlan, Geoff. 1975. Iterative reclassification procedure for constructing an asymp-
totically optimal rule of allocation in discriminant analysis. Journal of the American
Statistical Association, 70:365–369.

Marcu, Daniel, Lynn Carlson, and Maki Watanabe. 2000. The automatic translation of
discourse structures. In Proceedings of the 1st Annual Meeting of the North American
Chapter of the Association for Computational Linguistics (NAACL-2000).

McCallum, Andrew and Kamal Nigam. 1998a. A comparison of event models for naive
bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization.

McCallum, Andrew and Kamal Nigam. 1998b. Employing em in pool-based active
learning for text classification. In Proceedings of the 15th International Conference
on Machine Learning, pages 359–367.

Merialdo, Bernardo. 1994. Tagging english text with a probabilistic model. Computa-
tional Linguistics, 2(2):155–171.

Michie, Donald. 1989. Problems of computer-aided concept formation. In J.R. Quinlan,
editor, Applications of expert systems (vol. 2). Addison-Wesley.

Miller, David and Hasan Uyar. 1996. A generalized gaussian mixture classifier for learn-
ing on both labeled and unlabeled data. In Proceedings of the 1996 Conference on
Information Science and Systems.

Miller, David and Hasan Uyar. 1997. A mixture of experts classifier with learning based
on both labelled and unlabelled data. In Advances in Neural Information Processing,
volume 10, pages 571–577.

Mitchell, Tom. 1998. Machine Learning. McGraw-Hill.

Muslea, Ion, Steven Minton, and Craig Knoblock. 2000a. Selective sampling with Naive
Co-Testing. In The ECAI-2000 Workshop on Machine Learning for Information Ex-
traction.

Muslea, Ion, Steven Minton, and Craig Knoblock. 2000b. Selective sampling with redun-
dant views. In Proceedings of National Conference on Artificial Intelligence (AAAI-
2000), pages 621–626.

Muslea, Ion, Steven Minton, and Craig Knoblock. 2001. Hierarchical wrapper induction
for semistructured sources. Journal of Autonomous Agents and Multi-Agent Systems,
4:93–114.

136

Muslea, Ion, Steven Minton, and Craig Knoblock. 2002a. Active + Semi-supervised
Learning = Robust Multi-view Learning. In The 19th International Conference on
Machine Learning (ICML-2002), pages 435–442.

Muslea, Ion, Steven Minton, and Craig Knoblock. 2002b. Adaptive view validation: A
first step towards automatic view detection. In The 19th International Conference on
Machine Learning (ICML-2002), pages 443–450.

Nahm, Un-Yong and Raymond Mooney. 2000. A mutually beneficial integration of data
mining and information extraction. In The 17th National Conference on Artificial
Intelligence (AAAI-2000), pages 627–632.

Nigam, Kamal and Rayid Ghani. 2000. Analyzing the effectiveness and applicability of
co-training. In Proceedings of Information and Knowledge Management, pages 86–93.

Nigam, Kamal, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. 1998. Learning
to classify text from labeled and unlabeled documents. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), pages 792–799.

Nigam, Kamal, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. 2000. Text
classification from labeled and unlabeled documents using em. Machine Learning,
39(2-3):103–134.

O’Neill, T. 1978. Normal discrimination with unclassified observations. Journal of the
American Statistical Association, 73:821–826.

Petrak, J. 2000. Fast subsampling performance estimates for classification algorithms
selection. In Proceedings of the ECML-2000 Workshop on Meta-Learning: Building
Automatic Advice Strategies for Model Selection and Method Combination.

Pfahringer, Bernhard, Hilal Bensusan, and Christophe Giraud-Carrier. 2000. Meta-
learning by landmarking various learning algorithms. In Proceedings of the 17th In-
ternational Conference on Machine Learning (ICML-2000), pages 743–750.

Pierce, David and Claire Cardie. 2001. Limitations of co-training for natural language
learning from large datasets. In Proceedings of Empirical Methods in Natural Language
Processing (EMNLP-2001), pages 1–10.

Quinlan, Ross. 1993. C4.5: programs for machine learning. Morgan Kaufmann Publish-
ers.

Raskutti, Bhavani, Herman Ferra, and Adam Kowalczyk. 2002a. Combining clustering
and co-training to enhance text classification using unlabeled data. In Proceedings of
the SIGKDD International Conference on Knowledge Discovery and Data Mining.

Raskutti, Bhavani, Herman Ferra, and Adam Kowalczyk. 2002b. Using unlabeled data
for text classification through addition of cluster parameters. In Proceedings of the
19th International Conferemce on Machine Learning (ICML-2002), pages 514–521.

137

Ratsaby, Joel and Santosh Venkatesh. 1995. Learning from a mixture of labeled and un-
labeled examples with parametric side information. In Proceedings of the 8th Annual
Conference on Computational Learning Theory, pages 412–417.

Reddy, C. and Prasad Tadepalli. 1997. Learning horn definitions with equivalence and
membership queries. In S. Džeroski and N. Lavrač, editors, Proceedings of the 7th
International Workshop on Inductive Logic Programming, volume 1297, pages 243–
255. Springer.

Rendell, L., R. Seshu, and D. Tcheng. 1987. Layered concept learning and dynamically
variable bias management. In Proceedings of the 10th International Joint Conference
on Artificial Intelligence (IJCAI-87), pages 308–314.

Roy, Nicholas and Andrew McCallum. 2001. Toward optimal active learning through
sampling estimation of error reduction. In Proceedings of the 18th International Con-
ference on Machine Learning (ICML-2001), pages 441–448.

Sammut, Claude and R. B. Banerji. 1986. Learning concepts by asking questions. In
R. S. Michalski Carbonell, J.G. Carbonell, and T. M. Mitchell (Vol. 2), editors, Ma-
chine Learning: An Artificial Intelligence Approach, pages 167–192. Morgan Kauf-
mann.

Sarkar, Anoop. 2001. Applying co-training methods to statistical parsing. In Proceedings
of the 2nd Annual Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL-2001), pages 175–182.

Schaffer, Cullen. 1993a. Overfitting avoidance as bias. Machine Learning, 10:153–178.

Schaffer, Cullen. 1993b. Selecting a classification method by cross-validation. Machine
Learning, 13(1):135–143.

Schaffer, Cullen. 1994. A conservation law for generalization of performance. In Pro-
ceedings of the 11th International Conference of Machine Learning (ICML-94), pages
259–265.

Schapire, Robert. 1990. The strength of weak learnability. Machine Learning, 5(2):197–
227.

Scheffer, Tobias and Stefan Wrobel. 2001. Active learning of partially hidden Markov
models. In Proceedings of the ECML/PKDD-2001 Workshop on Active Learning,
Database Sampling, Experimental Design: Views on Instance Selection.

Schohn, Greg and David Cohn. 2000. Less is more: Active learning with support vector
machines. In Proceedings of the 17th International Conference on Machine Learning
(ICML-2000), pages 839–846.

Seung, H. Sebastian, Manfred Opper, and Haim Sompolinski. 1992. Query by committee.
In Proceedings of the 1992 Conference on Computational Learning Theory (COLT-92),
pages 287–294.

138

Shahshahani, Behzad and David Landgrebe. 1994. The effect of unlabeled samples in
reducing the small sample size problem and mitigating the hughes phenomenon. IEEE
Transactions on Geoscience and Remote Sensing, 32(5):1087–1095.

Shapiro, E. 1981. A general incremental algorithm that infers theories from facts. In
Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages
446–451.

Shapiro, E. 1982. Algorithmic program diagnosis. In Proceedings of the 9th ACM Sym-
posium on Principles of Programming Languages, pages 299–308.

Shavlik, Jude, Raymond Mooney, and George Towell. 1991. Symbolic and neural learning
algoritms: An experimental comparison. Machine Learning, 6(2):111–143.

Sloan, Robert and Gyorgy Turan. 1994. Learning with queries but incomplete informa-
tion (extended abstract). In Proceedings of the Conference on Computational Learing
Theory (COLT-94), pages 237–245.

Soares, Carlos and Pavel Brazdil. 2000. Zoomed ranking: Selection of classification
algorithms based on relevant performance information. In Proceedings of the 13th
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-
2000).

Soderland, Stephen. 1999. Learning extraction rules for semi-structured and free text.
Machine Learning, 34:233–272.

Szummer, Martin and Tommi Jaakkola. 2000. Kernel expansions with unlabeled exam-
ples. In T. Leen, T. Dietterich, and V. Tresp, editors, Neural Information Processing
Systems, volume 13, pages 626–632.

Tadepalli, Prasad. 1993. Learning from queries and examples with tree-structured bias.
In Proceedings of the 10th International Conference on Machine Learning (ICML-93),
pages 322–329.

Tadepalli, Prasad and Stuart Russell. 1998. Learning from queries and examples with
structured determinations. Machine Learning, pages 245–295.

Taskar, Ben, Eran Segal, and Daphne Koller. 2001. Probabilistic classification and
clustering in relational data. In Proceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI-2001), pages 870–876.

Thompson, Cynthia, Mary Elaine Califf, and Raymond Mooney. 1999. Active learning
for natural language parsing and information extraction. In Proceedings of the 16th
International Conference on Machine Learning (ICML-99), pages 406–414.

Thrun, Sebastian and Lorien Pratt, editors. 1997. Learning to learn. Kluwer Academic
Publishers.

Ting, Kai Ming and Ian Witten. 1999. Issues in stacked generalization. Journal of
Artificial Intelligence Research, 10:271–289.

139

Todorovski, Ljupco and Saso Dzeroski. 1999. Experiments in meta-level learning with
ILP. In J. M. Zytkow and J. Rauch, editors, Proceedings of the 3rd European Confer-
ence on Principles of data mining and knowledge discovery (PKDD-99), pages 98–106.
Springer.

Todorovski, Ljupco and Saso Dzeroski. 2000. Combining multiple models with meta
decision trees. In Proceedings of the 4th European Conference on Principles of Data
Mining and Knowledge Discovery, pages 54–64. Springer.

Tong, Simon and Daphne Koller. 2000a. Active learning for parameter estimation in
bayesian networks. In Advances in Neural Information Processing Systems, volume 13,
pages 647–653.

Tong, Simon and Daphne Koller. 2000b. Support vector machine active learning with
applications to text classification. In Proceedings of the 17th International Conference
on Machine Learning (ICML-2000), pages 999–1006.

Tong, Simon and Daphne Koller. 2001. Support vector machine active learning with
applications to text classification. Journal of Machine Learning Research, 2:45–66.

Valiant, Leslie. 1984. A theory of the learnable. Communications of the ACM,
27(11):1134–1142.

Vapnik, Vladimir. 1998. Statistical learning theory. John Wiley and Sons.

Watkin, T. and A. Rau. 1992. Selecting examples for perceptrons. Journal of Physics
A: Mathematical and General, 25(1):113–121.

Widmer, Gerhard. 1997. Tracking context changes through meta-learning. Machine
Learning, 27(3):259–286.

Wolpert, David. 1992. Stacked generalization. Neural Networks, 5:241–259.

Wolpert, David. 1996. The lack of a priori distinctions between learning algorithms.
Neural Computation, 7.

Wolpert, David and William Macready. 1997. No free lunch theorems for search. IEEE
Transactions on Evolutionary Computation, 1.

Yarowsky, David. 1995. Unsupervised word sense disambiguation rivaling supervised
methods. In Proceedings of the 33rd annual meeting of the Association of Computa-
tional Linguistics, pages 189–196.

Zelikovitz, Sara and Haym Hirsh. 2000. Improving short text classification using unla-
beled background knowledge. In Proceedings of the 17th International Conference on
Machine Learning (ICML-2000), pages 1183–1190.

Zhang, Tong and Frank Oles. 2000. A probability analysis on the value of unlabeled
data for classification problems. In Proceedings of the 17th International Conference
on Machine Learning (ICML-2000), pages 1191–1198.

140

Appendix A

Proofs of convergence

If we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask,

“Does it contain any abstract reasoning concerning quantity or number?” No.

“Does it contain any experimental reasoning concerning matter of fact and existence?” No.

Commit it then to the flames: for it can contain nothing but sophistry and illusion.

David Hume

In this appendix I prove the propositions from section 3.3. Remember that, for both

1-dhl and 2-dhl, the target concepts are integer threshold values, while the (real-valued)

attributes are uniformly distributed over the interval [1, H]. In the proofs below I assume

that the algorithms have access to sufficiently many labeled and unlabeled examples to

unambiguously learn the target concepts. Intuitively, this means that for all intervals

[i, i + 1], where i ∈ {1, 2, 3, . . . , H − 1}, the training and/or the working set include at

least one example that takes a value in that interval.

A.1 Convergence properties for single-view algorithms

I begin by studying the ability of single-view algorithms to learn target concepts of the

form

f : [1, H] �→ {0, 1}, f(X) =

l1 if X ≤ wTC

l2 if X > wTC

141

where wTC ∈ {1, 2, 3, . . . , H}, l1, l2 ∈ {0, 1}, and l1 = l2. In other words, the goal is

to learn the threshold value wTC that divides the interval [1, H] in two sub-intervals in

which the examples have the same label (i.e., l1 or l2); furthermore, the learner must also

identify which of the two labels denotes the positive and negative examples, respectively

(i.e., f(X) = 1 and f(X) = 0).

Note that the restriction wTC ∈ {1, 2, 3, . . . , H} makes the problem’s hypotheses space

finite. Furthermore, for any training set, the problem’s version space consists of the

subset {Min, Min+1, Min+2, . . . ,Max} of the hypotheses space. To keep the notation

simple, throughout this appendix I use the following convention: a version space that

consists of the N hypotheses {Min, Min + 1, Min + 2, . . . , Min + N − 1} is represented

by the set {1, 2, 3, . . . , N}, in which “1” denotes the first hypothesis in version space (i.e.,

W = Min), “2” denotes the second one (i.e., W = Min + 1), and so on.

Proposition 1 On the 1-dhl problem, the Uncertainty Sampling algorithm requires

O(log(H)) queries to learn the target concept.

A.1.0.0.1 Proof: As already mentioned, Uncertainty Sampling is a 2-step iterative

process: first, it learns a hypothesis from the given training set; then it queries the

unlabeled example on which this hypothesis makes the least confident prediction. When

using the Gibbs algorithm as base learner, the learned hypothesis is randomly chosen

from the current version space; that is, the decision threshold W is set to a value k,

which is randomly chosen from the set {1, 2, 3, . . . , N}. The least confident prediction of

the hypothesis W = k is made on the example X = k, which is the closest to the current

decision border (in fact, it is on the decision border).

Consequently, Uncertainty Sampling can be seen as randomly querying an example

X = k, where k belongs to the current version space (i.e., k ∈ {1, 2, 3, . . . , N}). Note

that depending on the label of the example X = k, this query removes either N − k + 1

or k − 1 hypotheses from version space. I use the notation V SCutwTC∈{1,2,...,k−1} and

142

V SCutwTC∈{k,k+1,...,N} to denote these two possible cuts from the version space. One can

compute the expected cut that a particular query X = k makes to the version space:

E[Cut(X = k)] = Probability(wTC ∈ {1, 2, . . . , k − 1}) · V SCutwTC∈{1,2,...,k−1} +

Probability(wTC ∈ {k, k + 1, . . . , N}) · V SCutwTC∈{k,k+1,...,N}

=
k − 1

N
· (N − k + 1) +

N − k + 1
N

· (k − 1)

=
2 · (k − 1) · (N − k + 1)

N

Now we can compute the expected cut of the actual query to the version space by

averaging the expected cuts of each possible query:

E[Cut] =
N∑

i=1

Probability(X = i) · E[Cut(X = i)]

=
N∑

i=1

1
N

· 2 · (i − 1) · (N − i + 1)
N

=
2

N2
·

N∑
i=1

(i − 1) · (N − i + 1)

=
2

N2
·

N∑
i=1

(
N · i − i2 + i − N + i − 1

)

=
2

N2
·

N∑
i=1

(
(N + 2) · i − i2 − (N + 1)

)

=
2

N2
·
(

(N + 2) · N · (N + 1)
2

− (N − 1) · N · (2 · N − 1)
6

− N · (N + 1)
)

=
1

3 · N (3 · (N + 1) · (N + 2) − (N − 1) · (2 · N − 1) − 6 · (N + 1))

=
1

3 · N
(
3 · N2 + 9 · N + 6 − 2 · N2 + 3 · N − 1 − 6 · N − 6

)

=
N2 + 6 · N − 1

3 · N
=

N

3
+ 2 − 1

3 · N
143

In other words, each query made by Uncertainty Sampling is expected to remove

approximately 1
3 of the current version space. Consequently, Uncertainty Sampling con-

verges to the target concept in O(log(H)) queries, where H is the size of the initial version

space. �

Proposition 2 On the 1-dhl problem, with an arbitrarily high probability, the Query-

by-Committee algorithm requires O(log(H)) queries to learn the target concept.

A.1.0.0.2 Proof: In order to prove this proposition, I use the main result from (Fre-

und et al., 1997): that paper’s Theorem 1 shows that, with an arbitrarily high probabil-

ity, Query-by-Committee’s error rate is reduced exponentially with the number of queries.

For Theorem 1 to hold, there are three main requirements. First, the learning concept

must be perfectly learnable, which - by construction - is true of 1-dhl. Second, the

learning problem must have a finite VC-dimension; as 1-dhl has a finite version space,

it follows that its VC-dimension is also finite (see (Mitchell, 1998, page 215) for details).

Finally, the expected information gain of any query made by Query-by-Committee must

have a finite lower bound g > 0. In other words, ∃g > 0 such that for any query qi

g < −p0 × log(p0) − (1 − p0) × log(1 − p0)

where p0 is the probability that the label of the example qi is “0.” Given the structure

of the 1-dhl problem (i.e., the target concept is one of the H threshold values that are

uniformly distributed over the initial version space {1, 2, 3, . . . , H}), it follows that for

any example x ∈ [1, H]

p0 = Probability(f(x) = 0)

≥ 1
H

144

thus ensuring that the expected information gain is lower bounded by the finite, positive

value

g = − 1
N

× log(
1
N

) − (1 − 1
N

) × log(1 − 1
N

)

=
logN

N
+

(N − 1) × log(N
N−1)

N

As all the requirements of Theorem 1 from (Freund et al., 1997) are fulfilled, it follows

that Query-by-Committee solves the 1-dhl learning problem in O(log(H)) queries, where

H is the size of the initial version space. �

Proposition 3 On the 1-dhl problem, the probability that Random Sampling correctly

learns the target concept based on E randomly chosen examples is 1 − 2×(H−2)E−(H−3)E

(H−1)E .

A.1.0.0.3 Proof: Given that the Gibbs learner randomly chooses a hypothesis from

version space, Random Sampling correctly learns the target concept if and only if the

version space consists of a single hypothesis (i.e., the true threshold value wTC). For

this to happen, the randomly chosen training set must contain at least two examples

X1 and X2 such that X1 ∈ (wTC − 1, wTC] and X2 ∈ (wTC , wTC + 1]. Consequently,

the probability that Random Sampling correctly learns the target concept is equal to the

probability of having the randomly chosen training set contain at least two such examples.

In this proof, I use the following notation:

- L represents the algorithm’s (randomly chosen) training set;

- E denotes the number of examples in L;

- H represents the size of the initial version space;

- A denotes the statement “∃X1 ∈ L such that X1 ∈ (wTC − 1, wTC]”

- B denotes the statement “∃X2 ∈ L such that X2 ∈ (wTC , wTC + 1]”

145

- A ·B, A, and B denote the expressions “A and B”, “not A”, and “not B”, respectively.

The probability that Random Sampling correctly learns the target concept from E

randomly chosen labeled examples is

P (A · B) = 1 − P (A · B)

= 1 − (P (A) + P (B) − P (A · B)

= 1 −
((

H − 2
H − 1

)E

+
(

H − 2
H − 1

)E

−
(

H − 3
H − 1

)E
)

= 1 − 2 ×
(

H − 2
H − 1

)E

+
(

H − 3
H − 1

)E

= 1 − 2 × (H − 2)E − (H − 3)E

(H − 1)E
�

A.2 Convergence properties for multi-view algorithms

In this section I analyze the ability of multi-view learners to correctly learn the target

concept for an arbitrary 2-dhl problem. First, I consider the scenario in which “the

views are independent given the label.” Then I relax this initial assumption and analyze

the situation in which “the views are independent given the clump.”

Throughout this section, I depict the 2-dimensional instance space [1, H1]× [1, H2] as

an orthogonal system of coordinates XOY. The view V1 is described by the values of X on

the OX axis, while the view V2 corresponds to the OY dimension. In all the figures within

this section, I use the following color coding: the regions of the instance space that are

drawn in light and dark grey denote the positive and negative examples, respectively; the

areas depicted in the intermediate shade of grey represent contention points.

A.2.1 Views that are independent given the label

I begin my analysis by studying the ability of multi-view algorithms to learn a target

concepts of the form

146

g : [1, w1
TC] × [1, w2

TC]
⋃

(w1
TC , H1] × (w2

TC , H2] �→ {0, 1},

g(X, Y) =

l1 if X ≤ w1
TC and Y ≤ w2

TC

l2 if X > w1
TC and Y > w2

TC

where w1
TC ∈ {1, 2, 3, . . . , H1}, w2

TC ∈ {1, 2, 3, . . . , H2}, l1, l2 ∈ {0, 1}, and l1 = l2. In the

2-view setting, this translates into solving a 1-dhl problem in each view. Consequently,

the target concepts in the views V1 and V2 are

g1 : [1, H1] �→ {0, 1}, g1(X) =

l1 if X ≤ w1
TC

l2 if X > w1
TC

and

g2 : [1, H2] �→ {0, 1}, g(Y) =

l1 if Y ≤ w2
TC

l2 if Y > w2
TC

respectively.

Proposition 4 By using domain-specific knowledge, one can solve the 2-dhl problem

based on a single, randomly-chosen query.

A.2.1.0.4 Proof: By construction, we have the following properties:

- the examples in 2-dhl’s instance space occupy only the bottom-left and top-right quad-

rants;

- each quadrant consists of examples that have the same label (see Figure A.1);

147

-- - - - -

- --
-

- - -

-
--

--
-- -

+
+

+
+

+

+ +

+

+

++

+

+

+
+
++

+

+
+

+
+

+ ++
+

+

+
+

+
+

+

+++

++

++
+

+
+

+ ++

+

+

++
+ ++

+
+

+

++ + + + +++++
+ + +

+++
+++++

+ +

-

-

-
-

-- -
-
-

-
-
-

--
-

- -

-
-

-
-

- - - -
-
-
--

-

-

-
--
-
--- -

------ -
-
--
-

-
-

-
-
-- --

--

-
-

-
-

+

--

-

-

-

-
- --

-

a) Scenario 1. b) Scenario 2.

Figure A.1: The two possible scenarios in 2-dhl with “views independent given the
label:” the negative examples lie either in the bottom-left or in the top-right quadrant.
The positive examples occupy the other populated quadrant.

Furthermore, because of the view independence assumption, the two populated quad-

rants must consist of examples having different labels.1. Consequently, querying a ran-

domly chosen example is sufficient for learning the target concept: all the examples that

are in the same quadrant as the query share its label, while the other examples have the

opposite label. �

Proposition 5 On the 2-dhl problem, the Co-Training algorithm requires one random

positive and one random negative examples to learn the target concept.

A.2.1.0.5 Proof: As described earlier, Co-Training (Blum and Mitchell, 1998) boot-

straps the views from each other by iteratively adding to the training set examples on

which the hypotheses learned in the two views make the most confident predictions. In

the 2-dhl problem, these high confidence predictions correspond to examples that are

the farthest away from the decision threshold in each view.

1In the degenerate scenarios in which all examples are either positive or negative, the views are not
independent: knowing an example’s description in one view unambiguously identifies the example’s quad-
rant, while knowing the example’s label still allows the example to lie in either of the two quadrants

148

2 2<x , y , 1>

2

1VS

VS

+

-
<x , y , 0>1 1

- -- - --

++

-

+++

-

+
B

+

-
A

a) Training from two examples. b) The most confident predictions in V2.

Figure A.2: Applying Co-Training to the a 2-dhl task in which the views are independent
given the label (i.e., there is one clump per class).

Consider the scenario described in Figure A.2.a, in which Co-Training is provided

with the randomly chosen examples 〈x1, y1, 0〉 and 〈x2, y2, 1〉 (remember that the labels

“1” and “0” denote a positive and negative example, respectively). In the first step, Co-

Training learns a hypothesis in each view by running the Gibbs learner, which randomly

returns a hypothesis from the version space. In Figure A.2.a, the two version spaces V S1

and V S2, which are denoted by the black rectangles by the axes of coordinates, consist

of the all integers in the intervals [x1, x2] and [y1, y2], respectively. The two dashed lines

represent the hypotheses returned by the Gibbs sampler in each view.

Once the two hypotheses are learned, Co-Training applies them to the unlabeled

examples and adds to the training set the most confident predictions. Figure A.2.b depicts

the unlabeled examples on which the hypothesis learned in the “vertical view” V2 makes

the most confident negative and positive predictions, respectively. The former are located

on the X axis, while the latter are located on the top border of the image. Among these

newly labeled examples, there are two highly informative examples, which are denoted

by A and B; after adding these two examples to training set, the version space in the

149

“horizontal view” V1 collapses to the true target concept. A similar situation occurs in

the “vertical view” after adding to the training set the high confidence predictions made

by the hypothesis learned in the “horizontal view.” �

Proposition 6 On the 2-dhl problem, when provided with one random positive and one

random negative examples, Aggressive Co-Testing requires at most four queries to learn

the target concepts in both views.

A.2.1.0.6 Proof: This proposition is a particular case of the Proposition 9 below,

which shows that Aggressive Co-Testing requires at most 2×NmbClumps queries to learn

the target concepts in both views. For 2-dhl with views that are independent given the

label, we have one clump per class, for a total of two domain clumps. Consequently, in

2×2 = 4 queries, Aggressive Co-Testing collapses the version spaces in both views to the

respective target concepts. �

A.2.2 Views that are “independent given the clump”

In this section, I relax the “views are independent given the label” assumption by con-

sidering the scenario in which the “views are independent given the clump.” That is,

rather than having just one clump per class, I consider now problems with several clumps

per class; more precisely, I assume that the total number of clumps in the domain is

NmbClumps > 2. Figure A.3 illustrates a scenario in which there are five negative and

and four positive clumps (each positive and negative clump is denoted by a dark or light

grey rectangle, respectively).

More formally, I study the convergence properties of multi-view algorithms when

learning target concepts of the form

g : [1, α1] × [1, β1] ∪ (α1, α2] × (β1, β2] ∪ . . . (αC−1, αC] × (βC−1, βC] �→ {0, 1},

150

g(X, Y) =

l1 if X ≤ w1
TC and Y ≤ w2

TC

l2 if X > w1
TC and Y > w2

TC

where

- w1
TC ∈ {1, 2, 3, . . . , H1};

- w2
TC ∈ {1, 2, 3, . . . , H2};

- l1, l2 ∈ {0, 1} and l1 = l2;

- C = NmbClumps;

- αC = H1 and βC = H2;

- ∀i ∈ {1, 2, 3, . . . , C − 1} αi ∈ {2, 3, . . . , H1 − 1};

- ∀i ∈ {1, 2, 3, . . . , C − 1} αi < αi+1;

- ∀i ∈ {1, 2, 3, . . . , C − 1} βi ∈ {2, 3, . . . , H2 − 1};

- ∀i ∈ {1, 2, 3, . . . , C − 1} βi < βi+1;

- ∃k ∈ {2, 3, 4 . . . , C − 1} such that αk = w1
TC & βk = w2

TC .

In the 2-view setting, this translates into solving a 1-dhl problem in each view. Conse-

quently, the target concepts in the views V1 and V2 are

g1 : [1, H1] �→ {0, 1}, g1(X) =

l1 if X ≤ w1
TC

l2 if X > w1
TC

and

g2 : [1, H2] �→ {0, 1}, g(Y) =

l1 if Y ≤ w2
TC

l2 if Y > w2
TC

respectively.

151

Q

Q

Q

1

2

3

VS

VS

1

2

1

VS2

VS

Q
4

+

-

-

a) The first three queries. b) Q4 removes half the clumps in version space.

Figure A.3: By using domain-specific knowledge, one can perform binary search in the
space of the domain’s clumps.

Proposition 7 By using domain-specific knowledge, one can solve the 2-dhl problem

based on O(log(NmbClumps)) queries.

A.2.2.0.7 Proof: By explicitly taking advantage of the domain structure in 2-dhl,

one can solve the learning task in a manner similar to binary search. In a first step, the

algorithm makes the queries Q1, Q2, and Q3, which are randomly chosen examples from

the three clumps shown in Figure A.3.a; that is, Q1, Q2, and Q3 “reveal” the labels of

the examples in the left-most, right-most, and “middle” clump, respectively. Once the

labels of these clumps are known, the algorithm keeps “halving the interval” by querying

a randomly chosen example from the clump that is in the middle of the current version

space; in our example, this corresponds to the query Q4 from Figure A.3.b. By continuing

this procedure until discovering the two neighboring clumps that are labeled differently,

the algorithm is guaranteed to find the correct target concept. In keeping with the results

for binary search, the entire process requires O(log(NmbClumps)) queries. �

Proposition 8 Depending on the distribution of the examples in the initial training set,

Co-Training may or may not learn the target concept for the 2-dhl problem.

152

A.2.2.0.8 Proof: As mentioned earlier, Co-Training works as follows: first, it uses

the labeled examples to learn one hypothesis in each view. Then it applies the learned

hypotheses to all unlabeled examples and adds to the training set the examples on which

they make most confident prediction. Finally, it repeats the whole process for a number

of iterations.

Consider now applying Co-Training to the domain in Figure A.4.a. The two labeled

examples determine the version spaces V S1 and V S2, from which the Gibbs learner

randomly chooses the two hypotheses (i.e., the dashed lines in the picture). The most

confident positive and negative predictions of the hypothesis learned in the view V1 are

the unlabeled examples that are the farthest away from the decision border; that is, the

examples that lie on the left border of the left-most clump and on the right border of the

right-most clump, respectively. These examples are depicted in Figure A.4.a as the thin,

white rectangles labeled “V1: +” and “V1: -”, respectively. Similarly, the two thin

black rectangle on the bottom of the left-most clump and on the top of the right-most

clump represent the most confident predictions of the “horizontal” hypothesis learned in

V2.

After a number of iterations, Co-Training adds to the training set all the examples

from the left-most and right-most clump. At this point, the new most confident predictions

are the ones on the borders of the second clumps from left and right, respectively (see

Figure A.4.b). After some more iterations, all the examples from these two new clumps

are also added to the training set, and Co-Training starts making the most confident

predictions in the third clump from the left and right, respectively (see Figure A.4.c).

Note that these two clumps are the last ones which are guaranteed to be correctly

labeled by Co-Training: from now on, Co-Training starts labeling clumps for which it has

no other information except for their proximity to the previously labeled clumps. The

illustrative domain in Figure A.4 was chosen so that Co-Training happens to also correctly

label the fourth clump from the left and right, respectively (see Figure A.4.d). However,

when reaching the remaining unlabeled clump (i.e., the fifth one from both left and right),

153

_

+

1

2VS

VS

V2: -

V2: +

V1: -

V1: +

_

+

1

2VS

VS

V2: -

V2: +

V1: +

V1: -

a) Labeling the left- & right-most clumps. b) Labeling the second clump from left & right.

_

+

1

2VS

VS

V2: -

V2: +

V1: -

V1: +

_

+

1

2VS

VS

V2: -

V2: +

V1: +V1: -

c) Labeling the third group of clumps. d) Labeling the fourth group of clumps.

_

+

VS

VS2

1

V2: -

V2: +
V1: -

V1: +
_+

e) Inconsistently labeling the last clump. f) Necessary condition for convergence.

Figure A.4: Co-Training bootstraps the views from each other by adding the most confi-
dent predictions to the training set. Unless the initial, randomly-chosen training set has
a favorable distribution, Co-Training does not converge to the target concept.

154

both views label the clump inconsistently (see Figure A.4.e). For example, the view V1

labels the left and right border of this clump as being negative and positive respectively,

which is impossible: the examples within the same clump must have the same label. A

similar situation appears in the view V2, which predicts positive and negative labels for

the examples on the top and bottom borders of this clump, respectively.

In practice, the problem of conflicting labels is not the only way in which Co-Training

may fail to learn the target concept. For example, when Co-Training labeled the fourth

clump from the left and right (see Figure A.4.d), it was by pure chance that the clumps

were labeled correctly. For a different target concept, one of the two clumps would have

had a different label, which would have implied that one of the views provided the other

one with mislabeled examples; in turn, this would have prevented the learning of the

correct target concepts.

Given the problems described above, it is easy to see that Co-Training is guaranteed to

correctly learn the target concept if and only if its initial training set contains a positive

and a negative example from the two clumps that define the border between the two

classes (see Figure A.4.f). In other words, one can not guarantee that, given an arbitrary

training set, Co-Training converges to the target concept. �

Proposition 9 On the 2-dhl problem, with an arbitrarily-high probability, Aggressive

Co-Testing learns the target concept in both views by making at most 2 × NmbClumps

queries, where NmbClumps is the number of clumps in the domain.

In order to show that this proposition is true, I first prove two auxiliary results that

are used in the proof of Proposition 9:

A.2.2.0.9 Statement 1: if the version spaces in each view have not collapsed to a

single hypothesis each (i.e., if they did not converge to the respective target concepts),

with an arbitrarily-high probability, Co-Testing’s set of contention points is not empty.

155

2

VS

VS

1

+

-

2

VS

VS

1

+

-

Figure A.5: Two illustrative scenarios in which there are no contention points. In both
scenarios, NmbClupmsInV S = 5 because only five clumps are entirely within the two
dimensional version space.

A.2.2.0.10 Statement 2: Aggressive Co-Testing queries at most two examples from

each clump in the domain.

A.2.2.0.11 Proof of Statement 1: By construction, two hypotheses learned in dif-

ferent views fail to generate contention points if and only if they intersect at one of the

points where two neighboring clumps touch each other (see Figure A.5). Given that the

Gibbs algorithm randomly selects the hypotheses that are uniformly distributed over the

two version spaces, it follows that the probability of learning two hypotheses that have

no contention points is

(NmbClumpsInV S + 1)
Size(V S1)

× (NmbClumpsInV S + 1)
Size(V S2)

where V S1 and V S2 represent the version spaces in each view, and NmbClumpsInV S

denotes the number of clumps that entirely lie within the current 2-dimensional version

space (i.e., the rectangular area defined by the version spaces in each view). Figure A.5

depicts two of the six possible scenarios in which NmbClumpsInV S = 5 and there are

no contention points.

156

min< x , y , ? >

< x , y , ? >

max

min max

Contention pointsC

h

h2

1

min

< x , y , ? >

max

min max

< x , y , ? >

Contention points

C
h2

1h

Figure A.6: In the figure on the left, the entire clump consists of contention points.
In the left-most figure, the two hypotheses intersect within the clump, splitting in into
quadrants; only the clump’s top-left and bottom right quadrants consist of contention
points.

Let us assume that even though the two version spaces did not collapse to a single

hypothesis each, the two hypotheses returned by the Gibbs algorithm do not have any

contention points. Then Co-Testing can re-run the Gibbs learner until it generates two

hypotheses that have a non-empty set of contention points. The probability of having a

non-empty set of contention points after R re-runs of the Gibbs learner in each view is

(
1 − (NmbClumpsInV S + 1)

Size(V S1)
× (NmbClumpsInV S + 1)

Size(V S2)

)R

Consequently, by choosing an appropriately large value of R, one can guarantee that -

with an arbitrarily-high probability - Co-Testing obtains a non-empty set of contention

points. �

A.2.2.0.12 Proof of Statement 2: In order to prove this statement, I proceed as

follows. First, I show that if Aggressive Co-Testing queries two examples from a particular

clump C, then these two queries are the examples on the top-left and bottom-right corners

of the rectangle that borders the clump C. Then I show that once these two queries are

157

made, no other example from the clump C can be among the contention points, thus

making it impossible to query more than two examples from C.

Consider an arbitrary pair of hypotheses h1 and h2 that are learned in the two views.

Let us denote by w1 and w2 the decision thresholds corresponding to h1 and h2, re-

spectively. The hypotheses h1 and h2 divide the instance space into quadrants. All the

contention points lie in the top-left and bottom-right quadrants (i.e., X ≤ w1 & Y > w2,

and X > w1 & Y ≤ w2, respectively), for which the hypotheses predict a different label.

Figure A.6 depicts two illustrative scenarios in which either all or some of the examples

within a clump C are among the contention points.

Let us denote by 〈xmin, ymax, ?〉 and 〈xmax, ymin, ?〉 the top-left and bottom-right

corner of the clump C, respectively. Then the following three properties are true:

- Property 1: If neither 〈xmin, ymax, ?〉 nor 〈xmax, ymin, ?〉 are contention points, then

none of the examples within C are among the contention points.

Proof: If neither 〈xmin, ymax, ?〉 nor 〈xmax, ymin, ?〉 are among the contention

points, it follows that either xmin, xmax ≤ w1 and ymin, ymax ≤ w2 or xmin, xmax >

w1 and ymin, ymax > w2. It follows that for an arbitrary example 〈x, y, ?〉 from the

clump C (i.e., x ∈ [xmin, xmax] and y ∈ [ymin, ymax]), we have either x ≤ w1 and

y ≤ w2 or x > w1 and y > w2. Consequently, 〈x, y, ?〉 is labeled identically by

the decision thresholds in both views, thus making it impossible to be among the

contention points. �

- Property 2: If the clump C includes contention points located within the top-left

quadrant (i.e., X ≤ w1 & Y > w2), then 〈xmin, ymax, ?〉 in one of them. Further-

more, among these “top-left” contention points from the clump C, 〈xmin, ymax, ?〉 is

the most confident prediction made by both hypotheses h1 and h2.

Proof: Consider an arbitrary example 〈x, y, ?〉 from clump C (i.e., x ∈ [xmin, xmax]

and y ∈ [ymin, ymax]). Let us assume that 〈x, y, ?〉 is a contention point located in

the top-left quadrant; that is, x ≤ w1 and y > w2. As x ≥ xmin and y ≤ ymax, it

158

follows that xmin ≤ x ≤ w1 and ymax ≥ y > w2. Consequently, 〈xmin, ymax, ?〉 is

also a contention point located in the top-left quadrant. Furthermore, among the

other examples in C that lie in this quadrant, 〈xmin, ymax, ?〉 is the farthest away

from both decision borders because it maximizes both w1 − X and Y − w2. �

- Property 3: If the clump C includes contention points located within the bottom-

right quadrant (i.e., X > w1 & Y ≤ w2), then 〈xmax, ymin, ?〉 in one of them.

Furthermore, among these “bottom-right” contention points from the clump C,

〈xmax, ymin, ?〉 is the most confident prediction made by both hypotheses h1 and

h2.

Proof: Consider an arbitrary example 〈x, y, ?〉 from clump C (i.e., x ∈ [xmin, xmax]

and y ∈ [ymin, ymax]). Let us assume that 〈x, y, ?〉 is a contention point located in the

bottom-right quadrant; that is, x ≥ w1 and y < w2. As x ≤ xmax and y ≥ ymin, it

follows that xmax ≥ x ≥ w1 and ymin ≤ y < w2. Consequently, the 〈xmax, ymin, ?〉 is

also a contention point located in the bottom-right quadrant. Furthermore, among

the other examples in C that lie in this quadrant, 〈xmax, ymin, ?〉 is the farthest away

from both decision borders because it maximizes both X − w1 and w2 − Y . �

From Properties 2 & 3, it follows that if Aggressive Co-Testing queries examples

from the clump C, the first such query is either 〈xmin, ymax, ?〉 or 〈xmax, ymin, ?〉. Without

loss of generality, let us assume that Aggressive Co-Testing first queries the example

〈xmin, ymax, ?〉; an argument similar to the one below holds if Co-Testing first queries

〈xmax, ymin, ?〉.

Once the query 〈xmin, ymax, ?〉 is labeled “l” and Co-Testing re-trains, the new hy-

potheses h1 and h2 correctly classify the example 〈xmin, ymax, l〉 (remember that we as-

sumed perfect learning in both views). This means that the example 〈xmin, ymax, l〉 is

not a contention point; in turn, based on Property 2, this implies that there are no

contention points from C in the top-left quadrant.

159

The argument above implies that after querying 〈xmin, ymax, ?〉 and re-training, there

are only two possibilities: either there are no more contention points in the clump C, or

all contention points from C lie in the bottom-right quadrant. In the former scenario, Co-

Testing ends up making just a single query within the clump C. In the latter scenario, Co-

Testing may or may not make another query in the clump C, depending on how confident

are the predictions made on contention points from the various clumps. However, if Co-

Testing makes another query within the clump C, according to Property 3, this query

is guaranteed to be 〈xmax, ymin, ?〉.
In this second scenario, the new query 〈xmax, ymin, ?〉 is also labeled “l” (remember

that all examples within a clump must have the same label). After adding 〈xmax, ymin, l〉
to the training set and re-training one more time, the new hypotheses h1 and h2 label

correctly both 〈xmax, ymin, l〉 and 〈xmin, ymax, l〉. This means that neither 〈xmax, ymin, l〉
nor 〈xmin, ymax, l〉 are contention points; consequently, according to Property 1, none

of the examples within the clump C can be among the contention points. In turn, this

means that Aggressive Co-Testing can make at most two queries in any clump C. �

A.2.2.0.13 Proof of Proposition 9: Based on Statements 1 and 2, the proof of

Proposition 9 becomes straightforward. Aggressive Co-Testing starts with two ran-

domly chosen examples (one positive and one negative) and learns a hypothesis in each

view. Statement 1 guarantees that unless the learning process converged to the target

concepts in both views, with an arbitrarily-high probability, the two learned hypothe-

ses lead to a non-empty set of contention points, thus allowing Co-Testing to make new

queries.

In keeping with Statement 2, Aggressive Co-Testing makes at most two queries per

clump, for a total of 2 × NmbClumps queries. After this number of queries, the label of

each clump is unambiguously determined, thus collapsing both version spaces to a single

hypothesis, which represents the target concept. �

160

Appendix B

The 60 Semi-Artificial Problems

No man’s knowledge here can go beyond his experience.

John Locke

To create a parameterized family of problems in which we control the view correlation

and incompatibility, we start from an idea presented in (Nigam and Ghani, 2000). One

can create a (semi-artificial) domain with compatible, uncorrelated views by taking two

unrelated binary classification problems and considering each problem as an individual

view. The multi-view examples are created by randomly pairing examples that have the

same label in the original problems.

The procedure above can be easily modified to introduce both clumps and incompat-

ible examples. For instance, consider creating a binary classification problem in which

the positive examples consist of two clumps. We begin with four unrelated problems that

have the sets of positive examples A, B, C, and D, respectively. In the newly created

2-view problem, the positive examples in the views V1 and V2 consist of the A
⋃

B and

C
⋃

D, respectively. As shown in the left-most graph in Figure B.1, if the multi-view

examples are created by randomly pairing an example from A
⋃

B with one from C
⋃

D,

we obtain, again, uncorrelated views. By contrast, if we allow the examples from A to be

paired only with the ones from C, and the ones from B with the ones from D, we obtain a

161

a1

a2

b1

b2

c1

c2

d1

d2

a1

a2

b1

b2

c1

c2

d1

d2

One clump per class Two clumps per class

A

B

C

D

A

B

C

D

View V1 View V2 View V1 View V2

Figure B.1: Generating one and two clumps per class.

problem with two clumps of positive examples: A-C and B-D. Similarly, based on eight

or 16 unrelated problems, one can create four or eight clumps per class, respectively.

Adding incompatible examples is a straightforward task: first, we randomly pick

one positive and one negative multi-view example, say [“Advanced OS”, AdvOS-Class] and

[“John Doe”, JohnDoe-Homepage]. Then we replace these two examples by their “recom-

binations”, [“Advanced OS”, JohnDoe-Homepage] and [“Joe Doe”, AdvOS-Class], which are

positive in one view and negative in the other one.

In order to generate problems with up to four clumps per class, we used 16 of 20

newsgroups postings from the Mini-Newsgroups dataset,1 which is a subset of the well-

known 20-Newsgroups domain (Joachims, 1996). Each newsgroup consists of 100 articles

that were randomly chosen from the 1000 postings included in the original dataset. We

divided the 16 newsgroups in four groups of four (see Table B.1). The examples in each

such group are used as either positive or negative examples in one of the two views; i.e.,

the newsgroups comp.os.ms-win, comp.sys.ibm, comp.windows.x, and comp.sys.mac play

the roles of the A, B, C, and D sets of examples from Figure B.1.

1http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes/mini newsgroups.tar.gz

162

V1 V2
comp.os.ms-win.misc comp.windows.x

pos comp.sys.ibm.pc.hrwd comp.sys.mac.hrwd
rec.autos rec.motorcycles

rec.sport.baseball rec.sport.hockey
sci.crypt sci.electronics

neg sci.space sci.med
talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc

Table B.1: The 16 newsgroups included in the domain.

We begin by creating compatible views with three levels of clumpiness: one, two, and

four clumps per class. Figure B.2 shows how the three levels of clumpiness are created

for the positive examples. For one clump per class, any positive example from V1 can be

paired with any positive example in V2. For two clumps per class, we do not allow the

pairing of comp examples in one view and the rec examples in the other one. Finally, for

four clumps per class we pair examples from comp.os.ms-win and comp.windows.x, from

comp.sys.ibm and comp.sys.mac, etc.

For each level of clumpiness, we consider with five levels of view incompatibility:

0%, 10%, 20%, 30%, and 40% of the examples are incompatible, respectively. This

corresponds to a total of 15 points in the correlation - incompatibility space; as we

already mentioned, for each such point we generate four random problems, for a total of

60 problems (each problem consists of 800 examples).2

2The documents are tokenized, the UseNet headers are discarded, words on a stoplist are removed,
no stemming is performed, and words that appear only in a single document are removed. The resulting
views V1 and V2 have 5061 and 5385 features (i.e., words), respectively.

163

V1

comp.os.ms−win

comp.sys.ibm

rec.autos

V2

comp.windows.x

comp.sys.mac

rec.motorcycles

rec.sport.hockeyrec.sport.baseball

V1

comp.os.ms−win

comp.sys.ibm

rec.autos

V2

comp.windows.x

comp.sys.mac

rec.motorcycles

rec.sport.hockeyrec.sport.baseball

V1

comp.os.ms−win

comp.sys.ibm

rec.autos

V2

comp.windows.x

comp.sys.mac

rec.motorcycles

rec.sport.hockeyrec.sport.baseball

One clump per class Two clumps per class Four clumps per class

Figure B.2: Generating up to four clumps per class.

164

