
Active Learning with Strong and Weak Views: A Case Study on Wrapper
Induction

Ion Muslea, Steven N. Minton, Craig A. Knoblock
muslea@isi.edu, minton@fetch.com, knoblock@isi.edu

U. of Southern California, Fetch Technologies, Inc., U. of Southern California,
4676 Admiralty Way

Marina del Rey, CA 90292

Abstract

Multi-view learners reduce the need for labeled data
by exploiting disjoint sub-sets of features (views),
each of which is sufficient for learning. Such al-
gorithms assume that each view is a strong view
(i.e., perfect learning is possible in each view). We
extend the multi-view framework by introducing a
novel algorithm, Aggressive Co-Testing, that ex-
ploits both strong and weak views; in a weak view,
one can learn a concept that is strictly more gen-
eral or specific than the target concept. Aggressive
Co-Testing uses the weak views both for detecting
the most informative examples in the domain and
for improving the accuracy of the predictions. In a
case study on 33 wrapper induction tasks, our algo-
rithm requires significantly fewer labeled examples
than existing state-of-the-art approaches.

1 Introduction
Labeling training data for learning algorithms is a tedious, er-
ror prone, time consuming process. Active learning addresses
this issue by detecting and asking the user to label only the
most informative examples in a domain. In this paper, we
focus on Co-Testing [Muslea et al., 2000], an active learn-
ing technique for domains with multiple views; i.e., domains
with disjoint sub-sets of features, each of which is sufficient
for learning. Co-Testing is a 2-step iterative algorithm that
(1) uses the few available labeled examples to learn a hypoth-
esis in each view and (2) queries (i.e., asks the user to label)
examples on which the views predict a different label. Such
queries are highly informative because they correct mistakes
made by one of the views: whenever the views disagree, at
least one of them must be wrong.

Co-Testing was successfully applied to wrapper induction
[Muslea et al., 2000], an industrially important application.
In wrapper induction the goal is to learn rules that extract the
relevant data from collections of Web pages that share the
same underlying structure; e.g., extract the book titles and
prices from amazon.com. For wrapper induction, Co-Testing
uses two views: the sequences of tokens that precede and fol-
low the extraction point, respectively. The extraction rules
learned in these views are finite automata that consume an
item’s prefix or suffix within the page, respectively.

The main limitation of existing Co-Testing algorithms
[Muslea et al., 2000; 2002a] is that they are designed to use
only views that are adequate for learning, thus being unable
to also exploit imperfect views that would permit a faster con-
vergence to the target concept. To address this problem, we
extend the multi-view learning framework by introducing the
idea of learning from strong and weak views. By definition,
a strong view consists of features that are adequate for learn-
ing the target concept; in contrast, in a weak view one can
only learn a concept that is more general or specific than the
target concept. We introduce a novel algorithm, Aggressive
Co-Testing, that exploits both strong and weak views with-
out additional data engineering costs. We also describe a case
study on wrapper induction, which shows that Aggressive Co-
Testing clearly outperforms state-of-the-art algorithms.

To illustrate the idea of strong and weak views, consider
the task of extracting fax numbers from a directory of restau-
rant Web pages such as Zagat. The two wrapper induction
views described above are strong views because each of them
is (typically) sufficient to extract the item of interest [Muslea
et al., 2000]. In addition to these two strong views, we
can also exploit a view that consists of tokens within the
item to be extracted. In this view, we learn the grammar
“(Number) Number - Number” that describes the content of
the fax numbers. This additional view is a weak view because
the grammar above represents a concept more general than
the target one; i.e., it cannot discriminate between fax and
phone numbers that appear within the same Web page.

Aggressive Co-Testing for wrapper induction works as fol-
lows: first, it uses a few labeled examples to learn a rule
in each view (i.e., one weak and two strong rules). Then it
queries an unlabeled example on which the two strong rules
extract different strings, both of which are inconsistent with
the content-based grammar. Each such query is likely to rep-
resent a mistake not only in one, but in both strong views, thus
leading to faster convergence. We use a collection of 33 dif-
ficult extraction tasks to show that using the weak view dra-
matically reduces the need for labeled data: compared with
existing state of the art active learners, our novel algorithm
requires between 45% and 81% fewer labeled examples.

2 Related work
The idea of exploiting complementary information sources
(i.e., types of features) appears in various multi-strategy

learners. Of particular interest are two recent papers [Kush-
merick et al., 2001; Nahm and Mooney, 2000] in which the
authors use sets of features that clearly do not have the same
expressive power. This work can be seen as learning from
strong and weak views, even though it was not formalized as
such, and it was not used for active learning.

Kushmerick et al. [2001] focus on classifying the lines of
text on a business card as a person’s name, affiliation, address,
phone number, etc. In this domain, the strong view consists
of the words that appear on each line, based on which a Naive
Bayes text classifier is learned. In the weak view, one can ex-
ploit the relative order of the lines on the card by learning a
hidden Markov Model that predicts the probability of a par-
ticular ordering of the lines on the business card (e.g., name
followed by address, followed by phone number).

This weak view defines a class of concepts that is more
general than the target concept: all line orderings are possi-
ble, even though they are not equally probable. The order of
the text lines cannot be used by itself to accurately classify
the lines. However, when combined with the strong view, the
ordering information leads to a classifier that clearly outper-
forms the stand-alone strong view [Kushmerick et al., 2001].

Another algorithm that can be seen as learning from strong
and weak views is DISCOTEX [Nahm and Mooney, 2000],
which extracts job titles, salaries, locations, etc from com-
puter science job postings to the newsgroup austin.jobs.
DISCOTEX proceeds in four steps: first, it uses RAPIER
[Califf and Mooney, 1999] to learn extraction rules for each
item of interest. Second, it applies the learned rules to a large,
unlabeled corpus of job postings and creates a database that
is populated with the extracted data. Third, by text mining
this database, DISCOTEX learns to predict the value of each
item based on the values of the other fields. For example, it
may discover that “IF the job requirements include
C++ and CORBA THEN the development platforms
include Windows”. Finally, when the system is deployed
and the RAPIER rules fail to extract an item, the mined rules
are used to predict the item’s content.

In this scenario, the RAPIER rules represent the strong view
because they are sufficient for extracting the data of interest.
In contrast, the mined rules represent the weak view because
they cannot be learned or used by themselves. Furthermore,
as DISCOTEX discards all but the most accurate of the mined
rules, which are highly-specific, it follows that the weak view
can be used to learn only concepts that are more specific than
the target concept. Nahm and Mooney show that these mined
rules improve the extraction accuracy by capturing informa-
tion that complements the RAPIER extraction rules.

3 Preliminaries
In this section we first explain the main idea behind Co-
Testing algorithms [Muslea et al., 2000; Muslea, 2002], and
then we describe the strong and weak views that we use for
wrapper induction.

3.1 Background: the Co-Testing approach
Figure 1 provides a formal description of the Co-Testing fam-
ily of algorithms. Given a base learner �, a set � of labeled

Given: - a base learner �
- a learning problem with features V=���� ��� � � � � ���
- two views V1 and V2, where V=V1�V2 and V1�V2=�
- the sets � and � of labeled and unlabeled examples
- number � of queries to be made

LOOP for � iterations
- use �, V1(�), and V2(�) to create classifiers �� and ��
- let �	
��
�	
�	
�� = � � � � � ����� �� ����� �
- IF �	
��
�	
�	
�� is empty THEN quit
- let ����� = SelectQuery(�	
��
�	
�	
��)
- remove ����� from � and ask for its label �
- add labeled ����� to �

- CreateOutputHypothesis(��, ��)

Figure 1: Co-Testing algorithms repeatedly query examples
for which the two views make a different prediction.

examples, and a set � of unlabeled ones, Co-Testing works
as follows: first, it learns the classifiers �� and �� by apply-
ing the algorithm � to the projection of the examples in �

onto the two views, V1 and V2. Then it applies �� and �� to
all unlabeled examples in � and detects the set of contention
points, which are unlabeled examples for which �� and ��

predict a different label. Finally, it asks the user to label one
of the contention points and repeats the whole process.

The various members of the Co-Testing family differ from
each other with two respects: the strategy used to select the
next query, and the manner in which the output hypothesis1

is constructed. In other words, each Co-Testing algorithm
is uniquely defined by the choice of the heuristics Select-
Query() and CreateOutputHypothesis(). In turn, these two
heuristics depend on the properties of both the application do-
main and the base learner �.

We consider here two types of query selection strategies:

- random: randomly choose a contention point. This strategy
is appropriate for base learners that lack the capability of
estimating the confidence of their predictions.

- max-confidence: choose the contention point on which both
�� and �� make the most confident prediction. This
strategy is appropriate for high accuracy domains (e.g.,
wrapper induction), in which there is little or no noise.
On such tasks, discovering examples that are misclassi-
fied “with high confidence” translates into queries that
“fix big mistakes,” thus leading to fast convergence.

We also consider two “output hypothesis” heuristics:

- winner-takes-all: the output hypothesis is the one learned
in the view that makes the smallest number of mistakes
over the � queries.

- majority vote: examples are labeled according to the pre-
diction of most views (requires at least three views).

3.2 Wrapper induction: the strong views
In wrapper induction, each item of interest is described by
three strings of variable length: the item’s content, together

1Once training is completed, the output hypothesis is used to pre-
dict the label of all new, unseen examples.

Name: <i> Gino’s </i><p> Phone: <i> (800) 111-1717 </i><p> Fax: (616) 111-...

R2:R1:

R3: (Number) Number - Number

 BackTo "Fax" BackTo "("SkipTo "Phone : <i>"

Figure 2: The forward and backward strong rules (i.e., R1 and R2) find the beginning of the phone number by consuming its
suffix or prefix, respectively. R3 is a content-based grammar that describes the structure of the item to be extracted.

with its prefix and suffix within the document. As this is not
a typical machine learning representation in which an exam-
ple’s description in each view consists of a fixed set of fea-
tures , we describe here in detail how Co-Testing can be ap-
plied to wrapper induction. As a first step, we introduce the
basic ideas in STALKER [Muslea et al., 2001], which is the
wrapper induction algorithm that we use as base learner.

Consider the illustrative task of extracting phone numbers
from Web pages similar to the one shown in Figure 2. In
STALKER, an extraction rule consists of a start rule and an
end rule that identify the beginning and the end of the item,
respectively. Given that start and end rules are extremely sim-
ilar, we describe here only the former. In order to find the
beginning of the phone number, one can use the start rule
�� � SkipTo ������ �<�>�

This rule is applied forward, from the beginning of the doc-
ument, and it ignores everything until it finds the string
Phone:<i>. For a slightly more complicated extraction task,
in which toll-free numbers appear in italics and the other ones
in bold, one can use a disjunctive start rule such as

��
� � ������ SkipTo ������ �<�>�

	� SkipTo ������ �<�>�

An alternative way to detect the beginning of the phone
number is to use the start rule

�� � BackTo ��	
� BackTo ���

which is applied backward, from the �
� of the document.
R2 ignores everything until it finds “Fax” and then, again,
skips back to the first open parenthesis.

As shown in [Muslea et al., 2001], the above extraction
rules can be learned based on user-provided examples of
items to be extracted. Note that R1 and R2 represent de-
scriptions of the same concept (i.e., start of phone number) in
two different views. That is, the views V1 (forward view) and
V2 (backward view) consist of the sequences of tokens that
precede and follow the beginning of the item, respectively.

Note that both V1 and V2 represent strong views: as the
Web pages to be wrapped share the same underlying struc-
ture, STALKER can be seen as uncovering and exploiting this
underlying structure for extraction purposes. Consequently,
both the forward and backward rules are expected to extract
the relevant data from any page.

3.3 Wrapper induction: the weak view
Besides the two strong views above, one can also use a third,
content-based view, which describes the actual item to be ex-
tracted. For example, when extracting phone numbers, one

may exploit the fact that they can be described by a simple
grammar: “(Number) Number - Number”. Similarly, when
extracting URLs, one can take advantage of the fact that a
typical URL starts with the string “http://www.”, ends with
the string “.html”, and contains no HTML tags.

In this paper, we use the following features to describe the
content of each item to be extracted:

- the length range (in tokens) of the seen examples. For in-
stance, phone numbers in the format “(Number) Number
- Number” consist of six tokens (i.e., the three numbers,
the dash, and the two parentheses).

- the token types that appear in the training examples. This
feature consists of the set of the most specific wildcards
(e.g., Number, AllCaps, etc) that match the tokens en-
countered in the item to be extracted. For example, in
the phone number case, this list consists of two wild-
cards: Number and Punctuation. The complete hierar-
chy of wildcards is described in Figure 3.

- a start-pattern such as “http://www.” or “(Number)”,
which describes the beginning of the item of interest.

- an end-pattern such as “AlphaNum.html” or “Number -
Number”, which describes the end of the item.

In order to learn the content-based description of an item,
we use as base learner a simplified version of the DataPro
algorithm [Lerman and Minton, 2000]. After tokenizing each
of the user-provided examples of strings to be extracted, the
weak-view learner proceeds as follows:

- the length range is determined by finding the examples that
contain the largest and the smallest number of tokens;

- the token types are obtained by going through the tokens
that appear in the labeled examples and adding to the set
of “seen types” the most specific wildcard that covers it.

- a start-pattern of length one consists of the most specific
wildcard that covers the first token in all labeled exam-
ples; if all examples start with the same token, such
as “(” in the phone number example, the actual to-
ken is preferred to the most specific wildcard. A start-
pattern of length � is generated by repeating the proce-
dure above for the first, second, . . . , up to �-th position.

- the end-pattern is learned in the same manner as the start
pattern, but using the � tokens at the end of the item.

Note that, unlike the forward and backward views, the
content-based view is a weak view because, for many extrac-
tion tasks, this view does not uniquely define the item of inter-

non-Html Html

PunctuationAlphaNumeric

NumberAlphabetic

AllCaps

AnyToken

Capitalized

Figure 3: The hierarchy of wildcards used for wrapper induc-
tion. The parent-child relationship denotes the IsMoreGener-
alThen relationship. For example, the most general wildcard
is AnyToken, which matches all possible tokens. non-Html,
which is a child of AnyToken, denotes all tokens than are not
HTML tags (i.e., alphanumeric tokens and punctuation signs).

est. This is a consequence of the fact the view uses only fea-
tures that describe the content of each item. For Web pages
that contain several items with similar descriptions, such as
multiple email addresses, phone numbers, URLs, or names,
the content-based grammar cannot discriminate between the
various items with similar descriptions.

4 Aggressive Co-Testing
We introduce now Aggressive Co-Testing, which provides
a framework for naturally exploiting both strong and weak
views. For Aggressive Co-Testing, the contention points are
defined as unlabeled examples on which the strong views pre-
dict a different label. For the wrapper induction problem, Ag-
gressive Co-Testing uses the two strong and one weak views
described earlier (i.e., the forward, backward, and content-
based views). Consequently, the contention points are unla-
beled documents from which the forward and backward rules
extract different strings. Aggressive Co-Testing uses the la-
beled examples to learn one hypothesis in each view, detects
the contention points, and then uses the following heuristics:

- SelectQuery() returns the contention point on which both
strong rules violate the largest number of constraints
learned in the weak view; e.g., the extracted strings are
longer than the seen examples, the start- and end- pat-
terns do not match, etc. This is a max-confidence query-
ing strategy because the content-based view is maxi-
mally confident that the strong rules extract incorrect
strings.

- CreateOutputHypothesis() uses the three views for ma-
jority voting. That is, given a new, unseen document,
both strong rules are applied to it; if they extract the
same string, this string is returned as the answer. Oth-
erwise the “winner” is the strong rule that violates the
fewest constraints learned in the weak view. Note that
this flexible approach allows Co-Testing to use the most
appropriate strong rule for each document in the dataset.

To better understand how Aggressive Co-Testing works,
we contrast it now with Naive Co-Testing [Muslea et al.,
2000], which uses only the two strong views. Both algo-
rithms detect the contention points in the same manner, but

they use different query selection strategies and output hy-
potheses. More precisely, Naive Co-Testing randomly queries
one of the contention points and generates a winner-takes-all
output hypothesis (i.e., the rule that makes the fewest mis-
takes on the queries extracts the data from all documents).

5 Empirical Evaluation
The algorithms in the experimental comparison

In this empirical evaluation we compare the following algo-
rithms: Aggressive Co-Testing, Naive Co-Testing, Query-
by-Bagging, and Random Sampling. The first two algo-
rithms were described in the previous section; Random Sam-
pling, which is used as strawman, is identical with Naive Co-
Testing, except that it randomly queries one of the unlabeled
examples instead of one of the contention points.

Query-by-Bagging [Abe and Mamitsuka, 1998] is the only
single-view active learner that can be used in a straightfor-
ward manner with STALKER and, more generally, for wrap-
per induction.2 Even Query-by-Boosting [Abe and Mamit-
suka, 1998], which is similar to Query-by-Bagging, cannot
use STALKER as a base learner: as STALKER rarely - if ever -
makes mistakes on small training sets, it eliminates the ability
of the boosting algorithm to generate a diverse committee.

Query-by-Bagging is based on the idea of creating a com-
mittee of extraction rules and then querying the example on
which the committee is the most split (i.e., the rules in the
committee extract the largest number of distinct strings); the
algorithm’s actual predictions are made by majority voting
the committee of rules. Query-by-Bagging generates a com-
mittee of 10 extraction rules, each of which is learned by
training STALKER with examples obtained by re-sampling
with replacement the original training set. We are forced to
use such a small committee because of the scarcity of the
training data: as STALKER is expected to train on a handful of
examples, sampling-with-replacement from a few examples
leads to few distinct training sets for creating the committee.
Query-by-Bagging is run once in each view, and we report
only the best results, which are obtained in the forward view.

The datasets
In order to empirically compare the algorithms above, we
use the wrapper induction testbed introduced by Kushmerick
[2000]. It consists of 206 extraction tasks from 30 Web-based
information sources.3 As shown in [Muslea et al., 2001],
on most of these 206 tasks STALKER learns 100% accurate
rules from just one or two randomly-chosen labeled exam-
ples. We consider here the 33 most difficult tasks in the
testbed, which were also used in previous work on multi-view
learning [Muslea et al., 2000; 2002b]:

- the 28 tasks on which 20 random examples are insufficient
for learning 100%-accurate rules in both strong views;

2Typical wrapper induction algorithms do not have the properties
that active learners require of their base learners; e.g., the ability to
evaluate the confidence of each prediction [Lewis and Gale, 1994],
or to randomly sample hypotheses from the version space [Seung et
al., 1992], or to generate most specific and most general extraction
rules [Cohn et al., 1994].

3These datasets can be obtained from the RISE repository:
http://www.isi.edu/	muslea/RISE/index.html.

- the five additional tasks on which, in order to learn 100%-
accurate rules in both strong views, STALKER requires a
large number of random examples [Muslea, 2002].

The empirical results

For each of these 33 tasks, we use 20-fold cross-validation
to compare the performance of the algorithms above. Within
each fold, the algorithms start with the same two randomly-
chosen examples and then make a succession of queries. In
the end, the error rate is averaged over the 20 folds.

Figure 4 summarizes the algorithms’ performance over the
33 tasks. In each graph, the X axis shows the number of
queries made by the algorithm, while the Y axis shows the
number of tasks for which a 100% accurate rule was learned
after exactly X queries. Each algorithm is allowed to make
18 queries, for a total of 20 labeled examples. By conven-
tion, the “19 queries” data point denotes tasks for which a
100% accurate rule is not learned even after 18 queries.

Aggressive Co-Testing clearly outperforms the other algo-
rithms: it makes an average of 2.43 queries over the 30 tasks
that are solved with 100% accuracy; furthermore, on 11 of
these 30 tasks, a single query is sufficient to learn the cor-
rect rule. In contrast, Naive Co-Testing, which comes sec-
ond, makes an average of 4.4 queries per task and converges
in a single query on just four of the 33 tasks. Also note that
Aggressive Co-Testing solves correctly two of the five tasks
that cannot be solved by Naive Co-Testing; the other two al-
gorithms fail to solve 23 and 26 of the 33 tasks, respectively.

Even though Aggressive Co-Testing makes 45% fewer
queries that Naive Co-Testing, at first glance the difference
between 2.43 and 4.4 queries per task may seem small. How-
ever, one must take into account that wrapper induction is
used in information agents [Knoblock et al., 2001], which
typically use hundreds of extraction rules; in this context, Ag-
gressive Co-Testing makes a tremendous difference.

To put our work into a larger context, we briefly compare
the results above with the ones obtained by WIEN [Kushm-
erick, 2000], which is the only wrapper induction system for
which there are published results for all the extraction tasks
used here. As the two experimental setups are not identical,4

this is just an informal comparison that contrasts Co-Testing
with a state-of-the-art approach to wrapper induction.

The results in [Kushmerick, 2000] can be summarized as
follows: WIEN, which uses random sampling, learns the cor-
rect extraction rule on 15 of the 33 task. On these 15 tasks,
WIEN requires between 25 and 90 labeled examples5 to learn
the correct rule. For the same 15 tasks, both Aggressive and
Naive Co-Testing learn 100% accurate rules from at most
eight labeled examples (two random plus at most six queries).

4Instead of using cross-validation, WIEN repeatedly splits the
dataset into randomly chosen training and test sets.

5For WIEN, an example consists of a document in which all items
of interest are labeled; e.g., a page with 15 labeled names repre-
sents a single example. In contrast, STALKER counts the 15 labeled
strings as 15 examples. We convert the WIEN results into equiva-
lent STALKER-like ones by multiplying the number of WIEN labeled
pages by the average number of item occurrences per page.

Discussion
The empirical results deserve several comments. First of all,
the experiments illustrate the benefits of a framework that
naturally integrates strong and weak views: Aggressive Co-
Testing exploits the strengths and mitigates the weaknesses of
each individual view. For example, we do not use the weak
view to identify the contention points because its mistakes
may be “unfixable” (remember that in a weak view one learns
a concept more general/specific than the one of interest). On
the other hand, we use the weak view both to detect the highly
informative contention points and to find the most appropriate
strong view for each prediction.

In contrast to Aggressive Co-Testing, existing multi-view
learners [Blum and Mitchell, 1998; Muslea et al., 2000] can
use only the strong views, thus losing an important source of
information. Similarly, single-view learners must either pool
all features together or simply ignore all but one view. Note
that, in practice, pooling the features together may not be a
straightforward task:
- in DISCOTEX [Nahm and Mooney, 2000], the text min-

ing features (the weak view) are the extracted items,
which become available only after the extraction rules
are learned and applied to the unlabeled corpus.

- the main contribution of [Kushmerick et al., 2001] consists
of a novel algorithm that exploits features from both the
strong and weak views (i.e., the words in each text line,
and the lines’s order within the business card).

Second, we ran an additional experiment to determine the
usefulness of the weak view with respect to each heuristic
(i.e., query selection and output hypothesis). We considered
two hybrid algorithms between Aggressive and Naive Co-
Testing: one uses the random and majority vote heuristics,
while the other uses max-confidence and winner-takes-all;
i.e., each hybrid exploits the weak view in only one of the two
heuristics. Because of space constraints, we just summarize
our findings: the two hybrids outperform Naive and under-
perform Aggressive Co-Testing; more precisely, they make
an average of 3.0 and 3.9 queries per task, respectively. In
other words, the weak view improves both the query selec-
tion and the output hypothesis.

Finally, note that on three of the 33 tasks, Aggressive Co-
Testing fails to learn 100%-accurate rules; in fact, on these
tasks Query-by-Bagging and Random Sampling obtain more
accurate rules than both Aggressive and Naive Co-Testing.
This happens because, on these three tasks, the backward
view is significantly less accurate than the forward one. Con-
sequently, the distribution of the queries is skewed towards
mistakes of the “bad view”, which are not informative for
either view: the “good view” extracts the correct string any-
way, while the “bad view” is inadequate to learn the target
concept. To cope with this problem, we plan to use view val-
idation [Muslea et al., 2002b], which predicts whether or not
the strong views are appropriate for a particular task.

6 Conclusion and Future Work
In this paper we introduce the concepts of strong and weak
views and present a novel active learner that naturally inte-
grates and exploits both types of views. In a case study on

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Aggressive Co-Testing

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Naive Co-Testing

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Query-by-Bagging (forward)

0

5

10

15

20

25

1 4 7 10 13 16 19

ex
tr

ac
tio

n
ta

sk
 th

at
 c

on
ve

rg
ed

queries

Random Sampling

Figure 4: Convergence results on the 33 wrapper induction tasks.

wrapper induction, we show that weak views represent a pow-
erful source of information that can be used both to detect
highly informative examples and to improve the algorithm’s
predictions. On a set of 33 difficult extraction tasks, our novel
algorithm converges by making up to 81% fewer queries than
other state of the art active learners.

We intend to continue our work along several directions.
First, we plan to investigate the use of weak views for semi-
supervised multi-view learning [Blum and Mitchell, 1998].
Second, we intend to extend view validation [Muslea et al.,
2002b] so that it also accounts for weak views. Finally, we
are interested in a theoretical analysis of learning from strong
and weak views.

Acknowledgments
This material is based upon work supported in part by the De-
fense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory under contract/agreement num-
bers F30602-01-C-0197 and F30602-00-1-0504, in part by
the Air Force Office of Scientific Research under grant num-
bers F49620-01-1-0053 and F49620-02-1-0270, in part by the
United States Air Force under contract number F49620-02-
C-0103, and in part by a gift from the Microsoft Corpora-
tion. The U.S.Government is authorized to reproduce and
distribute reports for Governmental purposes notwithstand-
ing any copy right annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References
[Abe and Mamitsuka, 1998] Naoki Abe and Hiroshi Mamit-

suka. Query learning using boosting and bagging. In Pro-
ceedings of ICML-98, pages 1–10, 1998.

[Blum and Mitchell, 1998] Avrim Blum and Tom Mitchell.
Combining labeled and unlabeled data with co-training. In
Proceedings of COLT-98, pages 92–100, 1998.

[Califf and Mooney, 1999] Mary Elaine Califf and Raymond
Mooney. Relational learning of pattern-match rules for
information extraction. In Proceedings of AAAI-99, pages
328–334, 1999.

[Cohn et al., 1994] David Cohn, Les Atlas, and Richard Lad-
ner. Improving generalization with active learning. Ma-
chine Learning, 15:201–221, 1994.

[Knoblock et al., 2001] Craig Knoblock, Steven Minton,
Jose-Luis Ambite, Naveen Ashish, Ion Muslea, and An-
drew Philpot. The Ariadne approach to Web-based Infor-
mation Integration. International Journal of Cooperative
Information Sources, 10(1/2):145–169, 2001.

[Kushmerick et al., 2001] Nicholas Kushmerick, Edward
Johnston, and Stephen McGuinness. Information extrac-
tion by text classification. In IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, 2001.

[Kushmerick, 2000] Nicholas Kushmerick. Wrapper induc-
tion: efficiency and expressiveness. Artificial Intelligence
Journal, 118(1-2):15–68, 2000.

[Lerman and Minton, 2000] Kristina Lerman and Steven
Minton. Learning the common structure of data. In Proc-
cedings of AAAI-2000, pages 609–614, 2000.

[Lewis and Gale, 1994] David Lewis and William Gale. A
sequential algorithm for training text classifiers. In Pro-
ceedings of Research and Development in Information Re-
trieval, pages 3–12, 1994.

[Muslea et al., 2000] Ion Muslea, Steven Minton, and Craig
Knoblock. Selective sampling with redundant views. In
Proccedings of AAAI-2000, pages 621–626, 2000.

[Muslea et al., 2001] Ion Muslea, Steven Minton, and Craig
Knoblock. Hierarchical wrapper induction for semistruc-
tured sources. Journal of Autonomous Agents and Multi-
Agent Systems, 4:93–114, 2001.

[Muslea et al., 2002a] Ion Muslea, Steven Minton, and Craig
Knoblock. Active + Semi-supervised Learning = Ro-
bust Multi-view Learning. In Proceedings of ICML-2002,
pages 435–442, 2002.

[Muslea et al., 2002b] Ion Muslea, Steven Minton, and
Craig Knoblock. Adaptive view validation: A first step to-
wards automatic view detection. In Proceedings of ICML-
2002, pages 443–450, 2002.

[Muslea, 2002] Ion Muslea. Active Learning with Multiple
Views. PhD thesis, Department of Computer Science, Uni-
versity of Southern California, 2002.

[Nahm and Mooney, 2000] Un-Yong Nahm and Raymond
Mooney. A mutually beneficial integration of data mining
and information extraction. In Proceedings of AAAI-2000,
pages 627–632, 2000.

[Seung et al., 1992] H. Sebastian Seung, Manfred Opper,
and Haim Sompolinski. Query by committee. In Proceed-
ings of COLT-1992, pages 287–294, 1992.

