
Integration and Automation of
Data Preparation and Data Mining

Shrikanth Narayanan
Spatial Sciences Institute

Department of Computer Science
University of Southern California

Email: nara471@usc.edu

Ayush Jaiswal
Department of Computer Science
University of Southern California

Email: ajaiswal@usc.edu

Yao-Yi Chiang
Spatial Sciences Institute

University of Southern California
Email: yaoyic@usc.edu

Yanhui Geng
Huawei Technologies

Email: geng.yanhui@huawei.com

Craig A. Knoblock
Information Sciences Institute

Department of Computer Science
University of Southern California

Email: knoblock@isi.edu

Pedro Szekely
Information Sciences Institute

Department of Computer Science
University of Southern California

Email: pszekely@isi.edu

Abstract—Data mining tasks typically require significant effort
in data preparation to find, transform, integrate and prepare
the data for the relevant data mining tools. In addition, the
work performed in data preparation is often not recorded and is
difficult to reproduce from the raw data. In this paper we present
an integrated approach to data preparation and data mining
that combines the two steps into a single integrated process
and maintains detailed metadata about the data sources, the
steps in the process, and the resulting learned classifier produced
from data mining algorithms. We present results on an example
scenario, which shows that our approach provides significant
reduction in the time in takes to perform a data mining task.

I. INTRODUCTION

While the quality and ease of use of data mining libraries
such as in R [1] and Weka [2] is excellent, users must spend
significant effort to prepare raw data for use in these libraries.
In practice, the data preparation task is separate from the data
mining process and very often requires data source dependent
and repetitive manual work, such as applying Structured Query
Language (SQL) statements to extract and aggregate database
records, using Microsoft Excel to clean and normalize datasets
of structured text files, and writing scripts to apply complex
transformations (e.g., in Python). This practice does not scale
when the data size becomes larger and the number of data
sources increases.

In a previous work, Knoblock et al. [3] developed an
interactive approach to extracting, modeling, and publishing
data in a system called Karma.1 Karma allows an end-user to
solve their own integration tasks without having to program
those tasks. Karma can semi-automatically build a semantic
description (a model) of a data source. This semantic descrip-
tion makes it possible to rapidly convert a set of sources (rep-
resented in Extensible Markup Language (XML), Javascript
Object Notation (JSON), structured text files, or databases)

This research was supported in part by a gift from Huawei
1See http://www.isi.edu/integration/karma for a video demonstration and

details on Karma. The software is available as open source (Apache 2 License).

into a shared domain model, which supports the integrated
reasoning and processing of data across many sources. Once
a user models the data sources, Karma can automatically
converts the raw data into any of a variety of formats.

In this paper we present an integrated approach built
on Karma for information integration and data mining. Our
approach combines the steps in data preparation and data
mining into a single integrated process and maintains detailed
metadata about the data sources. We show that a user can
use our approach to rapidly clean, normalize, restructure and
integrate data collected from multiple mobile sensors, and
then apply machine learning algorithms from a library of
algorithms to perform a data mining task. We demonstrate
these capabilities using a data mining task of predicting the
mode of transport of a user given the sensor data collected via
his/her cellphone. The challenge here is how to perform a data
mining task, such that there is an sizable reduction in overall
user time and effort in preparing the data set from its raw form
and invoking the prediction service. We compare our approach
with a baseline approach that uses Microsoft Excel for most
of the data preparation tasks. We show how Karma supports
the required steps for data preparation and data mining, and
yields a significant reduction in time and effort.

The remainder of this paper is organized as follows.
Section 2 describes a motivating data mining problem on
prediction of mode of transport from mobile sensor data.
Section 3 presents our integrated approach to data preparation
and data mining. Section 4 describes the steps of using Excel
to prepare raw data for data mining. Section 5 reports on our
experimental results. Section 6 discusses the related work, and
Section 7 presents discussion and future work.

II. MOTIVATING PROBLEM

As an example of a data mining task, we consider the
problem of predicting the mode of transport of a mobile user.
Mode of transport prediction is an interesting problem in data
mining. It helps in providing contextual information about



Load%Accelerometer%
Sensor%data%

Pytransform%for%
Accelera3on%
Magnitude%%

Extract%3mestamp%
and%magnitude%

columns%

Invoke%addDFT%
service%

Process%Loca3on%
Probe%data%

Join%addDFT%
output%and%

Loca3on%Probe%
data%

Filter%rows%that%
cannot%be%joined%

Add%mode%of%
transporta3on%

labels%

Data%Prepara3on%

Data%Mining%

Invoke%SVM%
Training%service%

Invoke%SVM%
Tes3ng%service%

Train%&%Update%
SVM%model%

SVM%Training%
Summary%

SVM%Predic3on%
output%

Data%Collec3on%for%3%days%

Sensor%data%for%
Accelerometer%and%GPS%

Transporta3on%
Labels%

Modeling%Data%and%Services%

AddDFT%Service%
Labeling%Service%
SVM%Training%Service%
SVM%Tes3ng%Service%

Loca3onProbe%
AccelerometerSensor%
AddDFT%service%output%

Karma%

Fig. 1: System block diagram

the user that can be used in building intelligent smartphone
applications.

Reddy et al. [4] describe such a method for predicting the
mode of transport of a mobile user by applying the Decision

Trees algorithm with features such as the Discrete Fourier
Transform (DFT) energy coefficients at 1Hz, 2Hz, and 3Hz
of acceleration magnitude, the accelerometer variance, and the
speed recorded by the GPS sensor. The features are derived
from data collected from the accelerometer and the GPS
sensors on a mobile device. Our method of predicting the
mode of transport is similar to theirs as we use the Support
Vector Machine (SVM) algorithm with similar features. We use
GPS accuracy as a feature instead of accelerometer variance,
keeping the rest of the features the same.

To acquire training and testing data, we use an applica-
tion that collects accelerometer and GPS readings on mobile
phones. We asked users to record their mode of transportation
while using the application in order to acquire the data to
build the prediction model. The data mining system derives
the aforementioned features from the sensor data and merges
the mode of transport labels noted by the user with the features
for mining.

The collected data is hardly ever ready to use directly in
real life scenarios. We have to prepare it for mining through
multiple transformation steps, such as dealing with missing
values, discretization, and normalization. Moreover, even if
the data is in tabular form, in many cases, we cannot use
the columns as features for data mining libraries directly. We
have to compute useful features by using values in multiple
columns. In the example case of mode of transport prediction,
we calculate acceleration magnitude from the acceleration
recorded by the accelerometer along the X, Y, and Z dimen-
sions. We then calculate DFT energy coefficients at 1Hz, 2Hz,
and 3Hz of the acceleration magnitude for every 1 second time
window. We then discretize the data, which contains multiple
entries every second, to the nearest second.

Many data mining tasks use data from multiple sources that
have to be merged in order to derive features from them, such
as those performed by large organizations on data collected
from different branches and departments within them. The data
used by the algorithm that we employ in our example case is
derived from three sources, i.e., the accelerometer sensor, the
GPS sensor, and the users mode of transportation notes. We
merge the data by making use of timestamps contained in all
three sources.

In general, after the data is prepared, machine learning
algorithms are applied to it to train the prediction model and
to test it, or to perform cross-validation. In our case, we train
a prediction model using the SVM algorithm and test it. The
final set of features consists of DFT energy coefficients at 1Hz,
2Hz, and 3Hz, speed recorded by the GPS sensor, and GPS
accuracy.

These parts of the entire data mining system motivate
the development of a complete end-to-end system that offers
complex data transformations (as in-built features, extensions,
or services), data merging capabilities, invocation of various
machine learning algorithms for application and comparison,
and display of results in a meaningful manner.

III. APPROACH

In general, a data mining task will have the following steps
- data collection, data integration and cleaning, transformation



and selection, data mining and evaluation [5]. It has been
estimated that data preparation - integration, cleaning, selection
and transformation, accounts for a significant portion of the
time spent on a data mining project. In our approach to
demonstrate the end-to-end process of data preparation and
data mining, we select the task of predicting the mode of trans-
port for a user, given the sensor data collected by the mobile
phones. Our approach enables users to integrate data from a
variety of sources without exposing them to the underlying
complexity of data integration and exchange. Figure 1 shows
the different blocks of system.

A. Data Collection

We collect the mobile sensor data using a custom An-
droid application built using the funf2 sensing framework.
The application records the readings from the Accelerometer
and the Global Positioning System (GPS) sensors, archives
and uploads the collected data to a Dropbox3 account every
24 hours. Our users collected data for three days, yielding
datasets consisting of Comma Separated Value (CSV) files.
Each dataset is comprised of 3 files:

1) LocationProbe.csv: Contains positioning data from the
GPS sensors and has 47 columns describing the user’s
location, speed, bearing, etc.

2) AccelerometerSensor.csv: Contains coordinate values
from the accelerometers

3) TransportationLabels.csv: The user collecting the data has
to label each mode of transport that they use and the
specific intervals of the day when they use it

Accelerometer)
Reading)

DFT)Coefficient)

Mode)of)
Transport)

Mo9on)Sensor)

DFT_E1)

DFT_E2)
DFT_E3) Speed)

Mode)Timestamp)

Accuracy)

hasValue)

hasCoefficients)

hasMovement)

Data)property)

Object)property) Owl)Class)

Magnitude)

Fig. 2: Ontology used in for the mode of transportation data

2http://inabox.funf.org
3http://dropbox.com

B. Processing with Karma

The steps using Karma are divided into two parts:

1) Karma setup: These are tasks that are performed only the
first time. They include modeling the three web services,
addDFT, getLabel, and svmTraining, which are explained
later, as well as modeling the two raw datasets Accelerom-
eterSensor and LocationProbe. All transformations and
processing done here is recorded by Karma and can be
played automatically for the other datasets.

2) Karma execution: The Karma execution tasks are ones
that are repeated for each datasets. They mainly include
tasks such as service invocation, joining datasets, and
publishing data in the Resource Description Framework
(RDF).

1) Karma Setup: The work on Karma [3] shows how to
map structured data to RDF using an ontology. Karma uses
a two step process to map data to ontology. The mapping
of columns to semantic types and specifying relationships
between the semantic types is demonstrated in the work on
the Smithsonian dataset [6]. When we map our services to our
ontology, we attach additional properties to the model along
with the semantic type mappings that enables Karma to mark
them as a service model. A service model is used to invoke a
web service using the columns mapped as inputs to the service.
We create an ontology for the mode of transportation data
and use it to model our services and data sources. We do
not add the ontology creation time in the setup time because
such ontologies address a larger domain model and evolve
over a period of time. Hence we assume that the ontology was
created beforehand. We discuss our ontology and modeling
of the services and data sources in the remaining part of the
section.

Figure 2 shows the mode of transportation ontology. It
contains 4 classes:

1) ModeOfTransport: Contains a data property for the mode
of transportation label

2) AccelerometerReading: Contains data properties for
timestamp and acceleration magnitude. The object prop-
erty — ‘hasMovement’ connects it to MotionSensor.
Similarity, ‘hasCoefficient’ object property connects the
AccelerometerReading class to DFT Coefficient

3) MotionSensor: Contains data properties for speed and
accuracy components of the location probe data

4) DFT Coefficient: Contains data properties for the DFT
energy coefficients at 1Hz, 2Hz and 3Hz

Fig. 3: Semantic model for addDFT service



Fig. 4: Semantic model for getLabel service

We will model three services that we require in our
prediction task. Figures 3, 4 and 5 show the models for these
services.

The ‘addDFT’ service is a Hypertext Transfer Protocol
(HTTP) POST service that calculates the DFT energy coef-
ficients for acceleration magnitude at 1Hz, 2Hz and 3Hz. The
input to this service is a CSV file that contains two columns
— timestamp and acceleration magnitude. The DFT values
are calculated over a time window of one second. The output
generated is a CSV file having the columns — timestamp,
magnitude and the DFT energy coefficients. To model this
service, we map the timestamp and magnitude column of
our sample CSV file to the appropriate classes. As shown in
Figure 3, we set the semantic type of the timestamp column
to ‘timestamp’, which is a property of the ‘Accelerometer-
Reading’ class. We then map the magnitude column using the
‘Magnitude’ property of the ‘AccelerometerReading’ class. We
set the service URL for the addDFT service and publish the
model.

The ‘getLabel’ service is a HTTP POST service that adds
the mode of transportation label provided by the user for
each row in the input file, using the timestamp values. The
output produced is a CSV file containing all the columns of
the input with an additional column for labels. To model this
service, we map all the columns of our sample CSV file to
the appropriate classes excluding the mode column. Figure
4 shows the column mappings and relationships between the
classes, displayed on the Karma interface. We map the speed
and accuracy columns to the MotionSensor class using the

respective data properties. The timestamp and magnitude are
mapped to the AccelerometerReading class. After setting all
the semantic types, we set the service URL and other options
that are required while invoking the service and publish the
model.

The SVM service has two parts — training and testing.
Both services take the same set of inputs and have identical
semantic types for their corresponding columns. Figure 5
shows the semantic model for the SVM training and testing
services. The model is very similar to the getLabel service
shown in Figure 4. For the SVM service, we map the ‘mode’
column that contains the mode of transportation labels to
the ‘ModeOfTransport’ class. The rest of the mappings are
discussed in the previous paragraph. We use different service
URLs when we publish the SVM training and testing service
models. These services also differ in the output that they
produce. The training service returns a summary of the SVM
model that was trained. In order to distinguish our prediction
models, we specify a unique tag in the URL when we train the
model. This tag serves as an identifier when we test the model.
The testing service produces the prediction output along with
the confusion matrix. The output for both the training and
testing service is in JSON format. They both consume CSV
data in the POST payload.

After modeling the services, we model our data sources
because the raw data needs to be cleaned and transformed
before it can be fed to our services. Karma records the
transformations that we perform while modeling the data and
replays it when we apply the model on a new file from our

Fig. 5: Semantic model of SVM — training and testing services



Fig. 6: Semantic model for the AccelerometerSensor dataset.

data set. After modeling the data, we publish the resulting RDF.
Figures 6, 7, and 8 show the models for our data sources.

Starting with the AccelerometerSensor file, we add the
magnitude column using a Python transformation, which is
available as a feature in Karma. In this transformation, we
calculate the magnitude values using acceleration along x, y,
and z coordinates available in the raw data, and by using
standard library functions in Python. Figure 6 shows the
resulting model in Karma. The magnitude column appears in
yellow color because it is added using a Python transformation
and indicates that it is not a part of the original file that is
uploaded in Karma. After mapping the semantic types and
generating URLs for the classes, we publish the model.

The next data source we model is the output of the
addDFT service which is shown in Figure 7. The output
is a CSV file with the columns — timestamp, magnitude
and DFT energy coefficient values at 1Hz, 2Hz and 3Hz.
The addDFT service appends three columns to the input file
having headers — ‘DFT E1’, ‘DFT E2’ and ‘DFT E3’, as
shown in Figure 7. We map the three columns containing
the DFT energy coefficients to the ‘DFT Coefficient’ class.
The timestamp and magnitude columns are mapped to the
‘AccelerometerReading’ class. We add an additional column,
‘acce url’, using a Python transformation and populate it by
appending the timestamp values to a base Uniform Resource
Identifier (URI). The ‘acce url’ column is mapped as the URI
for the ‘AccelerometerReading’ class. It is not necessary to
have URIs for every class in the model. We add the URI for
‘AccelerometerReading’ class because it is required by Karma
to perform join operations.

The LocationProbe file contains 47 columns, some of them
are — id, device, timestamp, mAccuracy, mAltitude, mBearing,
mLatitude, mLongitude, mProvider, mSpeed, mTime, times-
tamp, etc. Out of these we only use ‘timestamp’, ‘mSpeed’ and
‘mAccuracy’. As shown in Figure 8, we map the accuracy and
speed columns to the ‘MotionSensor’ class and the timestamp
to ‘AccelerometerReading’ class. We generate two additional
columns — ‘acce url’ and ‘m url’ to add URIs for the ‘Ac-
celerometerReading’ and ‘MotionSensor’ classes. The URIs
are generated using a Python transformation, by appending
the timestamp value to a base URI. This completes the Karma
setup process.

2) Karma Execution: Once we have modeled all our data
sources and services, we start with the Karma execution steps
to process the mode of transportation data. Our goal is to
integrate all the datasets to produce a CSV file that can be fed
to the SVM algorithm. In Karma, we do this by first modeling
each dataset according to the ontology, then publishing the
data as RDF, and finally using join operations to merge the
data.

We load the LocationProbe file, apply the ‘LocationProbe’
model, and publish the resulting RDF. For the accelerometer
sensor data, we start by loading the data collected for the first
day. We apply the ‘AccelerometerSensorModel’ and publish
the RDF. To invoke the addDFT service, we select the ‘Invoke
Service’ option from the drop down menu that appears after
clicking the AccelerometerReading class bubble. Karma distin-
guishes between service models and data models and shows the
list of services that could be invoked. Karma determines that a
service can be invoked if the semantic type mappings for all the
input columns along with the relationships between the classes

Fig. 7: Semantic model of the output generated by addDFT service.



Fig. 8: Semantic model for the Location probe dataset

match with the model on the current worksheet. From the list
of services shown, we select the addDFT service and then
select the corresponding RDF graph where the accelerometer
data was published. The results of the addDFT service are
loaded in a new worksheet. We apply the model that was
created for the addDFT output to the new worksheet and pub-
lish RDF. After we have published the data from the addDFT
service, we perform a join operation with the LocationProbe
data that was published previously. Starting from the topmost
class in the model, i.e., AccelerometerReading, we use the
‘Augment Data’ option to perform the join.

Karma explores the properties that could be added to the
selected class, in this case the AccelerometerReading class,
which are not currently present in the worksheet. Karma
fetches the additional properties from the available RDF data
in the triple store. In our ontology, the AccelerometerReading
class has an object property ‘hasMovement’ that connects
it to the MotionSensor class. We select this property to be
added in the worksheet. Karma adds a URL column for the
MotionSensor class and populates it with the joined values. We
repeat the join process for the MotionSensor class and add the
speed and accuracy properties. The final augmented worksheet
is shown in Figure 9. The yellow colored columns are added
through transformations and the red columns are the ones that
get attached by joining the location probe data. The columns
in blue are part of the original model. We then publish the
augmented model and the RDF in a new graph. We need to
publish this model because the model shown in Figure 9 is

not the original model and contains additional properties that
were added after the join operation.

We now invoke the getLabel service to add the mode of
transport column. The service creates a new worksheet to
which we apply the SVM model as shown in Figure 5, and
publish the RDF. Since this is the first file that we process, we
will invoke the SVM training service and use the processed
data as training set. For the succeeding files, we first invoke
SVM testing service and evaluate our model for the accuracy.
Then we publish RDF for the test dataset to append it to the
same graph that we used in the previous iteration. We use the
merged data as a training set and again train our SVM model
by invoking the SVM training service. We do this iteratively
for the data for all the days that follow. Thus, as we process
more data files, and add to the training set, our model improves
in the prediction accuracy. The JSON results of the service
invocation are parsed and loaded in a new worksheet.

IV. ALTERNATE APPROACH: PROCESSING WITH EXCEL

Microsoft Excel is one of the most widely used applications
for data cleaning and preparation. It is not only easy to learn
but also powerful to perform numerous computations across
multiple rows and columns. Other proprietary packages that
are available for data preparation are much more complex
to use and usually require user training. Despite Excel being
very popular amongst users who are not tech savvy and do
not possess the skills to write scripts for data preparation,

Fig. 9: Karma worksheet after joining the accelerometer and location datasets



we illustrate several shortcomings of using Excel for data
preparation. Using Karma the user can publish models as
linked data which are accessible globally for others to reuse,
which is not possible using Excel files.

TABLE I: Sample accelerometer data after adding magnitude

timestamp x y z magnitude
1387969178.5018 0.7374141 4.096479 10.688913 11.47073585
1387969180.1531 -0.6596026 4.035427 10.85531 11.59989232
1387969180.1649 -0.533907 4.3382936 10.539276 11.40974087
1387969180.2361 -0.8535329 4.820725 8.850166 10.11401731

One of the most important and rather annoying aspects of
data preparation is its iterative nature. Users repeat the same
steps to process each file in the data set. Even if the user is able
to automate some parts of the data preparation using Excel,
they still need to invoke the data mining services and feed in
the processed files for training and testing. Moreover, using
Excel does not let users share the transformations in a way
that allows other users to reuse the steps recorded previously
by someone.

TABLE II: Sample output after running the addDFT script

timestamp magnitude DFT E1 DFT E2 DFT E3
1387969180 11.59989232 134.5575019 130.1821866 121.6616183
1387969185 10.97777657 120.5115784 144.8429085 142.997428
1387969214 11.56426981 133.7323362 140.4465978 150.3014305
1387969282 4.014597704 16.11699473 16.11699473 22.75025583

We start by processing the AccelerometerSensor file for the
first day. The timestamp column in the file contains decimal
values; hence we change the default column format in excel,
to contain decimal point upto 4 places. We then add a new
column for the acceleration magnitude, that is calculated as
the sum of squared values of the x,y and z coordinates. The
coordinate values are fetched from their respective columns
in the same file as shown in TableI. We apply a formula
to get the magnitude value for the first row, and repeat it
across the entire worksheet to calculate acceleration magnitude
for the remaining rows. Once we have the magnitude, we
prepare the file for DFT calculation. We select two columns —
timestamp and magnitude, and create a new file having only
these columns. The addDFT Python script is executed from the
command line with the newly created file as input. The script
generates an output file having the DFT energy coefficients at
1Hz, 2Hz, and 3Hz of the acceleration magnitude for every 1
second time window.

The Accelerometer sensor produces a large number of
readings when compared to the GPS sensor. Before using
the LocationProbe file, we merge all of the files from three
days into one because we only perform join operation using
the LocationProbe data with the addDFT service output, and
no other transformations. The accelerometer data cannot be
merged because it contains continuous time-series data and the
DFT calculations are performed over a time window. Merging
the accelerometer data files will create gaps in the time
window leading to incorrect DFT calculations. The merging
of LocationProbe file is done in both our approaches.

In the LocationProbe file, we select and copy 3 columns
‘timestamp’, ‘mSpeed’, ‘mAccuracy’ into a new worksheet.

We format the timestamp column to have decimal values
and add a new column, ‘absTimestamp’, that will contain the
absolute values of timestamp. We apply the ‘Round’ formula
to populate the ‘absTimestamp’ column. In the next step, we
load the output file generated from the addDFT script into
a new worksheet in the current workbook. We join the two
worksheets to combine the speed and accuracy columns with
the DFT energy coefficients. We then add two new columns for
speed and accuracy and apply the VLookUp formula to join
the LocationProbe data by using the ‘absTimestamp’ column
as the key.

TABLE III: Processed LocationProbe data

timestamp absTimestamp mSpeed mAccuracy
1387969150.56400 1387969151.00000 0 32
1387969173.56800 1387969174.00000 1.3263288 12
1387969185.71600 1387969186.00000 0.80203056 12
1387969282.09300 1387969282.00000 1.0898862 24

We add separate VLookUp formulas for each of the speed
and accuracy columns to populate the respective values. For
the rows that could not yield any value after the join, either
for speed or for the accuracy column, we delete them and
save the file as a CSV file. The missing values in the data set
arise due to failure of probes — accelerometer or GPS, while
collecting data for a particular timestamp. We now execute
the addLabel Python script using the previously joined file as
input and generate our final processed file with the mode of
transportation labels. The addLabel script attaches the mode
of transportation label to each row based on the time intervals
specified by the user. Table IV shows the structure of the
processed CSV file that is used to train and test the SVM
model.

Since this is the first file that we process, we will execute
the svmTraining script and use the processed data as training
set. For the files from the succeeding days, we first invoke
SVM testing script and evaluate our model for the accuracy.
We merge the test data set with the training data set and again
train our SVM model. We do this iteratively for the data from
all the days to follow. Thus, as we process more data files, and
add to the training set, our model improves in the prediction
accuracy.

V. EVALUATION

We evaluated our approach by measuring reduction in the
time and effort required to perform data preparation and data
mining for the mode of transport prediction task. We used
a two parameter evaluation strategy (time and accuracy) to
provide us with summary data to show the impact of our
approach. In the following sections we discuss our experiment
setup, the test user’s skill level, and the evaluation criteria used
to summarize the assessment chart.

A. Experiment Setup

In our experiment, we evaluated the steps using Microsoft
Excel and Karma for processing the entire dataset. Three
sets of the AccelerometerSensor and LocationProbe dataset
were collected (one set for each day). After each step, the
time required for the user to perform the task was noted
along with any system processing time. For certain tasks



TABLE IV: Structure of the processed file

Timestamp Magnitude DFT E1 DFT E2 DFT E3 Speed Accuracy Mode
1387869469 0 16 11.691308968 136.686705385 139.957767168 139.957767168 walking
1387870904 0 16 12.1850014516 148.474260375 146.964104434 148.759649196 auto
1387872050 0 24 11.3212865392 128.171528903 136.300006172 133.300527309 bus
1387874848 0 858 12.080955151 145.94947736 145.866842087 143.819565165 stationary

that involved programmatic computation like calculating DFT
energy coefficient values for the acceleration data, or labeling
the mode of transport for individual time ranges, we used
Python scripts in both the approaches. Therefore, the time
taken for writing these scripts and executing them was the
same in both the approaches. Hence we excluded those timings
in the evaluations. We had one user to perform all the tasks
in the experiment. The proficiency level of the test user was
advanced, i.e., the user was an expert in using Karma and
Excel.

In order to demonstrate our objective, we asked the user
to perform two trials for processing the collected data set
and noted their timings. The user first prepared the collected
data from day one and generated an SVM model. Then he
prepared the collected data from day two and tested the day-
two data with the day-one model. Finally, the user prepared the
collected data from day three and tested it with the SVM model
built using the data from day one and day two. When using
Karma, there were one-time setup tasks in which the user first
modeled all of our services by adding semantic types to the
service inputs. The user modeled the following data sources
and services:

1) Accelerometer sensor data: To calculate the acceleration
magnitude and extract the timestamp.

2) Accelerometer data with DFT energy coefficients The
result of the addDFT service

3) LocationSensor data: To model the speed, accuracy and
timestamp columns

4) AddDFT service: Here we model the inputs for the
addDFT service along with other meta data like service
url, invocation method (GET or POST) etc.

5) GetLabel service: This service gets us the mode of
transport for the given timestamp

6) SVM Training: This service model defines the SVM
training and its inputs

7) SVM Testing: This service model defines the SVM testing
and its inputs

Once the user modeled all the services, he uploaded each
file of the collected data and applied the semantic models.
Karma automatically applied all the transformations defined
in the models, so no manual effort was required. At the end of
processing each file, the user invoked the SVM training and
testing services. When Excel was used, the user did not need
to setup the application. Table VI lists the user actions and
time required to perform the task in Excel and Table V shows
the timings when using Karma.

B. Evaluation Criteria

Our evaluation metric had two components – efficiency and
accuracy. The efficiency component included user interaction
time and system processing time. The user interaction time

was the time taken by the user to complete a task using the
interface of the tool, for example publishing RDF in Karma
or formatting a column in Excel. The system processing time
was the time taken by the tool to complete the computation
and render the results after the user has issued the command.
In terms of accuracy, we marked a data preparation task as
correct if the user was able to process the data correctly and
the resultant file could be used to invoke the SVM service.

TABLE V: Stepwise time chart for processing one file using
Karma

Step Task
User
Time
(sec)

System
Process-
ing Time

(sec)

Total
Elapsed

Time

1 Modeling LocationProbe data 34 18 0:52
2 Publish RDF for LocationProbe 12 6 1:10
3 Modeling AccelerometerSensor data 18 5 1:34

4 Publish RDF for AccelerometerSen-
sor 11 9 1:54

5 Invoke addDFT service 8 2 2:04
6 Modeling DFT service output 10 2 2:16
7 Publish RDF for DFT output 11 6 2:33
8 Join with LocationProbe RDF 12 5 2:50
9 Publish the augmented model 15 3 3:08

10 Publish RDF for joined data 10 6 3:24
11 Invoke getLabel service 8 2 3:34
12 Filter our ‘NA’ mode of transport 31 3 4:08

12 Model mode of transport data - the
result of add label service 6 3 4:17

13 Publish RDF for Model of transport
data 20 4 4:41

C. Experiment Results

Table V gives us the time taken for each of the data
preparation tasks executed using Karma in one of the trials.
The first step took the highest processing time because the
combined location probe data file that was modeled, contained
data from all of the three days. The transformations were
executed for each step when the model was applied to this data
set and since the number of rows was higher, it took more time
to process. We observed that when a new worksheet is created
in Karma, either by uploading a file or generated as a result of
invoking a service, two steps were performed, namely applying
a model and publishing the RDF. Together, these steps took
roughly 20 to 25 seconds, depending upon the size of the
dataset. After performing all the data transformations, RDF
was published for the processed data using a new graph so
that each data set can be individually used to invoke the SVM
training and testing services.

Table VI displays the time taken for the data preparation
tasks executed using Excel. We observe that the user spends
significant time switching between different application win-
dows as well as the switching between the use of a mouse and
keyboard. These switches were likely to introduce the most
number of errors, which adds to the overall processing time.



After processing the data for one day, it was stored in a new file
to be used as training and testing sets for the SVM prediction
task.

Table VII summarizes the timings for all of the trials. There
are a number of observations that can be drawn from the table.
When Karma was used, the user took the longest time to
process the data set for the first day. As previously mentioned,
the first iteration took more time to finish compared to the
other trials since the LocationProbe data set was processed
only once. However, when Excel was used, the data processing
time for the first file was very close to the avarage time taken
by Excel. Since most of the processing was automated in
Karma, the user was relieved from repeating the commands.
The time taken to invoke the SVM services for training and
testing remained consistent throughout both the approaches.
The Karma setup time was calculated only once as it was a
one-time process. The user was also not expected to get a
better result or a faster time.

TABLE VI: Stepwise time chart for processing one file using
Excel

Step Task
User
Time
(sec)

System
Process-
ing Time

(sec)

Total
Elapsed

Time

1
Process AccelerometerSensor data
— add magnitude and set timestamp
column to be 4 decimal places

44 0 0:44

2 Extract timestamp and Magnitude in
new worksheet and save as CSV 41 0 1:25

3 Invoke addDFT script 8 2 1:35

4
Process addDFT output file — for-
mat timestamp column to be 4 dec-
imal places

12 0 1:48

5
Copy timestamp, speed and accu-
racy columns from LocationProbe
data into a new worksheet

41 0 2:29

6
Process timestamp column to be 4
decimal places, and add a new col-
umn to round off the decimal

25 0 2:54

7
Add vLookUp formulae in the
AccelerometerData worksheet for
Speed

27 0 3:21

8
Add vLookUp formulae in the Ac-
celerometerData worksheet for Ac-
curacy

34 0 3:55

9
Apply filter to remove unmatched
— NA rows after join and delete
them.

43 0 4:38

10 Save this accelerometer with DFT
data for input to labeling service 19 0 4:57

11 Invoke the labeling service over the
exported CSV file 12 1 5:09

12 Filter data to remove NA columns 32 0 5:41
13 Save the file as ProcessedData file 6 0 5:48

14
Copy the ProcessedData file to the
required location for SVM invoca-
tion

10 0 5:58

The accuracy for our experiment is the number of data
preparation tasks completed correctly. We evaluated the cor-
rectness of the task as discrete Boolean values. At the end
of processing a data file, if we were able to invoke the SVM
training or testing service with no errors, we marked it as
a successful completion. In our experiment, having 100%
accuracy at the end of all the trials for Excel and Karma does
not indicate that the task is easy to perform, but it highlights
the reliability and availability of using Karma to replay the
transformations any number of times and always yield correct

results. When using Excel, the user could undo/redo a certain
transformation to rectify any error and make sure the final
result was correct it. Hence it yields 100% accuracy while
using Excel.

It took 9:30 minutes to complete the Karma setup phase and
22:39 minutes to complete two trials of data preparation and
mining in the execution phase. The execution time, as shown
in Table V and VI for Karma and Excel respectively, is the sum
of user time and system processing time and, does not include
any setup time. We observed that the system processing time
is approximately 20% of the total execution time for Karma.
When using Excel, the total execution time to complete the
same set of trials was 40:20 minutes. We compare Karma’s
execution time with the execution time for Excel since both
involve repetition all of the tasks for every file. We will exclude
Karma’s setup time in the comparison and address it later in
the discussion.

We observed a 42.14% reduction in the execution time by
using Karma to process six data files. Every time we picked
a new file to process, Karma took approximately one minute
less than Excel. Assuming the user had collected data for 50
days and at the end of each day the user wanted to perform
the data mining tasks on the newly collected data, he/she
would need to apply Karma/Excel again. The files could not be
merged into one file because the data was collected for each
day and labelled separately and, the DFT calculations were
performed on the data for a given day. The cumulative time
spent processing the data over 50 days could be approximately
336 minutes. However the process could be completed in
approximately 118 minutes using Karma, which is a 43%
reduction in time.

Karma’s setup time is a one time, non-iterative process to
model all the data and services required for the given task. In
our experiment, when the setup time is included, the total time
reduction by using Karma decreases from 42.14% to 20.28%.
Therefore, in our experiment, Karma requires 4 iterations of
data processing to amortize the cost of its setup. As the number
of files to be processed increases, for example 50 files, the
reduction ratio is more or less the same even if the Karma
setup time is included or excluded.

Here the benefit of modeling data source and services
to an ontology using Karma, is the ability to share models
across users. We will discuss another important scenario where
multiple users of the same skill level are involved in our
experiment to process the data. For example, we consider 10
users participating in our experiment to process 60 files. If
every user is using Karma individually, they will all roughly
need 9:30 minutes to setup Karma and 22:39 minutes to
process 6 files. A total of 5.3 person hours is spent in data
preparation. By sharing the models created by one user the
setup time can be eliminated for all the other users. Therefore,
if only one user spent his 9:30 minutes in setting up Karma,
the data preparation task can be completed in 3.7 hours, saving
26% of the time that was required previously. Based on the
observations, we can conclude that Karma improves efficiency
in data preparation and data mining on large data sets by
reducing time taken and manual efforts.



TABLE VII: Timing summary

Trial 1

Karma Excel
Time TotalSeconds Accuracy Time TotalSeconds Accuracy

Dataset 1 4:41 min 281 Correct 5:58 min 358 Correct
Invoke SVM training 0:12 min 12 Correct 0:35 min 35 Correct
Dataset 2 3:20 min 200 Correct 5:50 min 350 Correct
Invoke SVM testing on dataset2 0:14 min 14 Correct 0:30 min 30 Correct
Invoke SVM training using dat set 1 and 2 combined 0:29 min 29 Correct 1:20 min 80 Correct
Dataset 3 3:13 min 193 Correct 5:43 min 343 Correct
Invoke SVM testing on dataset3 0:12 min 12 Correct 0:29 min 29 Correct

Trial 2

Dataset 1 3:18 min 198 Correct 5:36 min 326 Correct
Invoke SVM training 0:11 min 11 Correct 0:31 min 31 Correct
Dataset 2 2:49 min 169 Correct 5:25 min 325 Correct
Invoke SVM testing on dataset2 0:16 min 16 Correct 0:28 min 28 Correct
Invoke SVM training using dat set 1 and 2 combined 0:25 min 25 Correct 1:43 min 103 Correct
Dataset 3 3:05 min 185 Correct 5:53 min 353 Correct
Invoke SVM testing on dataset3 0:14 min 14 Correct 0:29 min 29 Correct

Analysis

Total 22:39 min 1359 40:20 min 2420
Total Reduction excluding karma setup 17:41 min 42.14%
Total Reduction including karma setup (+9:30 min) 8:11 min 20.28%
Accuracy with Karma 100.00%
Accuracy with Excel 100.00%

VI. RELATED WORK

Preparing raw data for a data mining task typically requires
multiple data transformation steps [5]. Many of these tasks are
common across a large number of data mining applications,
such as dealing with missing values, discretization, and nor-
malization. However, in many cases, these are not sufficient
and other transformation steps are required which are specific
to the problem being solved.

Popular data mining software suites like RapidMiner4 and
KNIME5 allow most of the common transformations like string
operations, invoking remote web services, etc. However, when
it comes to performing data transformation tasks that are
specific to the problem at hand, for example DFT calculations,
a majority of these suites do not provide built in support
for such specialized transformations. Using remote services
to perform special transformation is supported by most of the
tools but they lack a semantic definition of the services that
could be published and shared by using Karma.

There are also data preparation tools like DataPreparator6

that offer operations like merging data from different files,
but these tools are just for data preparation and mining has to
be done separately, unlike our end-to-end approach. Moreover,
these tools do not provide support for problem-specific custom
data transformation tasks.

Google Refine7 is another data transformation tool which
has data cleaning capabilities, and supports some commonly
used data transformation tasks. It also supports custom text
transformations to modify text in data cells. Like in the
case of other data preparation tools, data mining has to be
done separately as Google Refine does not have data mining
capabilities.

Our work provides an end-to-end integrated approach for
data preparation and mining, with support for problem-specific
transformation tasks as features, extensions, or services. More-
over, our work allows automation of data preparation tasks,
which reduces the time taken to prepare data for mining.

4http://rapidminer.com/products/rapidminer-studio
5http://www.knime.org/knime
6http://www.datapreparator.com
7https://code.google.com/p/google-refine/

VII. DISCUSSION

This paper presented a unified approach to data preparation
and mining using the data integration system, Karma. We
discussed an end-to-end approach of data preparation and data
mining, which consists of various transformations applied on
a data set, publishing the data as RDFs, joining different data
sets based on their mapping to the ontology, modeling the
data mining services to a domain model, and invoking theses
services with the published data. Our work on Karma provided
us with a platform to record the various transformations that
the user performs in preparing the raw data set to its desired
form. We achieved a significant improvement in reducing the
time taken for this iterative process of data preparation by
replaying the transformations the user performed on the first
file on all the other files in our data set. We also showed
how services could be modeled using semantics and reused by
publishing them as linked data.

REFERENCES

[1] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2008, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[2] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[3] C. A. Knoblock, P. Szekely, J. L. Ambite, S. Gupta, A. Goel, M. Muslea,
K. Lerman, M. Taheriyan, and P. Mallick, “Semi-automatically mapping
structured sources into the semantic web,” in Proceedings of the Extended
Semantic Web Conference, Crete, Greece, 2012.

[4] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava,
“Using mobile phones to determine transportation modes,” ACM Trans.
Sen. Netw., vol. 6, no. 2, pp. 13:1–13:27, Mar. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1689239.1689243

[5] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Advances in
knowledge discovery and data mining,” U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, Eds. Menlo Park, CA, USA:
American Association for Artificial Intelligence, 1996, ch. From Data
Mining to Knowledge Discovery: An Overview, pp. 1–34. [Online].
Available: http://dl.acm.org/citation.cfm?id=257938.257942

[6] P. Szekely, C. A. Knoblock, F. Yang, X. Zhu, E. Fink, R. Allen, and
G. Goodlander, “Publishing the data of the smithsonian american art
museum to the linked data cloud,” International Journal of Humanities
and Art Computing (IJHAC), vol. 8, pp. 152–166, 2014.


