
Linking the Deep Web to the Linked Data Web

Rahul Parundekar, Craig A. Knoblock and José Luis Ambite
University of Southern California

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
{parundek,knoblock,ambite}@isi.edu

Abstract
Even though the Linked Data movement is gaining ground,
vast amounts of information are only present in the tra-
ditional Web of human-readable pages. Data from such
sources in the Surface Web and the Deep Web needs to be
published as structured data into the Linked Data Web. The
work described in this paper links the schema and indi-
viduals in the RDF extracted from surface and deep Web
sources with the schema and individuals already present in
the linked data cloud. To this end, we extend our prior
work on automatically generating Semantic Web Services
from Web sources. Once we are able to link individuals of
the generated Semantic Web Service with the data present
in the linked data cloud, we can populate the Linked Data
Web with data from Deep Web sources for given domains.
Our approach not only integrates known sources from the
Deep Web into the Linked Data Web, but also automati-
cally discovers and links previously unknown sources for the
same domain. Our techniques can significantly increase the
amount of data available in the Linked Data Web.

Introduction
The Linked Data Web (LDW) is a vast dataset of structured
data, which is steadily increasing in volume as a result of
independent efforts to publish an organization’s knowledge,
information and data and linking it with other data already
part of the linked data cloud. As of March 2009, accord-
ing to statistics collected by the linked data community, the
estimated size of the linked data cloud is 4.7 billion triples
with 142 million RDF links (Bizer, Heath, and Berners-Lee
2009). This has come about due to involvement of big orga-
nizations such as BBC, Library of Congress, etc., along with
contributions from various organizations in domains like ge-
netics, clinical trials, online communities, etc. Nevertheless,
a major part of the WWW remains untapped, as it is based on
the traditional Web where data is embedded within HTML
pages intended for human consumption.

The amount of data on the linked data cloud would sig-
nificantly increase if we could automatically convert tradi-
tional data sources into structured data like RDF, and at
the same time link the RDF to the LDW using the linked

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data design principles. Much of the interesting data is not
available in the surface Web, but only exposed through
Web forms that provide a query interface to non-accessible
databases, the so-called Deep Web. Typical examples of
Deep Web sources are sites like amazon.com, weather.com,
or finance.yahoo.com, which provide product information,
weather forecasts, and stock and mutual funds prices, re-
spectively. Converting such data into RDF would not, by
itself, provide its potential benefit unless the knowledge
present on the linked data cloud is exploited. It is the added
links between local data and what is already out there on the
linked data cloud that provides improved knowledge to both
the individual as well as the linked data community.

Consider a hypothetical linked data application for track-
ing a personal portfolio. Assume that data from sources such
as banks and trading sites, asset holdings (secure data that
cannot be published), and current prices of stocks and mu-
tual funds (data that constantly changes and hence is present
only in the Deep Web) needs to be integrated into a single
place. Unless these sources are already linked to the cloud,
we need a mechanism to pull data from them and link it dy-
namically to the cloud in order for it to be integrated. Our
previous work on automatically generating Semantic Web
Services from online sources (described briefly below) pro-
vides an approach to generate RDF data from traditional
Web sources. In order to exploit the capabilities of integrat-
ing this data with the vast knowledge present on the linked
data cloud, we propose a mechanism to populate the Linked
Data Web dynamically from these sources. Our contribu-
tion is thus to solve the problem of information integration
between the Linked Data Web and the traditional Web.

In the remainder of the paper, we first describe DEIMOS ,
our approach to automatically discover and model Semantic
Web Services, on which the current work is based. Sec-
ond, we describe our contribution in automatically connect-
ing novel Deep Web sources to the Linked Data Web. Third,
we present some initial results on an interesting domain, mu-
tual funds. Fourth, we describe related work in the field of
data integration into the Linked Data Web. Finally, we dis-
cuss our contributions.

Previous Work
The work in this paper is based on our previous work on
automatically constructing Semantic Web Services from on-

discovery
invocation

& extraction

source

modeling

Background
knowledge•seed source

anotherWSgooglefinance

googlefinance

•sample

input

valueshttp://finance.yahoo.com

“RBCGX”

•patterns

googlefinance(FundSymbol,FundName,…)

•definition of known

sources (e.g., seed)

•sample values

googlefinance(FundSymbol,FundName,…)

:-yahoofinance(FundSymbol,…,FundName)

semantic

typing

Semantic
Web

Service

Figure 1: DEIMOS system architecture

line sources (Ambite et al. 2009). DEIMOS is an integration
of previous work on tackling the sub-problems of automatic
source discovery, extraction and modeling. As a combined
system, it works as an end-to-end approach that automati-
cally finds sources, extracts the data from them, determines
the semantic types of the outputs, builds the source mod-
els, and turns them into Semantic Web Services. Figure 1
shows the overall architecture. DEIMOS starts with a known
source (seed source) and the description for the domain (e.g.
Mutual funds, Weather, etc.) it belongs to, and generates
Semantic Web Services for similar sources that it discovers.
Throughout this paper we explain this system and the linked
data generation part using the mutual fund domain.

Background Knowledge
We provide DEIMOS with background knowledge consisting
of - (1) Semantic types: e.g., FundSymbol, FundName; (2)
Sample values for each type: e.g., “RBCGX” for FundSym-
bol; (3) Domain input model: a mutual fund source may
accept FundSymbol or a FundName as input; (4) Known
sources (seeds): e.g., http://finance.yahoo.com; (5) Source
descriptions for the seeds: specifications of the functionality
of the source in a formal language of the kind used by data
integration systems (i.e., Datalog). Using this, DEIMOS ex-
ecutes the following modules to generate a novel Semantic
Web Service

Source Discovery
To provide sources that are similar to the seed source,
DEIMOS first collects popular tags with which the seed
source is annotated on the social bookmarking site
del.icio.us. Using Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003) DEIMOS learns a compressed de-
scription of such sources (Plangprasopchok and Lerman
2009). This is used as input to a similarity determin-
ing mechanism to generate the top 100 similar sources,
which are then forwarded to the next module. For ex-
ample, in the mutual funds domain, the system dis-
covers sources such as http://www.google.com/finance and
http://moneycentral.msn.com/ among others.

Source Invocation and Extraction
The sources discovered in the previous step are typically
Web Pages that use standard HTML forms for input and re-
turn a result HTML page. Thus, they can be invoked with
inputs and produce output pages that are formatted with
the document object model. From the source Web page,
DEIMOS extracts all the forms and input fields including
text boxes, select items, etc. DEIMOS uses a brute force
approach, trying all permutations of input values based on
background knowledge of the type of data (e.g. FundSym-
bol or FundName for the current domain) in the input form’s
fields, to identify inputs that give meaningful and extractable
results.

Next, DEIMOS extracts data from pages returned by the
source in response to a query. For this, DEIMOS uses the
Autowrap algorithm (Gazen and Minton 2005), which ex-
ploits the regularity of dynamically generated pages. It as-
sumes that the organization of dynamically generated pages
is specified through a page template that is shared by all
pages returned by the source. Given two or more sample
pages, we can derive the page template and use it to extract
data from the pages. The output of the extraction step is a
table of data fields.

Semantic Typing of Sources
DEIMOS uses the approach described in (Lerman, Plang-
prasopchok, and Knoblock 2007) to semantically type data
extracted from Web sources. Each semantic type can be de-
scribed using certain patterns. Using heuristics to evaluate
the quality of the match between the values of a particular
column in the data extracted in the previous step with a se-
mantic type, DEIMOS assigns the best semantic type to each
of the inputs and outputs of the source. For example, the in-
put/output type signature learned for the discovered source
www.google.com/finance is:

googlefinance($FundSymbol,FundName,FundName,FundSymbol,

YTDReturn,YTDReturn,NetAssets,YTDReturn,NetValue,Yield,

ChangePercent,ChangeAmount,NetValue,ChangeAmount).

Source Modeling
The typed input/output signature of a new source offers only
a partial description of the source’s behavior. What we need
is a semantic characterization of its functionality—the rela-
tionship between its input and output parameters. We use the
approach described in Carman & Knoblock (2007) to learn a
Local-as-View (LAV) description of the target source (a Dat-
alog rule) (Levy 2000). DEIMOS learns these definitions by
combining known sources to emulate the input/output values
of a new unknown source.

DEIMOS uses an approach based on Inductive Logic Pro-
gramming to enumerate the search space of source descrip-
tions in an efficient, best-first manner and prune candidate
hypotheses to find the best rule to explain the observed in-
put and output data. As a result, we have a definition of the
discovered source in terms of the seed source/s. In our run-
ning example, the definition of the newly discovered source
googlefinance in terms of the background source yahoofi-
nance is:

googlefinance($FundSymbol1,_,FundName3, _,

YTDReturn5,_,NetAssets7, _,_,Yield10,

ChangePercent11,ChangeAmount12,NetValue13,_) :-

yahoofinance($FundSymbol1, NetValue13, _,

ChangeAmount12, ChangePercent11, _,

YTDReturn5, NetAssets7, Yield10, FundName3).

Since the background source yahoofinance has an asso-
ciated LAV source description, DEIMOS can automatically
generate a source description for googlefinance as we de-
scribe next.

Source descriptions are based on a schema/ontology of
the application domain. For example, the definition for ya-
hoofinance is:

yahoofinance($FundSymbol, NetValue, ChangeDirection,

ChangeAmount,ChangePercent, PreviousClose,

YTDReturn, NetAssets, Yield, FundName) :-

Company(@C), offersSeries(@C,@S), Series(@S),

offersContract(@S,@Ct), Contract(@Ct),

hasSymbol(@Ct,@Sy), Symbol(@Sy),

hasValue(@Sy, FundSymbol),

hasName(@Ct,@N), Name(@N), hasValue(@N, FundName),

hasNetValue(@Ct,@Net), NetValue(@Net),

hasValue(@Net, NetValue),

hasNetAssets(@Ct,@NA), NetAssets(@NA),

hasValue(@NA, NetAssets),

hasYield(@Ct,@Y), Yield(@Y), hasValue(@Y, Yield),

hasYTDReturn(@Ct,@Ret), YTDReturn(@Ret),

hasValue(@Ret, YTDReturn),

hasChangeAmount(@Ct,@ChA), ChangeAmount(@ChA),

hasValue(@ChA, ChangeAmount),

hasChangePercent(@Ct,@ChP), ChangePercent(@ChP),

hasValue(@ChP, ChangePercent),

hasChangeDirection(@Ct,@ChD), ChangeDirection(@ChD),

hasValue(@ChD, ChangeDirection),

hasPreviousClose(@Ct,@Pre), PreviousClose(@Pre),

hasValue(@Pre, PreviousClose).

Thus, given the relationship that DEIMOS learned be-
tween the target source googlefinance and the background
source yahoofinance, the automatically generated descrip-
tion for googlefinance is:

googlefinance($FundSymbol1,_,FundName3, _,

YTDReturn5,_,NetAssets7, _,_,Yield10,

ChangePercent11,ChangeAmount12,NetValue13,_) :-

Company(@C), offersSeries(@C,@S), Series(@S),

offersContract(@S,@Ct), Contract(@Ct),

hasSymbol(@Ct,@Sy), Symbol(@Sy),

hasValue(@Sy, FundSymbol1),

hasName(@Ct,@N), Name(@N), hasValue(@N, FundName3),

hasNetValue(@Ct,@Net), NetValue(@Net),

hasValue(@Net, NetValue13),

hasNetAssets(@Ct,@NA), NetAssets(@NA),

hasValue(@NA, NetAssets7),

hasYield(@Ct,@Y), Yield(@Y), hasValue(@Y, Yield10),

hasYTDReturn(@Ct,@Ret), YTDReturn(@Ret),

hasValue(@Ret, YTDReturn5),

hasChangeAmount(@Ct,@ChA), ChangeAmount(@ChA),

hasValue(@ChA, ChangeAmount12),

hasChangePercent(@Ct,@ChP), ChangePercent(@ChP),

hasValue(@ChP, ChangePercent11).

Automatically Generating Semantic Web Service
DEIMOS generates a Semantic Web Service(SWS) which
encapsulates the Web source discovered in the source mod-
eling phase. The SWS acts as a ‘semantic’ wrapper that ac-
cepts RDF as input and generates RDF output. The seman-
tic wrapper includes specific instantiations of the DEIMOS
modules. First, it forwards the appropriate values from the
input RDF to the discovered Web form as inputs, and in-
vokes the form. Second, it extracts the data from the re-
sulting HTML page. Finally, it applies the learned source
description to generate RDF triples according to the domain
ontology. Conversion from the source description into RDF
is straightforward. The variables prefixed by ’@’ denote
an object id, which in RDF correspond to an automatically
generated URI. For example, a subset of output triples for
googlefinance with input fund symbol ‘RBCGX’ is:
company5179861 rdf:type Company .

series382953 rdf:type Series .

company5179861 offersSeries series382953 .

contract1885719 rdf:type Contract .

series382953 offersContract contract1885719 .

symbol2139169 rdf:type Symbol .

contract1885719 hasSymbol symbol2139169 .

symbol2139169 hasValue "RBCGX" .

name1093443 rdf:type Name .

contract1888902 hasName name1093443 .

name1093443 hasValue "Reynolds Blue Chip Growth" .

...

This Semantic Web Service can now be used to produce
structured (RDF) data from Deep Web sources.

Integrating Deep Web data sources into the
Linked Data Web

The Semantic Web Service generated by DEIMOS produces
results as RDF which we now want to integrate into the
Linked Data Web. During execution of this Web service,
the RDF data which is output contains auto-generated indi-
viduals (URIs). We need to link these URIs to their corre-
sponding individuals already present in the linked data Web.
To do this, we first model our seed source in terms of the
ontology of the linked data source with which we are trying
to integrate our domain. We thus begin with integrating our
seed source into the LDW. For any newly discovered source
that we are able to model, we use its definition in terms of
the seed source for its integration into the LDW.

Linking the seed source to the Linked Data Web
If we use the values extracted during the execution of the
newly discovered source to retrieve individuals from the
linked data source, we could link the individuals generated
by the SWS to the LDW. We first devise a mechanism to
query the linked data source using the known model of the
seed source. As described in the source modeling section,
we can understand any newly discovered source in terms of
the seed source. This property can be used in combination
with the query mechanism to retrieve LDW individuals and
subsequently produce linked data.

We begin by describing the seed source with the ontol-
ogy of the linked data source under consideration. Around

2.5 million triples of U.S. corporate information is already
published at http://www.rdfabout.com/demo/sec/ as part of
the LDW using an ontology which draws from the EDGAR
database of the Securities and Exchange Commission(SEC).
As the mutual fund domain cannot be completely described
by the existing ontology, we slightly extend it by extrapolat-
ing the concepts for ‘Contract’ or ‘Series’ from the EDGAR
database and assume it to already be a part of the LDW for
the purposes of this paper.

We then use the data related to each individual in the
SWS, which was generated at runtime, to search for a corre-
sponding individual in the LDW by querying over the values
of properties of the individuals. Because the ontology of the
seed source is same as the linked data source, the similar-
ity of two individuals is concluded by comparing values of
the data properties of the local individual with the values
of the corresponding aligned properties of the linked source
individual. Ideally, this would be a matching based on the
equivalence of strings. However practically, we need to use
a string similarity metric to overcome variations in represen-
tation of the values of the same thing.

The matching of individuals generated by the SWS to
those present on the LDW can be represented by a SPARQL
query that constructs ‘owl:sameAs’ assertions, with the
WHERE part selecting the LDW URIs which we want to
link the generated URIs, using data values of the prop-
erties of the individuals. Because our seed source is de-
fined with the same ontology as that of the linked data
source, formulation of the query is straightforward. Fol-
lowing is an explanatory SPARQL query for matching in-
dividuals of yahoofinance with the linked data source at
http://www.rdfabout.com/demo/sec/.

CONSTRUCT{

?C1 owl:sameAs ?C2 .

?S1 owl:sameAs ?S2 .

?Con1 owl:sameAs ?Con2 .

}

WHERE{

?C1 rdf:type Company .

?S1 rdf:type Series .

?C1 offersSeries ?S1 .

?Con1 rdf:type Contract .

?S1 offersContract ?Con1 .

?Con1 hasSymbol ?S1 .

?S1 hasValue ?FundSymbol .

?Con1 hasName ?N1 .

?N1 hasValue ?FundName .

?C2 rdf:type Company .

?S2 rdf:type Series .

?C2 offersSeries ?S2 .

?Con2 rdf:type Contract .

?S2 offersContract ?Con2 .

?Con2 hasSymbol ?S2 .

?S2 hasValue ?SV2 .

?Con2 hasName ?N2 .

?N2 hasValue ?NV2 .

FILTER { matchContractsUsingValues(?Con1,

?FundSymbol, ?FundName, ?Con2, ?SV2, ?NV2) }

FILTER { presentInLDWSource(?Con2) }

FILTER { generatedByYahoofinanceSWS(?Con1) }

}

}

The presence of a functional relation from one or more of
the values of the arguments (e.g. FundSymbol), to the indi-
vidual, whose URI is the output, is a requirement for using
those values as input to the matcher. At execution time, the
input variables of the matcher can be grounded to values of
the arguments of the source predicate, which are extracted
from the result page.

The SPARQL query for inputs FundSymbol=‘RBCGX’
and FundName=‘Reynolds Blue Chip Growth’ can be ex-
plained as follows. The query would first retrieve individuals
of type Contract based on values for FundSymbol and Fund-
Name from the individuals generated in the Semantic Web
Service for yahoofinance (Filter on YahooSWS). This query
then invokes a function (matchContractsUsingValues) that
matches Contract individuals from the seed and the linked
data source, based on a string similarity metric on the data
values of their properties. The URI of such an individual
is linked to the Contract individual from the yahoofinance
SWS by using the ‘owl:sameAs’ relation. We then match
individuals of type Series using the offersContract property,
and finally match individuals of type Company using the of-
fersSeries property.

After this process, the seed source becomes a part of the
Linked Data Web.

Linking discovered sources to the Linked Data Web
After a new source is discovered and semantically mod-
eled, we can integrate it into the LDW by using the same
URI matching technique described in the previous section.
DEIMOS defines the target predicate in terms of the seed
source, we get an unfolding of the target as RDF (unary and
binary predicates) and thus produce the Semantic Web Ser-
vice (c.f. the googlefinance definition shown above). At
runtime, we use this SWS and augment it with the URI
matching approach from the previous section, as our target
definition is semantically characterized in terms of the seed
source. We can now link auto-generated individuals from
the structured data produced by the SWS to the individuals
from the LDW using the ‘owl:sameAs’ relation.

The linked Semantic Web Service that is generated for the
target source - googlefinance executes as follows:

1. Accept a Mutual Fund symbol as input.

2. Execute live over www.google.com/finance.

3. Extract the relevant values from the output page.

4. Execute the SPARQL query which invokes the matcher

over the SEC database to get URIs for individuals

already present on the LDW.

5. Generate the RDF Triples from the target description,

which is defined in unary and binary predicates.

Implementation & Results
We implemented our system to integrate Web sources be-
longing to the mutual fund domain (as described in this
paper). Our Seed Source was finance.yahoo.com. We

modeled the seed source based on an ontology extrapo-
lated from http://www.rdfabout.com/demo/sec/. This ontol-
ogy originally contains only details about the companies.
We assumed a similar representation of the concepts of Se-
ries and Contract in the same way that they are defined
in the SEC database to create an extended version of the
ontology. Two example sources belonging to the mutual
fund domain that were automatically discovered and mod-
eled by DEIMOS are www.google.com/finance and money-
central.msn.com/detail/stock quote.

The mechanism described in the SPARQL query was im-
plemented as follows. Ideally, the triples belonging to the
LDW source, that we intend to link our seed source to, could
be downloaded into a local triple store. Using suitable string
similarity metrics, we can query this store to retrieve the
URIs for the mutual fund (Contract, and thus Series & Com-
pany). The URIs generated by the SWS can now be linked
to these URIs using the ‘owl:sameAs’ property. The SWS of
our seed source can now generate linked data. For a newly
discovered source, using its definition in terms of the seed
source, we can perform a similar retrieval query for the URIs
and thus integrate it into the Linked Data Web. Practically,
we had to abstract this URI retrieval to a wrapper on account
of the complete SEC database not being downloadable. A
wrapper that accepted FundSymbol & FundName called the
search page on the SEC website1 and produced the URIs af-
ter relevant data extraction from the result page (matching
the contracts). We were able to do this because the inputs
to the search form have a correspondence with the value of
the ‘hasValue’ properties of the Symbol and Name for the
Contract individual. The ‘owl:sameAs’ triples that this gen-
erated are as explained in the Construct part of the SPARQL
query.

For the discovered source googlefinance described in the
paper, a sample part of the result of the implemented Se-
mantic Web Service, producing linked data for the input
fund symbol ‘RBCGX’ is shown below. The URIs gener-
ated for the Series and Contract are not currently present at
www.rdfabout.com. So we infer the pattern of URIs based on
those for Company and assume their existence on the linked
data Web. The resulting owl:sameAs statements are:

company5179861 rdf:type Company .

company5179861 owl:sameAs

http://www.rdfabout.com/rdf/usgov/sec/id/cik0000832574 .

series382953 rdf:type Series .

series382953 owl:sameAs

http://www.rdfabout.com/rdf/usgov/sec/id/S000000865 .

company5179861 offersSeries series382953 .

contract1885719 rdf:type Contract .

contract1885719 owl:sameAs

http://www.rdfabout.com/rdf/usgov/sec/id/C000002481 .

series382953 offersContract contract1885719 .

symbol2139169 rdf:type Symbol .

contract1885719 hasSymbol symbol2139169 .

symbol2139169 hasValue "RBCGX" .

name1093443 rdf:type Name .

contract1888902 hasName name1093443 .

name1093443 hasValue "Reynolds Blue Chip Growth" .

1http://www.sec.gov/edgar/searchedgar/mutualsearch.htm

...

Our results show that it is possible to convert data pro-
vided by a previously unknown data source from the Deep
Web, into structured linked data and thus populate the LDW.

Related Work
The integration of sources on the Semantic Web is not a new
concept. Noy (2004) presents a survey of Ontology based
approaches for data integration. This involves, the alignment
of the source and target ontologies based on concepts and
their hierarchy, properties, rules and individuals of the con-
cepts. For example, GLUE (Doan et al. 2003) uses machine
learning techniques to match instances and, thus, the Ontol-
ogy itself. In this case however the source to be matched is
assumed to have a background ontology and is not a tradi-
tional Web source.

There is also some existing work done on generating
linked data from present data sources on the Web. With the
rise in popularity of the Linked Data Web, there have been
numerous initiatives to convert existing formatted data e.g.
data formatted with XML, into linked data. Garce and Gil
(2009) describe a mechanism to publish documents based
on the XML Business Reporting Language as linked data.
The mechanism involves aligning the Schema to an OWL
Ontology and transforming document instances into linked
data by using an XML to RDF mapping.

The Virtuoso Sponger (OpenLinkSW 2009) is an ‘RD-
Fizer’ that transfroms non-RDF data into RDF. At the heart
of the Sponger are Cartridges that extract metadata from a
page and then match entities to ontologies and produce RDF
output. These cartridges are mostly programmed manually2,
using one of the various supported languages, for a group of
Web pages with matching URLs or content type and are thus
limited to known sources. In order to generate a domain spe-
cific cartridge, one would need to extract trained semantic
types from pages, unrestricted to a URL pattern and content
type, and then perform modeling and data linkage in a sim-
ilar way described in the paper so that a previously unseen,
unknown source can effectively be RDFized.

Most of the integration of data to the Linked Data Web,
that is currently part of the cloud, is based on known sources
with a predetermined set of integration rules and is thus
human centric. Automated and semi-automated means of
generating also have been studied. For example, the SILK
- Link Discovery Framework (Bizer et al. 2009) tries to
discover links, specified by users with the Link Specifica-
tion Language, between sources that already have structured
(RDF) data. Our system, however, is not only able to dy-
namically generate and integrate data from known Deep Web
sources into the linked data cloud, but also has the capability
of integrating previously unknown data sources in the same
domain.

Conclusion
We were able to automatically integrate sources from the
Deep Web into the Linked Data Web by extracting structured

2http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
VirtProgrammerGuideRDFCartridge

data from these sources and linking them with the data in the
cloud. Our results suggest that the large data present in the
Deep Web can now be accessible as linked structured data.
The proposed mechanism thus proves to be a substantial step
in solving the problem of information integration between
the Linked Data Web and the Deep Web.

References
Ambite, J.-L.; Darbha, S.; Goel, A.; Knoblock, C. A.; Ler-
man, K.; Parundekar, R.; and Russ, T. 2009. Automatically
constructing semantic web services from online sources.
International Semantic Web Conference.
Bizer, C.; Volz, J.; Kobilarov, G.; and Gaedke, M. 2009.
Silk - a link discovery framework for the web of data. In
18th International World Wide Web Conference.
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked
data - the story so far. International Journal on Semantic
Web and Information Systems (IJSWIS).
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. Journal of Machine Learning Research
3:993–1022.
Carman, M. J., and Knoblock, C. A. 2007. Learning se-
mantic definitions of online information sources. Journal
of Artificial Intelligence Research (JAIR) 30:1–50.
Doan, A.; Madhavan, J.; Dhamankar, R.; Domingos, P.;
and Halevy, A. 2003. Learning to match ontologies on the
semantic web. The VLDB Journal 12(4):303–319.
Garca, R., and Gil, R. 2009. Publishing xbrl as linked
open data. In WWW2009 Workshop: Linked Data on the
Web (LDOW2009).
Gazen, B., and Minton, S. 2005. Autofeed: an unsuper-
vised learning system for generating webfeeds. In K-CAP
’05: Proceedings of the 3rd international conference on
Knowledge capture, 3–10. New York, NY, USA: ACM.
Lerman, K.; Plangprasopchok, A.; and Knoblock, C. A.
2007. Semantic labeling of online information sources. In-
ternational Journal on Semantic Web and Information Sys-
tems, Special Issue on Ontology Matching 3(3):36–56.
Levy, A. Y. 2000. Logic-based techniques in data integra-
tion. In Minker, J., ed., Logic-Based Artificial Intelligence.
Kluwer Publishers.
Noy, N. F. 2004. Semantic integration: a survey of
ontology-based approaches. SIGMOD Rec. 33(4):65–70.
OpenLinkSW. 2009. Virtuoso sponger.
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
VirtSpongerWhitePaper.
Plangprasopchok, A., and Lerman, K. 2009. Model-
ing social annotation: a bayesian approach. Technical re-
port, Computer Science Department, University of South-
ern California.

