
FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

074 0 -74 59 /19©2019 I E E E MARCH/APRIL 2019 | IEEE SOFTWARE 91

Software
Adaptation for
an Unmanned
Undersea Vehicle
Avi Pfeffer, Curt Wu, Gerald Fry, Kenny Lu, Steve Marotta,
and Mike Reposa, Charles River Analytics

Yuan Shi, T.K. Satish Kumar, and Craig A. Knoblock,
University of Southern California Information Sciences Institute

David Parker, Irfan Muhammad, and Chris Novakovic,
University of Birmingham

// Most current software systems are not adaptable,

making them less capable of achieving their

objectives. We are developing a method to optimize

software for new environments automatically. An

independent evaluation has demonstrated that this

method adapts to degraded sensors, changing

environmental conditions, and a loss of power. //

UNMANNED UNDERSEA VEHI-
CLES (UUVs) are designed to carry
out challenging missions in chang-
ing environments. To maximize their

effectiveness, these vehicles should
adapt to system failures (such as bat-
tery loss) and environmental changes
(such as a force on the UUV). Since
it is expensive to develop UUVs, it is
also desirable to increase their lifespan
by enabling their software to be able

adapt to ecosystem changes such as
upgraded sensors.

In our Probabilistic Representation of
Intent Commitments to Ensure Software
Survival (PRINCESS) project, which
was part of the Defense Advanced Re-
search Projects Agency (DARPA) Build-
ing Resource Adaptive Software Systems
(BRASS) program, we are developing
methods to adapt the UUV’s software
for all these purposes. Our sensor ad-
aptation accommodates new and up-
graded sensors as well as compensates
for sensor degradation while the UUV
is on a mission. Our control adaptation
responds to online system failures and
environmental changes in real time;
we use probabilistic verification tech-
niques to ensure that these adaptations
do not result in software behavior that is
dangerous for the UUV.

Our recent work on PRINCESS
has involved two scenarios for a RE-
MUS 600 UUV. The first scenario in-
volves degrading a Doppler velocity log
sensor used for navigation and a simul-
taneous perturbation to the environ-
ment in the form of a high current. Our
adaptation reconstructs an estimate
of the sensor signal from other sen-
sors and adjusts the parameters of the
navigation system’s Kalman filter to ac-
count for the increased noise and envi-
ronmental perturbation. In the second
scenario, the UUV undergoes a cata-
strophic loss of battery power while on
a reconnaissance mission for an object
on the ocean floor. Our adaptation re-
configures the UUV’s path planner to
generate a path that searches as much
of the region as possible while still
bringing the UUV home safely without
running out of power.

Adaptation Methods

Sensor Adaptation
The ability to detect and adapt to sen-
sor failures has a number of benefits. In

Digital Object Identifier 10.1109/MS.2018.2886815
Date of publication: 22 February 2019

Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 15:08:07 UTC from IEEE Xplore. Restrictions apply.

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

the UUV domain, our approach signif-
icantly reduces the time and effort re-
quired for software maintenance when
a sensor fails or is replaced. Instead
of changing the software itself, it in-
vokes a joint detection and adaptation
(JDA) module.

Our sensor adaptation assumes
that sensor values among a subset of
sensors are correlated, which is of-
ten true in real-world systems.1 While
JDA uses several techniques from ma-
chine learning (ML), its real power
stems from its novel constraint-based
framework in which these ML tech-
niques are embedded. We note that a
naïve application of ML techniques
to reconstruct one sensor value from
other ones is not viable because mul-
tiple sensors can fail at the same
time. Instead, we first learn a sub-
strate set of constraints in JDA. These
constraints are in the general form
(yn - fn(zn))

2 # fn
2, where yn is the

target sensor value at time t, zn is a
set of input sensor values at time less
than or equal to t, and fn() is a recon-
struction function.

Ideally, the reconstruction func-
tions allow for the accurate recon-
struction of failed sensor values, are
comprehensive enough to be able to
adapt to many kinds of failures, and
are generally easy to understand. In
JDA, we learn the functions by using
a blend of ML methods and other
heuristic methods that first identify
the variables of interest. For exam-
ple, casting this as a least absolute
shrinkage and selection operator
(LASSO) problem2 can help us to
first identify a sparse set of variables
that determine the value of a target
sensor up to a certain level of accu-
racy. After these variables are deter-
mined, we can use ML techniques to
learn the actual reconstruction func-
tion.3 Similar LASSO problem in-
stances can be used subsequently to

identify a second, third, or generally
the kth set of relevant variables that
minimizes overlaps with the previ-
ous sets of variables.

Such a substrate of constraints is
viable for detecting and adapting to
multiple sensor failures. First, a vio-
lated constraint indicates a sensor
failure—in particular, that at least
one of the sensors involved in that
constraint has failed. Solving an inte-
ger linear program identifies a mini-
mum set of such failed sensors that
account for all violated constraints.4
After sensors are determined to have
failed or to be in working condi-
tion, reconstruction of failed sensor
values, i.e., adaptation, begins. To
reconstruct the value of a failed sen-
sor, we simply find a constraint with
minimum fn

 in which yn is the target
sensor value and all sensors in zn are
deemed to be in working condition.
As a natural consequence of our
constraint-based method, fn

 can also
be used to estimate how good our
adaptation is.

Control Adaptation and Verification
The goal of control adaptation is to
adjust the UUV software in real time
in response to perturbations (such
as a loss of battery power) and envi-
ronmental changes (such as a change
of current). In PRINCESS, we work
with legacy software components
that do not have any controllable pa-
rameters with understood semantics,
such as the UUV’s Kalman filter and
path-planner components. Therefore,
we must make those components
adaptive by increasing their range
of behavior and synthesizing control
parameters. We must also learn the
meaning of those control parameters;
in other words, we must understand
how different settings of the controls
enable the component to achieve its
intent in different situations.

Our method uses a combination
of program transformation and ML.
First, we introduce variable behavior
into the software component. Begin-
ning with a component with a given
set of inputs and fixed behaviors, we
analyze the code to identify candi-
dates for variation, such as constants
or inequalities. We then parameterize
these candidates, for example, by re-
placing a constant with a control vari-
able or adding a control variable to
one side of a loop inequality. Next, we
transform the interface of the compo-
nent to take the control parameters as
input to produce a transformed com-
ponent that is ready for adaptation.

The next step is to learn how to
set the values of the controls in each
situation. Via a simulator, we gener-
ate a large data set of inputs, envi-
ronment variables, and controls and
then run the software component
and evaluate the intent of the com-
ponent. PRINCESS uses this data set
to train a feed-forward neural net-
work, which then identifies the op-
timal value of the controls for each
setting of the inputs and environ-
ment variables. This creates a super-
vised learning problem in which we
learn mapping from the state of the
inputs and environment variables to
the optimal controls.

The final step is to combine the
learned optimization policy with the
transformed component to produce
an optimizing component. Given
the values of the inputs and environ-
ment variables, the optimization pol-
icy produces values for the controls
that are fed into the transformed
component. This optimizing com-
ponent functions in a transformed
software system alongside a moni-
tor that keeps track of the state of
environment variables and passes
them to the optimizing component.
Further details on the program’s

Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 15:08:07 UTC from IEEE Xplore. Restrictions apply.

 MARCH/APRIL 2019 | IEEE SOFTWARE 93

transformation and optimization
can be found in Fry et al.5

Optimizing component controls
using ML techniques could produce
dangerous adaptations and may be
difficult to trust. To assure the safety
and reliability of our control adap-
tations, we employ formal verifica-
tion techniques. In particular, we use
probabilistic model checking, a tech-
nique for producing guarantees about
the quantitative aspects of a system’s
runtime behavior, such as execution
time, energy usage, or the probability
of failure. This approach is based on
the systematic construction and nu-
merical analysis of a stochastic model,
which yields a probabilistic guarantee
on a system property that was for-
mally specified in temporal logic.

In this article, we deploy verifica-
tion at the runtime, automatically
building and solving models that rep-
resent the execution of the current
mission plan. Currently, this process
focuses on the path-planning compo-
nent of the UUV. Each time an adap-
tation occurs, it generates a new path

plan for the UUV’s mission, and we
verify whether the adaptation can
be applied safely. If an adaptation is
considered to be unsafe, PRINCESS
tightens the constraints on the adap-
tation requirements (i.e., reduces the
allowed power usage) and generates
a new adaptation candidate. This
process repeats for a fixed number
of times until the optimizer finds an
adaptation with a probabilistic guar-
antee of success or until the feedback
loop reaches the repetition threshold.
In the latter case, PRINCESS will ei-
ther proceed with the most recent ad-
aptation candidate or return home,
depending on its policy.

In this context, the primary risk
of a mission failing is the possibil-
ity that the vehicle is stranded and
unable to return home if the bat-
tery runs out of fuel. Therefore, a
key aspect of the model used for
verification is the UUV’s energy con-
sumption. Due to environmental
uncertainty, this aspect of its behav-
ior needs to be modeled stochasti-
cally and is the main reason that we

produce a probabilistic guarantee
of mission success (the likelihood of
completing the current search pro-
cess and then safely returning home).
The model we construct is a dis-
crete-time Markov chain whose state
incorporates both the current posi-
tion of the UUV in its mission and
its battery level.

We use an adapted version of the
PRISM probabilistic verification
software6; in particular, we con-
nected to its Java application pro-
gramming interface, which allows us
to construct models on the fly using a
generative model interface. We built
upon earlier PRISM-based methods
for producing verified navigation
plans for mobile robots.7 The por-
tion of the model that captures how
energy usage varies with the UUV’s
location and speed is offline, using
traces generated from simulated be-
havior of the UUV. The result is a
parameterized model that can be re-
constructed at the runtime, depend-
ing on the current status of the UUV
at a given point in the mission.

(a) (b)

0

3

6

9

12

15

18

21

24

27

Complete Invalid Error

C
ou

nt

Outcome

Test Outcomes

0

3

6

9

12

15

18

21

24

27

C
ou

nt

Pass Degraded Fail Inconclusive

Verdict

Test Verdicts

FIGURE 1. The results of the MIT Lincoln Laboratory evaluation of the sensor adaptation approach. The (a) test verdicts and

(b) test outcomes.

Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 15:08:07 UTC from IEEE Xplore. Restrictions apply.

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

Results
Our adaptation approaches were in-
dependently evaluated by the Mas-
sachusetts Institute of Technology
(MIT) Lincoln Laboratory as part
of the DARPA BRASS Program. The
sensor adaptation approach was eval-
uated under a scenario in which the
UUV must navigate from a starting
position to a specified destination.
Results are shown in Figure 1. Dur-
ing transit, the UUV encountered a
water current and experienced a sen-
sor failure. For each scenario, the
evaluators recorded a “pass” verdict
if the adapted UUV ended within
75 m from the destination. Only sce-
narios in which the nonadapted sys-
tem failed to reach this threshold
were considered.

The control adaptation and veri-
fication approach were evaluated un-
der scenarios in which the UUV had
to search a rectangular region of the
sea floor to find an object. We simu-
lated battery failures in each scenario.

The UUV had to find the object and
return to its starting point, and it
had to adapt its search path when en-
ergy perturbations occurred. Figure 2
shows the results of the same scenar-
ios run in the baseline (no failures),
perturbed (no adaptation with bat-
tery failures), and adapted (with bat-
tery failures and adaptation) stages.
The verdicts are defined as

• pass: object found and UUV
returns

• degraded: object not found and
UUV returns

• fail: the UUV depletes its energy
before it can return.

Conclusions
A UUV provides an ideal plat-
form to study many aspects of soft-
ware adaptation. In PRINCESS, we
have successfully demonstrated an
adaptation to upgraded and degraded
sensors, system failures, environment
changes, and new architecture. In our

ongoing work, our goal is to gener-
alize our methods beyond UUVs to
other software systems. Our control
adaptation, for example, uses general
techniques of program transforma-
tion and ML that could, in principle,
be applied to a wide variety of sys-
tems in different programing lan-
guages. We also aim to smooth out
and automate as much of the process
as possible, by which a legacy code
base transforms into an adaptive code
base. These developments have the
potential to not only increase the life
of software but also make the soft-
ware behave more appropriately in
its new environment than the origi-
nal software.

D uring our experimenta-
tion with intents for the
navigation system, we dis-

covered that the intent of the Kal-
man filter does not map directly to
the operational intent of the UUV’s
navigation system. In contrast, the
path planner’s intent to maximize
area coverage while restricting en-
ergy consumption is analogous with
maximizing its probability of finding
a randomly placed object within the
area, thus yielding much better re-
sults even though the optimization
approach was the same. This result
underscores the notion that proper
intent specification ultimately drives
the optimization of the system re-
gardless of the approach used for
implementing optimization. In the
future, we will work with subject
matter experts to improve our pre-
cision in defining operationally rel-
evant intents.

Additionally, program transfor-
mations can introduce a large num-
ber of control parameters to the
program. In the case of the Kalman
filter, the transformation increases

0

20

40

60

80

100

120

140

160

Baseline Perturbed Stage Adapted

C
ou

nt

Verdict
Pass
Degraded
Fail

FIGURE 2. The results of the MIT Lincoln Laboratory evaluation of the control

adaptation and verification approach.

Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 15:08:07 UTC from IEEE Xplore. Restrictions apply.

 MARCH/APRIL 2019 | IEEE SOFTWARE 95

the number of inputs by at least an
order of magnitude. This implies
that we need to search an exponen-
tially large space of possible input
combinations. While our ML mod-
els enable us to represent this space
relatively compactly, we still need to
generate a large amount of data to
train the model. For the relatively
simple software components we
worked on, we were able to train a
basic model effectively. As the com-
ponents become more complex, we
will need a more detailed under-
standing of the parameter space and
more intelligent model designs.

Finally, these experiments and
results further highlight the com-
plementary roles that optimization
and verification play in our adapta-
tion process. Without the verifier,
an overeager optimizer may choose
parameters that would further
damage an already perturbed UUV.
Conversely, a verifier without an
optimizer, while robust and fault
tolerant, would be brittle to new
scenarios in which prior knowledge
is lacking or nonexistent. Over-
all, both are necessary to provide
meaningful and practical adapta-
tions.

Acknowledgment
This article is based on work supported
by the U.S. Air Force and DARPA un-
der contract FA8750-16-C-0045. The
views, opinions, or findings expressed
are those of the authors and should
not be interpreted as representing the
official views or policies of the U.S.
Department of Defense or the U.S.
Government.

References
1. E. Elnahrawy and B. Nath, “Con-

text-aware sensors,” in Proc. Eu-

ropean Workshop Wireless Sensor

Networks, 2004, pp. 77–93.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

AVI PFEFFER is a chief scientist at

Charles River Analytics. His research

interests include probabilistic reasoning,

machine learning, and computational

game theory. Pfeffer received a Ph.D. in

computer science from Stanford University.

Contact him at apfeffer@cra.com.

KENNY LU is a scientist at Charles River

Analytics. His research interests include

program analysis, Bayesian inference, and

reinforcement learning. Lu received a B.S.

in mathematical science from Carnegie

Mellon University. Contact him at

klu@cra.com.

CURT WU is a chief software engineer

at Charles River Analytics. His research

interests include cyber security, applied

machine learning, and software resilience.

Wu received an M.S. in computer science

from Boston University. He is a Member of

the IEEE. Contact him at cwu@cra.com.

STEVE MAROTTA is a senior software en-

gineer at Charles River Analytics. His research

interests include machine learning, code

generation, and programming languages.

Marotta received a B.A. in computer science

from Drew University. He is a Member of the

IEEE. Contact him at smarotta@cra.com.

GERALD FRY is a scientist at Charles

River Analytics. His research interests

include distributed systems, real-time

resource management, and virtualization.

Fry received an M.S. in computer science

from Boston University. Contact him at

gfry@cra.com.

MIKE REPOSA is a senior software engi-

neer at Charles River Analytics. His research

interests include adaptive systems, distribut-

ed systems, and systems integration. Reposa

received a B.S. in computer engineering

technology from Northeastern University.

Contact him at mreposa@cra.com.

Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 15:08:07 UTC from IEEE Xplore. Restrictions apply.

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

2. R. Tibshirani, “Regression shrinkage

and selection via the lasso,” J. Roy.

Statist. Soc. Ser. B Methodol, vol. 58,

no. 1, pp. 267–288, 1996.

3. N. M. Nasrabadi, “Pattern recogni-

tion and machine learning,” J. Elec-

tron. Imag., vol. 16, no. 4, 2007, Art.

no. 049901.

4. H. Marchand, A. Martin, R. Weismantel,

and L. Wolsey, “Cutting planes in inte-

ger and mixed integer programming,”

Discrete Appl. Math., vol. 123, no. 1–3,

pp. 397–446, 2002.

5. G. Fry et al., “Adapting autonomous

ocean vehicle software systems to

changing environments,” presented at

the Oceans Conf. and Expo., 2018.

6. M. Kwiatkowska, G. Norman, and

D. Parker, “PRISM 4.0: Verification

of probabilistic real-time systems,” in

Computer Aided Verification (LNCS,

vol. 6806), G. Gopalakrishnan and S.

Qadeer, Eds. Berlin: Springer, 2011,

pp. 585–591.

7. B. Lacerda, D. Parker, and N. Hawes,

“Multi-objective policy generation

for mobile robots under probabilis-

tic time-bounded guarantees,” in

Proc. 27th Int. Conf. Automated

Planning Scheduling (ICAPS), 2017,

pp. 504–512.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

YUAN SHI is a Ph.D. student at the

University of Southern California. His

research interests include machine learn-

ing, optimization, and computer vision.

Shi received a B.Eng. in computer science

from Sun Yat-sen University. Contact him

at yuanshi@usc.edu.

DAVID PARKER is a reader at the Univer-

sity of Birmingham. His research interests

include probabilistic verification and he

is the lead developer of the PRISM model

checking tool. Parker received a Ph.D. in

computer science from the University of

Birmingham. Contact him at d.a.parker@

cs.bham.ac.uk.

T.K. SATISH KUMAR is a research

assistant professor at the University of

Southern California. His research interests

include constraint reasoning, probabilistic

reasoning, planning, and scheduling.

 Kumar received a Ph.D. in computer

 science from Stanford University. Contact

him at tkskwork@gmail.com.

IRFAN MUHAMMAD is a Ph.D. student at the University of

Birmingham. His research interests include probabilistic verifica-

tion. Muhammad received a B.S. in computer science from the

University of Birmingham. Contact him at irfan.mu3@gmail.com.

CRAIG A. KNOBLOCK is a research

professor at the University of Southern

California. His research interests include

information integration and the semantic

web. Knoblock received a Ph.D. in computer

science from Carnegie Mellon University. He

is a Senior Member of the IEEE. Contact him

at knoblock@isi.edu.

CHRIS NOVAKOVIC is a research fel-

low at the University of Birmingham. His

research interests include computer se-

curity and distributed systems. Novakovic

received a Ph.D. in computer science from

the University of Birmingham. Contact him

at c.novakovic@cs.bham.ac.uk.

Access all your IEEE Computer
Society subscriptions at

computer.org
/mysubscriptions

Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 15:08:07 UTC from IEEE Xplore. Restrictions apply.

