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// Most current software systems are not adaptable, 

making them less capable of achieving their 

objectives. We are developing a method to optimize 

software for new environments automatically. An 

independent evaluation has demonstrated that this 

method adapts to degraded sensors, changing 

environmental conditions, and a loss of power. //

UNMANNED UNDERSEA VEHI-
CLES (UUVs) are designed to carry 
out challenging missions in chang-
ing environments. To maximize their 

effectiveness, these vehicles should 
adapt to system failures (such as bat-
tery loss) and environmental changes 
(such as a force on the UUV). Since 
it is expensive to develop UUVs, it is 
also desirable to increase their lifespan 
by enabling their software to be able 

adapt to ecosystem changes such as 
upgraded sensors.

In our Probabilistic Representation of 
Intent Commitments to Ensure Software 
Survival (PRINCESS) project, which 
was part of the Defense Advanced Re-
search Projects Agency (DARPA) Build-
ing Resource Adaptive Software Systems 
(BRASS) program, we are developing 
methods to adapt the UUV’s software 
for all these purposes. Our sensor ad-
aptation accommodates new and up-
graded sensors as well as compensates 
for sensor degradation while the UUV 
is on a mission. Our control adaptation 
responds to online system failures and 
environmental changes in real time; 
we use probabilistic verification tech-
niques to ensure that these adaptations 
do not result in software behavior that is 
dangerous for the UUV.

Our recent work on PRINCESS  
has involved two scenarios for a RE-
MUS 600 UUV. The first scenario in-
volves degrading a Doppler velocity log 
sensor used for navigation and a simul-
taneous perturbation to the environ-
ment in the form of a high current. Our 
adaptation reconstructs an estimate 
of the sensor signal from other sen-
sors and adjusts the parameters of the 
navigation system’s Kalman filter to ac-
count for the increased noise and envi-
ronmental perturbation. In the second 
scenario, the UUV undergoes a cata-
strophic loss of battery power while on 
a reconnaissance mission for an object 
on the ocean floor. Our adaptation re-
configures the UUV’s path planner to 
generate a path that searches as much 
of the region as possible while still 
bringing the UUV home safely without 
running out of power.

Adaptation Methods

Sensor Adaptation
The ability to detect and adapt to sen-
sor failures has a number of benefits. In 
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the UUV domain, our approach signif-
icantly reduces the time and effort re-
quired for software maintenance when 
a sensor fails or is replaced. Instead 
of changing the software itself, it in-
vokes a joint detection and adaptation 
(JDA) module.

Our sensor adaptation assumes 
that sensor values among a subset of 
sensors are correlated, which is of-
ten true in real-world systems.1 While 
JDA uses several techniques from ma-
chine learning (ML), its real power 
stems from its novel constraint-based 
framework in which these ML tech-
niques are embedded. We note that a 
naïve application of ML techniques 
to reconstruct one sensor value from 
other ones is not viable because mul-
tiple sensors can fail at the same 
time. Instead, we first learn a sub-
strate set of constraints in JDA. These 
constraints are in the general form 
(yn -  fn(zn))

2 # fn
2, where yn is the 

target sensor value at time t, zn is a 
set of input sensor values at time less 
than or equal to t, and fn() is a recon-
struction function.

Ideally, the reconstruction func-
tions allow for the accurate recon-
struction of failed sensor values, are 
comprehensive enough to be able to 
adapt to many kinds of failures, and 
are generally easy to understand. In 
JDA, we learn the functions by using 
a blend of ML methods and other 
heuristic methods that first identify 
the variables of interest. For exam-
ple, casting this as a least absolute 
shrinkage and selection operator 
(LASSO) problem2 can help us to 
first identify a sparse set of variables 
that determine the value of a target 
sensor up to a certain level of accu-
racy. After these variables are deter-
mined, we can use ML techniques to 
learn the actual reconstruction func-
tion.3 Similar LASSO problem in-
stances can be used subsequently to 

identify a second, third, or generally 
the kth set of relevant variables that 
minimizes overlaps with the previ-
ous sets of variables.

Such a substrate of constraints is 
viable for detecting and adapting to 
multiple sensor failures. First, a vio-
lated constraint indicates a sensor 
failure—in particular, that at least 
one of the sensors involved in that 
constraint has failed. Solving an inte-
ger linear program identifies a mini-
mum set of such failed sensors that 
account for all violated constraints.4 
After sensors are determined to have 
failed or to be in working condi-
tion, reconstruction of failed sensor 
values, i.e., adaptation, begins. To 
reconstruct the value of a failed sen-
sor, we simply find a constraint with 
minimum fn

  in which yn is the target 
sensor value and all sensors in zn are 
deemed to be in working condition. 
As a natural consequence of our 
constraint-based method, fn

  can also 
be used to estimate how good our 
adaptation is.

Control Adaptation and Verification
The goal of control adaptation is to 
adjust the UUV software in real time 
in response to perturbations (such 
as a loss of battery power) and envi-
ronmental changes (such as a change 
of current). In PRINCESS, we work 
with legacy software components 
that do not have any controllable pa-
rameters with understood semantics, 
such as the UUV’s Kalman filter and 
path-planner components. Therefore, 
we must make those components 
adaptive by increasing their range 
of behavior and synthesizing control 
parameters. We must also learn the 
meaning of those control parameters; 
in other words, we must understand 
how different settings of the controls 
enable the component to achieve its 
intent in different situations.

Our method uses a combination 
of program transformation and ML. 
First, we introduce variable behavior 
into the software component. Begin-
ning with a component with a given 
set of inputs and fixed behaviors, we 
analyze the code to identify candi-
dates for variation, such as constants 
or inequalities. We then parameterize 
these candidates, for example, by re-
placing a constant with a control vari-
able or adding a control variable to 
one side of a loop inequality. Next, we 
transform the interface of the compo-
nent to take the control parameters as 
input to produce a transformed com-
ponent that is ready for adaptation.

The next step is to learn how to 
set the values of the controls in each 
situation. Via a simulator, we gener-
ate a large data set of inputs, envi-
ronment variables, and controls and 
then run the software component 
and evaluate the intent of the com-
ponent. PRINCESS uses this data set 
to train a feed-forward neural net-
work, which then identifies the op-
timal value of the controls for each 
setting of the inputs and environ-
ment variables. This creates a super-
vised learning problem in which we 
learn mapping from the state of the 
inputs and environment variables to 
the optimal controls.

The final step is to combine the 
learned optimization policy with the 
transformed component to produce 
an optimizing component. Given 
the values of the inputs and environ-
ment variables, the optimization pol-
icy produces values for the controls 
that are fed into the transformed 
component. This optimizing com-
ponent functions in a transformed 
software system alongside a moni-
tor that keeps track of the state of 
environment variables and passes 
them to the optimizing component. 
Further details on the program’s 
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transformation and optimization 
can be found in Fry et al.5

Optimizing component controls 
using ML techniques could produce 
dangerous adaptations and may be 
difficult to trust. To assure the safety 
and reliability of our control adap-
tations, we employ formal verifica-
tion techniques. In particular, we use 
probabilistic model checking, a tech-
nique for producing guarantees about 
the quantitative aspects of a system’s 
runtime behavior, such as execution 
time, energy usage, or the probability 
of failure. This approach is based on 
the systematic construction and nu-
merical analysis of a stochastic model, 
which yields a probabilistic guarantee 
on a system property that was for-
mally specified in temporal logic.

In this article, we deploy verifica-
tion at the runtime, automatically 
building and solving models that rep-
resent the execution of the current 
mission plan. Currently, this process 
focuses on the path-planning compo-
nent of the UUV. Each time an adap-
tation occurs, it generates a new path 

plan for the UUV’s mission, and we 
verify whether the adaptation can 
be applied safely. If an adaptation is 
considered to be unsafe, PRINCESS 
tightens the constraints on the adap-
tation requirements (i.e., reduces the 
allowed power usage) and generates 
a new adaptation candidate. This 
process repeats for a fixed number 
of times until the optimizer finds an 
adaptation with a probabilistic guar-
antee of success or until the feedback 
loop reaches the repetition threshold. 
In the latter case, PRINCESS will ei-
ther proceed with the most recent ad-
aptation candidate or return home, 
depending on its policy.

In this context, the primary risk 
of a mission failing is the possibil-
ity that the vehicle is stranded and 
unable to return home if the bat-
tery runs out of fuel. Therefore, a 
key aspect of the model used for 
verification is the UUV’s energy con-
sumption. Due to environmental 
uncertainty, this aspect of its behav-
ior needs to be modeled stochasti-
cally and is the main reason that we 

produce a probabilistic guarantee 
of mission success (the likelihood of 
completing the current search pro-
cess and then safely returning home). 
The model we construct is a dis-
crete-time Markov chain whose state 
incorporates both the current posi-
tion of the UUV in its mission and 
its battery level.

We use an adapted version of the 
PRISM probabilistic verification 
software6; in particular, we con-
nected to its Java application pro-
gramming interface, which allows us 
to construct models on the fly using a 
generative model interface. We built 
upon earlier PRISM-based methods 
for producing verified navigation 
plans for mobile robots.7 The por-
tion of the model that captures how 
energy usage varies with the UUV’s 
location and speed is offline, using 
traces generated from simulated be-
havior of the UUV. The result is a 
parameterized model that can be re-
constructed at the runtime, depend-
ing on the current status of the UUV 
at a given point in the mission.
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FIGURE 1. The results of the MIT Lincoln Laboratory evaluation of the sensor adaptation approach. The (a) test verdicts and 

(b) test outcomes.
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Results
Our adaptation approaches were in-
dependently evaluated by the Mas-
sachusetts Institute of Technology 
(MIT) Lincoln Laboratory as part 
of the DARPA BRASS Program. The 
sensor adaptation approach was eval-
uated under a scenario in which the 
UUV must navigate from a starting 
position to a specified destination. 
Results are shown in Figure 1. Dur-
ing transit, the UUV encountered a 
water current and experienced a sen-
sor failure. For each scenario, the 
evaluators recorded a “pass” verdict 
if the adapted UUV ended within 
75 m from the destination. Only sce-
narios in which the nonadapted sys-
tem failed to reach this threshold 
were considered.

The control adaptation and veri-
fication approach were evaluated un-
der scenarios in which the UUV had 
to search a rectangular region of the 
sea floor to find an object. We simu-
lated battery failures in each scenario. 

The UUV had to find the object and 
return to its starting point, and it 
had to adapt its search path when en-
ergy perturbations occurred. Figure 2 
shows the results of the same scenar-
ios run in the baseline (no failures), 
perturbed (no adaptation with bat-
tery failures), and adapted (with bat-
tery failures and adaptation) stages. 
The verdicts are defined as 

• pass: object found and UUV 
returns

• degraded: object not found and 
UUV returns

• fail: the UUV depletes its energy 
before it can return.

Conclusions
A UUV provides an ideal plat-
form to study many aspects of soft-
ware adaptation. In PRINCESS, we 
have successfully demonstrated an 
adaptation to upgraded and degraded 
sensors, system failures, environment 
changes, and new architecture. In our 

ongoing work, our goal is to gener-
alize our methods beyond UUVs to 
other software systems. Our control 
adaptation, for example, uses general 
techniques of program transforma-
tion and ML that could, in principle, 
be applied to a wide variety of sys-
tems in different programing lan-
guages. We also aim to smooth out 
and automate as much of the process 
as possible, by which a legacy code 
base transforms into an adaptive code 
base. These developments have the 
potential to not only increase the life 
of software but also make the soft-
ware behave more appropriately in 
its new environment than the origi-
nal software.

D uring our experimenta-
tion with intents for the 
navigation system, we dis-

covered that the intent of the Kal-
man filter does not map directly to 
the operational intent of the UUV’s 
navigation system. In contrast, the 
path planner’s intent to maximize 
area coverage while restricting en-
ergy consumption is analogous with 
maximizing its probability of finding 
a randomly placed object within the 
area, thus yielding much better re-
sults even though the optimization 
approach was the same. This result 
underscores the notion that proper 
intent specification ultimately drives 
the optimization of the system re-
gardless of the approach used for 
implementing optimization. In the 
future, we will work with subject 
matter experts to improve our pre-
cision in defining operationally rel-
evant intents.

Additionally, program transfor-
mations can introduce a large num-
ber of control parameters to the 
program. In the case of the Kalman 
filter, the transformation increases 
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FIGURE 2. The results of the MIT Lincoln Laboratory evaluation of the control 

adaptation and verification approach.
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the number of inputs by at least an 
order of magnitude. This implies 
that we need to search an exponen-
tially large space of possible input 
combinations. While our ML mod-
els enable us to represent this space 
relatively compactly, we still need to 
generate a large amount of data to 
train the model. For the relatively 
simple software components we 
worked on, we were able to train a 
basic model effectively. As the com-
ponents become more complex, we 
will need a more detailed under-
standing of the parameter space and 
more intelligent model designs.

Finally, these experiments and 
results further highlight the com-
plementary roles that optimization 
and verification play in our adapta-
tion process. Without the verifier, 
an overeager optimizer may choose 
parameters that would further 
damage an already perturbed UUV. 
Conversely, a verifier without an 
optimizer, while robust and fault 
tolerant, would be brittle to new 
scenarios in which prior knowledge 
is lacking or nonexistent. Over-
all, both are necessary to provide 
meaningful and practical adapta-
tions. 
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