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Abstract. Semantic labeling is the process of mapping attributes in
data sources to classes in an ontology and is a necessary step in hetero-
geneous data integration. Variations in data formats, attribute names
and even ranges of values of data make this a very challenging task. In
this paper, we present a novel domain-independent approach to auto-
matic semantic labeling that uses machine learning techniques. Previous
approaches use machine learning to learn a model that extracts features
related to the data of a domain, which requires the model to be re-trained
for every new domain. Our solution uses similarity metrics as features to
compare against labeled domain data and learns a matching function to
infer the correct semantic labels for data. Since our approach depends
on the learned similarity metrics but not the data itself, it is domain-
independent and only needs to be trained once to work effectively across
multiple domains. In our evaluation, our approach achieves higher accu-
racy than other approaches, even when the learned models are trained
on domains other than the test domain.

1 Introduction

Mapping attributes in data sources to a domain ontology is a necessary step
in integrating different sources and mapping them to a domain ontology. The
problem, which we call semantic labeling, requires annotating source attributes
with classes and properties of ontologies. There has been a number of studies
conducted to automate the process since labeling attributes manually is labori-
ous and requires a sufficient amount of domain knowledge. However, automatic
semantic labeling is difficult to perform accurately for several reasons. First,
people have different ways to represent data of same labels. Table 1 shows dif-
ferent formats that PlayerPosition can be found in soccer data. On the other
hand, data from different labels can be very similar. For example, data of Num-
berOfGoalsScores and NumberOfGamesPlayed in soccer data are very similar
because both of them are in numeric format with values ranged mainly from
0 to 50. Therefore, a good semantic labeling approach needs to deal with two
different issues: to distinguish similar labels and to recognize the same labels
from different data, both of which generally make the problem very hard.

To address these issues, we present a domain-independent machine learning
approach for semantic labeling. Our contribution is a novel way of using machine
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Table 1. Different representations of PlayerPosition

Code Abbreviation Full form

1 GK Goalkeeper

2 DF Defender

3 MF Midfieder

4 FW Forward

learning to solve semantic labeling as a combination of many binary classification
sub-problems. Our machine learning model uses similarity metrics as features
and learns a matching function to determine whether attributes have the same
labels to infer the correct semantic labels. Because the matching function is
not related to specific labels, our model is independent from labels and thus
independent from the domain ontologies.

We evaluate our approach on many datasets from different domains. When
the machine learning models are trained on another domain, the system achieves
an average mean reciprocal rank (MRR) [3] over 80% on 4 datasets. The results
are even better if models are trained on the same domain. We also run ex-
periments on the T2D Gold Standard data and achieve a higher F1-measure
compared to the property-matching approach in the T2K system [12].

2 Motivating Example

In this section, we provide an example to explain the problem of mapping source
attributes to semantic types in a domain ontology. Suppose that we want to map
attributes in a data source named WC2014 (Table 2), which contains information
about players of national teams in World Cup 2014, to the DBpedia ontology.
First, we define our target label, which we call semantic type, as a pair of values
consisting of a domain class and one of its properties <class, property>. For
example, in Table 2, the correct semantic types of column player, height and po-
sition are <dbo:SoccerPlayer, dbo:birthName>, <dbo:SoccerPlayer, dbo:height>
and <dbo:SoccerPlayer, dbo:draftPosition>. Semantic labeling systems attempt
to automatically identify these mappings. However, this cannot be done without
knowing about these semantic types in a domain.

Table 2. Sample data from World Cup 2014 players (WC2014)

player height position

Alan PULIDO 176 Forward

Robin VAN PERSIE 186 Forward

Miiko ALBORNOZ 180 Defender

Marouane FELLAINI 194 Midfielder
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Therefore, the semantic labeling problem refers to a situation where we have
already mapped one or more sources to a common ontology and we want to
label new sources using the same ontology. For example, we have the data
source EPL containing information about all England Premier League play-
ers and it is already labeled with DBpedia semantic types (Table 3). Since
we have information about the DBpedia ontology from the EPL source, we
can label source attributes of WC2014 based on this information. There are

Table 3. Sample data from England Premier League (EPL)

first name position height
<SoccerPlayer, birthName> <SoccerPlayer, draftPosition> < SoccerPlayer, height>

Hazard, Eden Midfielder 172

Cahill, Gary Defender 191

Felliani, Marouane Midfielder 194

Oezil, Mesut Midfielder 180

different ways to leverage domain data from labeled sources for semantic la-
beling. Previous work uses labeled sources such as EPL as training data to
learn the characteristic of data in different attributes. Table 4 shows some fea-
ture values extracted from <dbo:SoccerPlayer, dbo:birthName> data. In our
approach, we use EPL as our base data and compare attributes in WC2014
with attributes in EPL. If these two attributes are similar such as column first
name in EPL and column player in WC2014, we conclude that they have the
same semantic types. Because we know that the semantic type of first name is
<dbo:SoccerPlayer, dbo:birthName>, we infer that the semantic type of player
is also <dbo:SoccerPlayer, dbo:birthName>.

Table 4. Some feature values extracted from <SoccerPlayer, birthName>

Feature Value

all capitalized token 1

starts with char C 0.25

num len 0

The main difference between our approach and previous work is when faced
with unseen semantic types. For example, consider the case where we have an-
other labeled source named BGL containing information about players in Ger-
many Bundesliga League (Table 5). BGL contains a column salary which is
labeled as < dbo:Person, dbo:salary > - an unseen semantic type. In previous
approaches, learned models need to be retrained to capture the data characteris-
tic of < dbo:Person, dbo:salary > and this process needs to be repeated for every
unseen semantic type. There are a huge number of data sources and semantic
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types, which makes the possibility of facing new semantic types very high and it
is time-consuming to retrain the learning models each time. For our approach,
we just need to store data with the new semantic types for later comparison
with unlabeled attributes.

Table 5. Sample data from Germany Bundesliga League (GBL)

name salary
< SoccerPlayer, birthName> < SoccerPlayer, salary>

Neuer; Manuel 150,000

Boateng; Jerome 90,000

Dante 100,000

3 Approach

In this section, we explain our approach to determine similarities between un-
labeled and labeled attributes and use machine learning techniques to find the
correct semantic type. Section 3.1 describes various similarity metrics that we
use as our features and how we compute them. Section 3.2 describes details of
how we use machine learning for semantic labeling problem.

3.1 Similarity metrics

In our approach, we exploit different similarity metrics that measure how at-
tributes are similar to others. In this section, we describe these similarity metrics
and explain how they can help in semantic labeling.

Attribute Name Similarity In relational databases, web tables or spread-
sheets, tabular structures usually have titles for each column. We consider these
titles as attribute names and use them to compare similarities between two at-
tributes.

Definition 1. Given two attributes named a and b, we have A and B as sets of
character tri-grams extracted from a and b. The attribute name similarity is
calculated using Jaccard similarity [8] as follows:

S(a, b) =
|A ∩B|
|A ∪B|

(1)

In data sources, people usually name attributes based on the meaning of
the data so that similarity in attribute names provides a good indication of the
similarity in semantic types. However, as attribute names usually correspond
only to ontology properties, using attribute names as the only metric can lead
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to false positives in labeling. For example, a column named name can refer to <
dbo:Person, dbo:birthName > or < dbo:SportsTeam, dbp:clubName > depending
on the sources. Collecting data sources from the web can also result in missing
or noisy attribute names, which provide no information about the attributes.

Value Similarity Value similarity is the most common similarity metric, which
is widely used in different matching systems. In semantic labeling, attribute val-
ues play an important role in identifying attributes that have the same semantic
types because they usually contain similar values. In our approach, we compute
three different value similarity metrics: Jaccard similarity and TF-IDF cosine
similarity for textual data, as well as a modified version of Jaccard similarity for
numeric values.

Definition 2. Given two attributes named a and b with va and vb as the cor-
responding sets of values, the textual Jaccard similarity [8] is computed as
follows:

S(a, b) =
|va ∩ vb|
|va ∪ vb|

(2)

Definition 3. Given set of attributes {a1, a2, ..., an} with a corresponding sets
of values {v1, v2, ..., vn}, the TF-IDF cosine similarity [8] is computed using
the following steps:

1. We concatenate the values in {v1, v2, ..., vn} by attribute to generate a set
of documents: { D1, D2, ..., Dn}

2. For a document Di, we calculate the corresponding TF-IDF vector Wi

3. We compute TF-IDF cosine similarity between two attributes a and b:

S(a, b) =
Wa ·Wb

|Wa| × |Wb|
(3)

For numeric attributes, set-based similarity metrics such as Jaccard and cosine
similarity do not work effectively because numeric data have continuous ranges of
values. Therefore, we customize Jaccard similarity to work with range of values
instead of sets of values.

Definition 4. : Given two attributes named a and b with va and vb as the
corresponding sets of values, the numeric Jaccard similarity is computed as
follows:

S(a, b) =
min(max(va),max(vb))−max(min(va),min(vb))

max(max(va),max(vb))−min(min(va),min(vb))
(4)

For example, the numeric Jaccard similarity s of two attributes with values
in range [1912,1980] and [1940,2000] is computed as follows:

s =
1980− 1940

2000− 1912
= 0.45. (5)

To reduce sensitivity to outliers, we only use the subsets containing values
from first quartile to third quartile instead of the whole set of values in attributes.
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Distribution Similarity For numeric data, there are semantic types that we
are unable to distinguish by using value similarity because they have the same
range of values. However, since they have different underlying meanings, their
distribution of values may be different. For example, consider the example about
NumberOfGoalsScored and NumberOfGamesPlayed in Section 1. Although they
have the same range of values, NumberOfGoalsScored has skewed distribution
because the high values are mostly distributed to Forwards and Midfielders while
NumberOfGamesPlayed is more likely to follow a near-uniform distribution.

Therefore, we analyze the distribution of numeric values contained in the
attributes using statistical hypothesis testing as one of the similarity metrics. For
statistical hypothesis testing used in our approach, the null hypothesis is that
the two sets of values are drawn from a same population (distribution), which
may indicate that they come from a same semantic type. We use Kolmogorov-
Smirnov test (KS test)[6] as our statistical hypothesis test based on evaluation
of different statistical tests in Ramnandan et al’s research [11].

Histogram Similarity For textual data, normal statistical hypothesis test-
ing cannot be applied because there is no order in textual values. Moreover,
we cannot use traditional correlation methods such as mutual information or
KL-divergence since we are comparing attributes that do not appear in the
same source. Therefore, we calculate value histograms in textual attributes and
compare their histograms instead. The statistical hypothesis tests used for the
histogram case is the Mann-Whitney test (MW test) [6]. The reason we use MW
test instead of KS test is that histograms are not ordinal and using methods
that compare two empirical value distributions such as KS test is not suitable.
Mann-Whitney test computes distribution distances based on medians and, thus,
is more appropriate to use for histograms.

When comparing a textual attribute with a numeric attribute, we also trans-
form numeric data into histogram form and use MW test to compute histogram
similarity. For the example of PlayerPosition in Table 1, even though they have
different representations, they have similar histogram forms because every po-
sition usually have similar frequencies over the different sources of data. For
instance, because every soccer team usually has 1 goalkeeper, 4 defenders, 4
midfielders and 2 forwards, the histogram frequencies are likely to be [ 1

11 , 4
11 ,

4
11 , 2

11 ].

Mixtures of numeric and textual data As we have described above, there
are similarity measures that can only applied for the textual part of attribute
values while some others only work on numeric parts (Table 6). Because textual
similarity metrics are more important when comparing attributes with mostly
text and numeric similarities are more important for attributes with numeric
data, we need to adjust the values of these similarity measures based on the
fraction of textual and numeric values contained in attributes.
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Table 6. Similarity feature vector

Feature name Explanantion Applied data types

ATT NAME Jaccard similarity for attribute names All

TEXT JACCARD Jaccard similarity for textual data Textual

TF-IDF COSINE TF-IDF cosine similarity for textual data Textual

NUM JACCARD Modified Jaccard similarity for numeric data Numeric

NUM KS KS statistical test for numeric data Numeric

MW HISTOGRAM MW test for histogram All

Given r1 and r2 are fractions of textual data in the pair of attributes, the
adjusted value of textual similarity value is computed as follows:

vadjusted =
(r1 ∗ r2)

(r1 + r2)
∗ voriginal (6)

On the other hand, the adjusted value of numeric similarity value is computed
as follows:

vadjusted =
[(1− r1) ∗ (1− r2)]

[(1− r1) + (1− r2)]
∗ voriginal (7)

The adjusted value is the product of the harmonic mean over r1, r2 and the
original value. The reason for using harmonic mean follows the intuition that
the corresponding similarity values are more reliable when two attributes have
similar fractions of textual data or numeric data and vice versa.

3.2 Semantic Labeling

The overall framework is illustrated in Figure 1. The input of our system is
an unlabeled attribute and a set of labeled attributes as domain data and the
output is a set of top-k semantic types corresponding to the unlabeled attribute.

Overall Approach Given a set of attributes {a1, a2, ... an}, we compute M-
dimensional feature vectors fij (i 6= j). Each dimension k corresponds to a
similarity metric, so f [k] represents how similar attributes ai and aj are under
metric k.

During training we label each fij as True/False, where True means that
attributes ai and aj have the same semantic type and vice versa. To set up a
new domain, we store a set of labeled attributes {a1, a2, ... an} as domain data
and use them to compare against new attributes to infer the semantic types.

Given a new attribute a0, the algorithm computes f0j for all j (j 6= 0), and
uses the learned classifier to label each f0j as True/False. If the label of f0j is
yes, the algorithm says that the semantic type of a0 is the semantic type that
was recorded for aj . From that, we can conclude the semantic type of a0.

Previous approaches, tried to predict the semantic label of a0 based on char-
acteristic of recorded ai. In contrast, our approach learns a classifier over simi-
larity vectors. It is domain-independent because classification does not depend
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Fig. 1. Overall framework of our semantic labeling system

on the values in attributes, but rather on the similarity scores of multiple metrics
between the attributes.

Since there are no constraint on the number of True labels for each attribute,
we develop a ranking method and only take the top-k results of semantic types.
The ranking algorithm uses the predicted probabilities of the True class in clas-
sification as the confidence scores and ranks the candidate semantic types based
on that.

Classifiers for Semantic Labeling To choose the best classifier for semantic
labeling, we ran experiments on various of classifiers and compare the results.
Because we use class probabilities of classifiers as confidence scores, classifiers
need to have class probabilities calculated from the feature vector in order to be
applicable. Therefore, we only consider Logistic Regression and Random Forests
[2]. Details of the experiments are described in Section 4.2. According to the
results from Table 8-10, Logistic Regression achieves the best performance and
thus is the selected classifier in our system.

4 Evaluation

In our experiments, we use four different datasets: city [11], weather [1], museum
[14], and soccer. The soccer data set was created to provide a wide variety
of semantic types and consists of numerous real-world data sets about soccer.
The purpose of using many datasets from different domains is to evaluate our
classifiers when applying a single learned classifier to multiple domains. Table 7
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shows the overall information about these data sets. The datasets and code used
in our experiments have been published online1.

Table 7. Data sets from different domains in experiments

Data set No. sources No. semantic types No. attributes

museum 29 20 217

city 10 52 520

soccer 12 14 97

weather 4 11 44

4.1 Experimental Setup

In this section, we evaluate the performance of our system, which is called DSL
(Domain-independent Semantic Labeler). . The evaluation metric that we mea-
sure is the mean reciprocal rank (MRR) [3]. The details of the experimental
setup is as follows:

1. Choose a labeling dataset A.

2. Suppose A consists of n sources {s1, s2, ..., sn}, choose the number of labeled
sources m in the dataset (m < n).

3. For every source si in A, perform semantic labeling using m labeled sources
from si+1 to sm+i+1.

For example, the soccer dataset has 12 sources. If we have one labeled source,
we label s1 with labeled data from s2, label s2 with labeled data from s3 and so
on. Likewise, if we have five labeled sources, we label s1 with labeled data in set
of sources s2, s3, ..., s6 and continue through the entire data set.

For classifier training data, we follow the same process as above but we man-
ually label the computed feature vectors generated instead of running semantic
labeling. To assure that classifier training data is disjoint from labeling data, if
labeling dataset and training dataset are the same, we choose distinct labeled
sources for each process.

4.2 Classifier Analysis

In this experiment, we evaluate 2 classifiers: Logistic Regression and Random
Forests to choose the best classifier for semantic labeling.

Table 8 - 10 lists results of two classifiers when being trained and tested on
different datasets. We use city, museum and soccer datasets to train Logistic
Regression and Random Forest since we can generate a sufficient amount of
samples for training data. For semantic labeling, we use all 4 datasets: soccer,
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Table 8. MRR scores of different classifiers when training on soccer

soccer museum city weather

Logistic Regression 0.814 0.863 0.944 0.951

Random Forests 0.794 0.799 0.947 0.86

Table 9. MRR scores of different classifiers when training on museum

soccer museum city weather

Logistic Regression 0.815 0.845 0.940 0.951

Random Forests 0.820 0.778 0.830 0.898

Table 10. MRR scores of different classifiers when training on city

soccer museum city weather

Logistic Regression 0.782 0.807 0.965 0.955

Random Forests 0.802 0.728 0.912 0.807

museum, city and weather with the numbers of labeled sources is 50% of the
total numbers of sources in these datasets.

Overall, Logistic Regression achieves a comparable performance to Random
Forests, which is a surprising result, because Random Forests have been shown to
be the better classifiers in other research. However, because of the issue where we
need to use class probabilities as confidence scores, the results can be explained.

Logistic Regression class probabilities are computed using the following func-
tion:

P (y = 1|x) = sigmoid(wTx) (8)

where x is the feature vector and w are its coefficients. Because P (y = 1|x) is
a monotonically increasing function of wTx, P (y = 1|x) increases when wTx
increases. Thus, feature vectors with higher similarity values have higher class
probabilities in Logistic Regression models.

Random Forests, on the other hand, calculate class probabilities based on
fraction of samples of the same class in decision tree leaves. As long as the values
are higher than splitting values in decision trees, feature vectors are split to the
same branches and are likely to receive similar class probabilities. Therefore,
using class probabilities of Random Forests as confidence scores performs worse.

Since the labeling accuracy of Logistic Regression and Random Forests are
comparable, we consider the training time and labeling time of each classifier
as additional measurements. Table 11 lists average system training time and
labeling time of these classifiers.

The results in Table 11 show that Logistic Regression has a smaller training
and labeling time. Although the differences are minor, it provides an advantage,
especially in real-world scenarios with large amounts of data. Using Logistic Re-
gression also provides more meaningful insights of features because of its linear

1 https://github.com/minhptx/iswc-2016-semantic-labeling.git
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Table 11. Training and labeling time of different classifiers

Training time Labeling time

Logistic Regression 144s 0.31s

Random Forests 157s 0.36s

combination compared with a randomized algorithm as Random Forests. There-
fore, we use Logistic Regression as the classifier for the remaining experiments.

4.3 Feature Analysis

In machine learning classifiers, different features have different degrees of influ-
ence on the classification results. To analyze the importance of features in our
similarity vectors, we train Logistic Regression on different datasets and extract
coefficients of features. Table 12 shows coefficients of features when Logistic Re-
gression models are trained on city, museum and soccer data.

Table 12. Coefficients of features in Logistic Regression classifier

Feature Train on soccer Train on museum Train on city

ATT NAME 4.41 6.08 0

TEXT JACCARD 1.88 0.88 9.16

TEXT TF-IDF 3.91 1.03 3.20

NUM JACCARD 4.21 3.28 12.68

NUM KS 1.78 0.78 7.25

MW HISTOGRAM 0.32 1.14 3.83

In general, all of our similarity features have positive correlation with the
classification results, which means that higher values in these similarity metrics
results in higher probabilities that the attributes have the same semantic type. As
we can see from the results, value similarity features play the most important
role in Logistic Regression classifiers regardless of training domain. Attribute
names similarity has a good impact on soccer and museum data but not in city
because city dataset does not have headers or titles for attributes. Distribution
and histogram similarity metrics have higher coefficients in city data because
city dataset contains mostly numeric attributes.

In conclusion, we have demonstrated that our similarity features contribute
to the similarity in the semantic types of attributes. However, the importance
of features in the learned classifiers can vary according to the training data as
shown in Table 12.

4.4 Semantic Labeling

In this experiment, we evaluate performance of DSL (Domain-independent Se-
mantic Labeler) in comparison with SemanticTyper [11]. To follow real-world



12 Minh Pham, Suresh Alse, Craig A. Knoblock, and Pedro Szekely

scenarios where labeled sources are hard to find and manually labeling sources
is tedious, our experiments run on configuration with only 1 to 5 labeled data
sources for every dataset (Weather dataset has only 4 sources so the maximum
number of labeled sources is 3). For DSL, we follow the setup in section 4.1
while having soccer, city and museum as our classifier training dataset itera-
tively. For SemanticTyper, the MRR scores reported are the MRR scores when
being trained on the testing domains. The weather domain is only used in se-
mantic labeling because it cannot provide a sufficient number of feature vectors
for training classifiers.

Table 13. MRR scores of DSL and SemanticTyper on soccer dataset

Number of labeled sources 1 2 3 4 5

DSL (train on soccer) 0.625 0.782 0.777 0.800 0.815

DSL (train on city) 0.601 0.785 0.788 0.808 0.820

DSL (train on museum) 0.600 0.781 0.788 0.808 0.810

SemanticTyper 0.608 0.711 0.720 0.720 0.732

Table 14. MRR scores of DSL and SemanticTyper on museum dataset

Number of labeled sources 1 2 3 4 5

DSL (trained on soccer) 0.471 0.665 0.719 0.755 0.790

DSL (trained on museum) 0.463 0.652 0.709 0.752 0.792

DSL (trained on city) 0.472 0.659 0.706 0.713 0.730

SemanticTyper 0.491 0.615 0.656 0.699 0.697

Table 15. MRR scores of DSL and SemanticTyper on city dataset

Number of labeled sources 1 2 3 4 5

DSL (trained on soccer) 0.913 0.932 0.932 0.941 0.945

DSL (trained on museum) 0.912 0.927 0.928 0.941 0.944

DSL (trained on city) 0.914 0.928 0.930 0.939 0.944

SemanticTyper 0.856 0.893 0.893 0.913 0.919

Table 16. MRR scores of DSL and SemanticTyper on weather dataset

Number of labeled sources 1 2 3

DSL (trained on soccer) 0.899 0.951 0.977

DSL (trained on museum) 0.899 0.951 0.977

DSL (trained on city) 0.902 0.955 0.977

SemanticTyper 0.852 0.920 0.955

The results in Table 13 - 16 show that our approach outperforms Seman-
ticTyper in all four evaluation datasets. Although there are slight changes in
performance when the classifiers are trained on different domains, the changes
are not significantly different and it shows that our approach is robust across
multiple data datasets. According to the table, training the classifier from the
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same domain, which provides more information about the characteristic of data
in domains, slightly improves the accuracy of the classifier.

We also evaluate our system on the T2D Gold Standard dataset2 and compare
our result with T2K system’s approach for properties matching [12]. As described
in Ritze’s work, labeled sources are extracted from the DBpedia ontology. After
that, they divided the T2D Gold Standard dataset into two equal-sized parts: an
optimization set and an evaluation set. The optimization set is used to optimize
the essential parameters for the system and the result are evaluated on the
evaluation set. Although we are unable to reconstruct the exact experiment, we
approximated the result by using the following configuration as an alternative:

1. Collect DBpedia ontology data in table format as labeled sources.
2. For every attribute in the ontology, extract only 1000 first values as the set

of values for the attribute.
3. Train the classifiers on combination of soccer, museum and city datasets to

enrich the training data.
4. Test semantic labeling (properties matching) on the entire T2D Gold Stan-

dard dataset.

Table 17. MRR scores of DSL and T2K on T2D Gold Standard dataset

DSL T2K (evaluation) T2K (optimization)

0.773 0.730 0.700

Table 17 shows the results of DSL in comparisons with T2K. Although our
approach is not optimized on the optimization set as T2K, we achieve a better
accuracy on the dataset. Moreover, our classifiers have been trained on different
domains and we only use 1000 values for every attribute as domain data instead
of the entire set of values. Because we exploit more similarity features, our ap-
proach achieves better discriminative ability for the various semantic types. The
evaluation also shows that we have a robust, domain-independent system that
only needs to be trained once before using it for semantic labeling in a wide
range of domains.

5 Related Work

Ramnandan et al. [11] describe an approach that captures and compares distri-
butions and properties of data corresponding to semantic types as a whole. They
apply heuristic rules to separate numeric and textual data and then use TF-IDF
and KS as measures to compare the data. In our approach, we use more similar-
ity features besides of TF-IDF and KS test, which enables our system to better
discriminate between semantic types. Our similarity metrics can be applied to
both textual and numeric attributes by the method described in Section 3.1.

2 http://webdatacommons.org/webtables/goldstandard.html
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Ritze et al. [12] propose a new approach for annotating HTML tables with
DBpedia classes, properties, and entities. Their system, which is named T2K, use
metrics like Jaccard, Levenshtein and deviation similarity to match attributes
to properties and values. T2K also uses a iterative process to adjust property
weights and filter the candidate sets until the similarity values converge. The
system provides good results in entity and class matching but not in property
matching. Since they exploit only value similarity for textual data and numeric
similarity for numeric data for property matching, they face the same limitation
as Ramnandan’s work and achieve a lower performance compared to DSL.

A number of approaches have used probabilistic graphical models to solve
the problem of semantic labeling. Goel et al. [4] exploit the underlying relation-
ships between attributes and values with attribute characteristics as features
and use Conditional Random Fields (CRF) to label attributes. They assign se-
mantic types to every value in an attribute and then combine these semantic
types to infer the semantic type for the whole attribute. Limaye et al. [7] use
probabilistic graphical models in a broader problem as they annotate tables on
the web by entities for cells, types for columns, and relationships for binary re-
lations between columns. They exploit two feature functions that describe the
dependency of column type with its values and header. The labels of all columns
are then assigned simultaneously using a message passing algorithm to maximize
the potential function formulated by features and their weights. Mulwad et al.
[9] extend the work of Limaye et al. by proposing a novel Semantic Message
Passing algorithm that uses Linked Open Data (LOD) knowledge to improve
the existing semantic message algorithm. These approaches require the proba-
bilistic graphical models to be retrained when handling new semantic types. The
reason for this is that their feature weights are calculated associated with labels
and need to be re-estimated for new semantic types. Also, graphical models do
not scale well as the number of semantic types increases because of the explosion
of different enumerations in the search space.

Mulwad et al. [10] also extend their work into a full system with multiple func-
tions. They incorporated probabilistic semantic labeling with domain knowledge
processing and data cleaning to produce a domain-independent semantic label-
ing system. However, their domain independence is limited in that it requires
users to provide domain knowledge or apply preprocessing modules. In our se-
mantic labeling system, the process is automatic and the domain-independent
learning models only require a small amount of domain data to perform well on
semantic labeling.

Venetis et al. [15] present an approach to annotate tables on the web by
leveraging existing data on the web. An isA database in the form of {instance,
class} is extracted from the web using linguistic patterns and is used to pro-
duce column labels. The column labels are assigned by a maximum likelihood
estimator that assigns a column with a class label that maximize the fraction of
column values in that label. Syed et al. [13] use Semantic Web data to infer the
semantic models of tables. They annotate the table columns by using the column
names if available and values inside the columns to build a query to Wikitology.
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After that, columns are mapped to classes returned in the query result. Both
the work of Venetis et al. and Syed et al. extract a huge amount of data from
various sources to estimate the probability that a value belongs to a semantic
type. Thus, their approach is restricted to domains where online data is widely
available. In our approach, our learning model is not domain-specific and thus,
we can use any domain as our training data and the system can still label data
from other domains effectively.

Gunaratna et al. [5] address a related problem, which is called entity class
resolution. Entity class resolution is similar to semantic labeling except that
their targets are entity classes instead of semantic types. Their system, FACES,
applies natural language processing (NLP) techniques to identify focus terms
and uses text similarities to compare focus terms with entity class names in the
ontology. Although FACES’ approach works well in text documents because it
is easy to detect focus terms in grammatical documents, it cannot be applied
to most of web data such web tables, spreadsheets, or RDF stores because data
values are mostly unstructured and do not follow grammar rules such as numbers
and named entity mentions. In contrast, our approach does not rely on NLP
algorithms so that it can perform effectively in noisy data sources from the web.

6 Conclusion and Future Work

In this paper, we presented a novel domain-independent approach for semantic
labeling that leverages similarity measures and machine learning techniques. In
our system, we capture the patterns of matching decisions given the similarity
scores between unlabeled attributes and labeled data to find the correct semantic
types. The approach allows us to train the machine learning model only once
and use it in multiple different domains. Moreover, our similarity features are
independent within a semantic type and across other semantic types. We can
compute feature vectors using a parallel and distributed implementation which
reduces the running time while maintaining labeling accuracy.

In the future, we plan to exploit transfer learning to incorporate some specific
information about the domain data to adjust the weights of our features. For
example, if a domain contains mostly numeric data, we may give more weight to
numeric features. In view of the machine learning model, we can leverage data
from Linked Open Data to enrich our learning models. In this way, the model can
have information about many difficult cases and, therefore, it will be more likely
to generalize well. Finally, although our approach allows new semantic types
to be easily integrated, it lacks the ability to detect whether the true semantic
type exists in the labeled data. This inability can lead to incorrect mappings in
unseen cases and decrease the overall system accuracy. One of the directions of
future work is to have the machine learning model detect these cases.
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