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ABSTRACT: Building accurate thematic maps which show distribution of a feature over a geo-
graphic area is a challenging task when the sample dataset is limited in size and distribution. We
propose the classification of these geospatial datasets as a promising approach towards building
approximate thematic maps. However, choosing an appropriate classification method that consid-
ers spatial autocorrelation in data is not trivial. This paper investigates the application of different
classification methods on real-world spatial datasets. We study how factors such as distribution
of the training data, neighborhood relationships and geometry of the original map can affect the
accuracy of the generated map. Consequently, we report on measurements comparing the accu-
racy of the investigated methods on different datasets. Our experimental setup utilizes a spatial
database system to compare the regions of the approximate map with those of the original accu-
rate map. According to our experimental results, a Support Vector Machine (SVM) with a radial
basis kernel outperforms all the other investigated methods.

1 INTRODUCTION
Recent developments in both data collection techniques through remote sensing and sensor net-
works and geocoding customer addresses in transactional systems have resulted in the availability
of huge amounts of geospatialobjectsin databases. Moreover, the maturity of the spatial database
technology which provides efficient storage and query capabilities for these bulky datasets has in-
creased the opportunity of incorporating geospatial data into different application domains. Sup-
porting spatial queries has been a promising step towards research on spatial data mining. The
research area of spatial data mining utilizes algorithms and techniques from statistics, machine
learning, spatial reasoning and spatial databases to realize various spatial relationships among
geospatial objects. Spatial classification is one of these techniques that analyzes spatial and non-
spatial attributes of the data objects to partition the data into a number of classes. These classes
can form a map representing various groups of related data objects. To illustrate, data objects can
be houses each with spatialgeocoordinateand non-spatial zip code attributes. Spatial classifica-
tion of the geocoordinates based on the objects’ zip code values (i.e.features) would generate
an approximatethematic mapof the zip code areas. Although there have been some studies on
classifying spatial datasets (Koperski et al. 1996), to the best of our knowledge no study has used
the visual representation of the results as a thematic map in order to evaluate the accuracy of its
method. This is important when the main goal of the classification is to build thematic maps.

Maps have been extensively used as the main references in the field of geography. They are
the most common tools for visualizing geospatial datasets. In particular, thematic maps show
the distribution of a feature over a limited geographic area. They illustrate how an area can be
divided into different labeled regions. In most of the cases, these maps can be approximated using
a limited set of labeled data points located inside the desired area. For example, in the domain of
sensor networks, suppose thousands of sensors with GPS systems are deployed in a battle field



monitoring the chemicals in the air. One may be interested in building the approximate thematic
map for the density level of chemicals in the air from the data monitored by the sensors.

In this paper, we use various classification methods to generate approximate thematic maps.
We study the application of four classification methods and evaluate the accuracy of each of
these approaches using its traditional test procedure. The procedure evaluates how well the trained
method can classify a test dataset and provides accuracy measures (test-basedprecision and re-
call). In addition, we propose to use more accurate measures that compare thegeometryof the
original and approximate maps. Using features of a spatial database we define ourarea-based
precision and recall measures that compare the area of each region in the approximate map with
its corresponding region in the original map. Finally, we identify how factors such as distribution
of the training data, neighborhood relationships and geometry of the original map can affect the
accuracy of the approximate map.

The remainder of the paper is organized as follows. Section 2 defines the main terms and
characteristics of the problem. In Section 3, we describe some machine learning techniques used
in classifying geospatial datasets. Section 4 includes our empirical experiments with real-world
data and the results of applying different methods on labeled data objects. Section 5 reviews the
geospatial interpolation techniques which are widely used in building thematic maps. Section 6
discusses the conclusions and our future plans.

2 DEFINITIONS
As the problem originates from the field of cartography and geography, we need to define some
specific terms and identify their corresponding terms in the machine learning domain. We first de-
fine the main terms used throughout the paper and describe their characteristics. Then we formally
describe the problem and discuss how it is related to the classification problem domain.

2.1 Problem components
Each data object in our application domain is a 2-dimensionalpoint in geographic space, in the
form of (Longitude, Latitude). These coordinates can be generated from a valid street address
using a geocoder. Although a location is an extent defined as a set of neighboring points, we will
use the point and location interchangeably.

Any non-spatial attribute of a location is called athemeor a feature. Two different types of
features exist. A class of features such aszip codeor phone area codeis assigned to every single
location in geographic space. Thus, each location islabeledwith a feature value. A different
class of features such aspopulation is maintained for extents. The value of these features has
no meaning/use when defined for a specific point location. For our classification algorithms, zip
codes and the US Metropolitan Statistical Areas (MSA) codes (see Section 4) are two different
features whose different values correspond to different class labels. We will refer to class labels
and feature values as features.

Thematic Mapis a map primarily designed to show a theme, a single spatial distribution or a
pattern, using a specific map type (Clarke 2002). These maps show the distribution of a feature
over a limited geographic area. Each map defines a partitioning of the area into a set of closed
and disjoint regions, each includes all the points with the same feature value. Formally speaking,
a thematic map is a partitioning of 2-d space intodisjoint regionsPi, (i = 1,2, . . . ,m) such that:

1. Each partition regionPi is corresponding to one feature valueF (Pi) but one feature value
can be assigned to several regions. Therefore there is a one-to-many mapping from feature
space to region space. In this paper, we focus on the maps with a one-to-one mapping
between regions and features.

2. For each pointo inside regionPi, the feature value ofo is equivalent to that ofPi (i.e.
F (o) = F (Pi)).

Figure 1 illustrates a California county map that can be viewed as a thematic map with county
name as a feature. Throughout this paper, we will use map to refer to any thematic map.



Figure 1. California county map as a typical thematic map.

2.2 Problem definition
Official organizations usually define thematic maps with strictly defined boundaries. For example,
US Postal Service specifies the zip code maps for each state in the United States. We call each of
these accurate maps anoriginal map. Consider the case when such an original map is not available.
However, a set of data points precisely labeled with the corresponding feature values is given. The
problem is to find a method to create the best approximate map from the given sample points. In
other words, we want to find a partitioning of 2-d space into disjoint regionsPi, (i = 1,2, . . . ,m)
such that:

1. Each partition regionPi corresponds to one and only one feature valueF (Pi).

2. For each pointo inside regionPi, and featuref 6= F (Pi):
Probability(F (o) = F (Pi)) > Probability(F (o) = f)

3 CLASSIFICATION METHODS
From a machine learning perspective, the thematic map problem is addressable using the spa-
tial multi-class classification methods. That is, as the training points are geospatial coordinates
in space, we should employ a classification algorithm which respects spatial relation between
points (e.g. neighborhood information). The algorithm should generate decision boundaries for
all feature classes in order to generate the desired map.

The task of classification is labeling a data object with a label from a given set of class labels
based on the attributes of the object. Moreover, spatial classification exploits the fact that closer
points in the original space are more related to each other and hence more likely belong to the same
class. Machine learning literature includes extensive research work on classification algorithms.

We should respect the characteristics of the training data and the corresponding accurate origi-
nal map when choosing our classification approach. The data is accurate and the solution needs the
most accurate region boundaries in the original space. Hence, the method must have a geometric
interpretation in the point space. Motivated by the above requirements, we describe four differ-
ent approaches and their application to generate the approximate map. In particular, we discuss
Nearest Neighbor, Linear and Quadratic Discriminant AnalysisandSupport Vector Machinesin
turn.

3.1 The Nearest Neighbor method
Tobler’s first law of geography says “everything is related to everything else, but nearby things are
more related than distant things” (Tobler 1979). This fact impliesspatial autocorrelationfor the



features in a geographic space. It means that there is a relation between features in neighboring
points. This inspires us to use theNearest Neighbormethod for classifying point datasets. This
method first stores all the training points with their labels. Subsequently, for any new point, it
assigns the feature of the closest point in the training set to the new point. Therefore, there is a
unique feature assignment for each point.

The nearest neighbor algorithm does not explicitly compute decision boundaries for each
feature. However, the decision boundaries form a subset of the Voronoi diagram for the training
data. A Voronoi diagram (Okabe et al. 2000) is the partitioning of a plane withn points into
n convex polygons (Voronoi cells) such that each polygon contains exactly one point and every
other point in a given polygon is closer to its central point than to any other point. Figure 2
shows the way Voronoi diagrams can partition the space into map regions. Merging Voronoi cells
corresponding to the points with identical features forms the map region for that value (more
details is discussed in Section 4.2.1).

Figure 2. Voronoi diagram of a set of points with 4 different feature values.

3.2 Linear/Quadratic Discriminant Analysis
The main building blocks of a map are partition regions that are defined by their boundaries.
Different discriminant functions try to approximately specify thesedecisionboundaries. One in-
teresting instance of such functions is a density estimator that relies on density of the points in
each region.

Linear Discriminant Analysis (LDA) is a classification method which uses Gaussian density
estimators as discriminant functions. LDA models each class density with a multivariate Gaussian
and assigns a common covariance matrix to all classes. Quadratic Discriminant Analysis (QDA)
is a generalization of LDA where each class can have different covariance matrices. Since LDA
and QDA specify decision boundaries between original data points without changing the shape
and location of the data, we choose them as our next candidate methods for classifying the point
data. We studied the impact of the training data density on our approximation results using these
functions in Section 4.

3.3 Support Vector Machines
Support Vector Machines (SVM) (Vapnik 1982; Vapnik 1998) are widely used in classifying large
datasets. Different kernel functions incorporated into the main algorithm results in a flexible re-
gression/classification tool. SVM maps all the training data points into a high-dimensional Hilbert
space and then generates region boundaries as hyperplanes separating data points in that space.
This training phase is expensive as an SVM tries to solve a quadratic problem with as many vari-
ables as data points. This causes the original approach to be slow for large datasets. Therefore,
researchers have proposed several optimized versions that we use in our experiments.

Original SVM algorithm provided by Vapnik is a two-class learning method but there are
some approaches to extend it to multi-class problems. SVM can solven class problems (n > 2) in
two ways: 1) trainsn machines, each classifying one class against the rest, 2) trainsn(n− 1)/2
machines, each classifying one class against one other class and uses a voting schema for each
machine. We used the first approach in our experiments.



4 EXPERIMENTS
We conducted several experiments to compare the accuracy of different classification methods
and study the impact of the following factors on the accuracy of each approach:

• d: density of the training data (point density). Our experiments were designed for different
density levels in the training data.

• p: distribution of the training data. Uniform and nonuniform datasets were examined.

• c: complexity of the original map. We used two different original maps as our reference
maps for measuring the accuracy.

The precision and recall measures were used to measure how precisely each approach clas-
sifies different features in the result sets. In the following sections, we describe different datasets
and the way accuracy for each method was measured.

4.1 Datasets
For our experiments, we considered approximating two different original maps using two different
datasets. We generated each map using both training datasets that included the data points labeled
with the corresponding feature values. This combination results in four different experiments. As
the original maps for these features are available, we can easily assign these labels to each data
point by finding the map region which includes the point.

Our first dataset is a real-world dataset for the United States obtained from the US Geological
Survey (USGS). The data uniformly covers a rectangular area with corner points latitude and
longitude (21.25,-158.28) and (61.48,-67.94). Different businesses (e.g. schools and churches) in
that area were used as data points in order to create an approximately uniform dataset. Using
uniform sampling, we extracted four different datasets with different densities from the USGS
data (density of the training points is defined as the number of points of interest over a one square
mile area). Our second dataset is the result of geocoding a set of valid addresses in the city of
Los Angeles. We retrieved these addresses by querying the data provided as an online White
Pages service on the Internet (Verizon Inc. 2004). The addresses correspond to a set of restaurants
located in an area of 30x30 miles. We used a geocoder application to convert these addresses to
a set of 2-dimensional points in geographic space. We refer to the first dataset as USGS and the
second one as WP.

The key difference between these two different datasets is in the distribution and density of
the points. USGS data is uniformly distributed over the area with different densities for different
businesses while WP data is nonuniform and dense near the center of each feature region.

Our first feature map consists of complicated regions of the US Metropolitan Statistical Areas
(MSA). The US MSA represents geographic entities, defined by the United States Office of Man-
agement and Budget for use by the Federal statistical agencies, based on the concept of a core
area with a large population nucleus, plus adjacent communities with a high degree of economic
and social integration to that core. We used these maps as original maps and the MSA codes of the
surrounding areas for WP and USGS points as their features. Figure 3 illustrates a small portion
of these areas.

Our second map is the zip code map of the entire US. We used the zip code of each USGS
and WP point as its feature for this map. As a result, we can precisely compare the approximate
map generated by each approach with the original map.

Table 1 depicts the characteristics of our two original maps. It shows that the majority of
the regions in the zip map are smaller and simpler than those of the US MSA map. Table 2
depicts characteristics of the two datasets we have used as our training data. It shows that there
is a possibility that some data points in the dataset are labeled with no specific feature value.
The classification methods generate a region for a certain feature value if and only if there is at
least one point in the training dataset which is labeled with that value. As an example, any method
which uses WP data to generate the zip map will generate an approximate map of only 203 regions
out of 29,948 regions in the original map. In other words, the approximate map is a small portion
of the original map as these 203 regions only cover a part of the city of Los Angeles.



Figure 3. A subset of the US Metropolitan Statistical Areas in Minnesota.

Table 1. The zip map and the MSA map characteristics.
Parameter MSA map Zip map
Number of regions 314 29,948
Average area of
regions (square mile) 2298.23 119.17
Total area covered
(square mile) 721,645 3,568,836
Average number of vertices
for each region 1585 70

4.2 Implementations
This section focuses on all database and mathematical tools we used to develop our experiments
and compute the accuracy of each method.

4.2.1 The Nearest Neighbor
We implemented the nearest neighbor method by building the Voronoi diagram of each dataset.
This approach enabled us to precisely compare the approximate map with the original map. First,
an open source program,qhull, was used to generate the Voronoi diagrams (Barber et al. 1996).
Next, we find all the adjacent Voronoi cells with an identical feature and merge their areas to
produce the region corresponding to that feature. A spatial database system, Informix Dynamic
Server featured with Spatial Datablades (Informix Corporation 2000), which provides spatial op-
erations for handling geometry objects, was used for the merging step. Finally, we compared each
region polygon to the corresponding region in the original map in order to measure precision-
recall values.

To illustrate, we show the above process through an example depicted in Figure 2. First, the
Voronoi cell for each labeled point is created. We store each of these Voronoi cells, its correspond-
ing point (Voronoi center) and the feature value itself as a tuple in the form of(ST Polygon,
ST Point, String) in a relational table. Then, the following SQL statement returns polygons
resulting from merging the Voronoi cells with the identical feature values:

SELECT Feature, ST DISSOLVE(Voronoi Cell)
FROM All Voronoi Cells
GROUP BY Feature;

Polygons retrieved by the above SQL statement form the approximate map generated by the
nearest neighbor method. Figure 4 shows the merge step for one of the feature values (i.e. A).



Table 2. Various datasets used by our classification methods for training.
Dataset Points Size Number of Number of

MSA values zip values
USGS School 73,729 314 29,948
USGS Church 56,614 314 29,948
USGS Hospital 3556 314 29,948
USGS Building 9761 314 29,948
White Pages Restaurant 825 5 203

Figure 4. Merging Voronoi cells corresponding to the points with a common feature.

Finally, the areas of each approximate region, the original region and their intersection are com-
puted to measure the precision and recall values. We used approximate region as theretrievedset
and the original region as therelevantset to define ourarea-basedprecision and recall measures
as follows:

Precision = |Retrieved
⋂

Relevant|
|Retrieved|

= Area(Intersection(approximate,original))
Area(approximate)

Recall = |Retrieved
⋂

Relevant|
|Relevant|

= Area(Intersection(approximate,original))
Area(original)

where|A| is the cardinality of the setA.
These measures are easily computed using InformixST AREA andST INTERSECTION func-

tions that return the area of a polygon and intersection of two polygons, respectively. We refer to
the precision-recall measure computed above as thearea-based precision-recall.

4.2.2 LDA and QDA
We used a freely available MATLAB toolbox (Kiefte 2000) for our LDA and QDA implemen-
tations. We modified the code to generate the exact boundaries for the approximate map and
measure the area-based precision-recall values. In addition, we also measured conventional preci-
sion values by classifying a sample of one of the datasets in Table 2 as a test set and performing
cross-validation for the training data. However, this measure is not as accurate as our area-based
precision-recall measure we defined in Section 4.2.1.

4.2.3 SVM
There are several SVM implementations freely available but most of them cannot load our large
training datasets. One possible solution to this problem is dividing the original dataset to sev-
eral chunks of smaller sizes so that each chunk fits into the main memory (Bradley et al. 2002).
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Figure 5: Test-based precision (a) and recall (b) for different methods generating the zip map using
USGS data.

RHBNC-SVM (Weston and Watkins 1998) is an open source implementation of SVM that sup-
ports multi-class pattern recognition for large datasets using chunking. It enabled us to train sev-
eral support vector machines for our experiments.

Since we need to generate the best possible trained SVM with the least error, we set the value
of the parameterC 1 in SVM configuration to a large number. We globally scaled point attributes
(latitude and longitude) as they were of the same domain type. Furthermore, to make the program
train SVM with large training data, the chunking option was implemented. In our experiments, we
trained SVM with four different kernels: radial basis (RBF), linear and polynomial kernels with
the degrees of 2 and 3.

4.3 Results
In our first set of experiments, we investigated how precisely each classification method can ap-
proximate the original map. Figure 5a depicts the precision of four different methods we used to
approximate the zip map using the USGS dataset with different densities for the training datasets.
We made samples including different subsets of USGS data (see Table 2) as our training datasets
with different point densities. Then, we used each method to classify the training datasets and
computed the accuracy measures by counting the number of correctly classified data points in
our test datasets (i.e. the conventionaltest-basedprecision measure). As shown in Figure 5a, as
the point density in the training data grows, precision of almost all methods increases. Nearest
neighbor shows the best accuracy even for low densities. SVM with different kernels generates
the second most accurate map. The accuracy of LDA and QDA methods fluctuates over different
densities but they create acceptable results with the precision up to 90% for even the sparse train-
ing sets. We can also compute the test-based recall in the same way. Figure 5b shows the recall
values. Considering the definition of precision and recall, the figure illustrates that although all
the methods create good approximations with high precisions but the generated map regions are
only small subsets of the original regions when data is sparse. These regions are growing as the
density of the training dataset increases.

In the previous experiments, we examined the accuracy of each of the investigated method
using uniformly distributed test cases from USGS data. The accuracy of the test-based precision
values computed using this approach depends on how well the test datasets can represent the set
of all the data points inside each region of the original map. Therefore, we used the features pro-
vided by our spatial database system to accurately measure area-based precision-recall values for
our classification methods (see Section 4.2.1). Figure 6 depicts area-based precision and recall
values for the approximate zip maps generated by our four suggested methods. We used exactly
the same map regions generated during the first experiment to compute area-based accuracy mea-
sures. As shown in the figure, the higher the number of points in each region, the more accurate
the approximate region generated by the method. But the result is quite different from test-based
values computed in the previous experiment; area-based values are far less than their correspond-

1The bound on the Lagrange multiplier (alpha value) of support vectors.
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Figure 6: Area-based precision (a) and recall (b) for different methods generating the zip map
using USGS data.
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Figure 7: Area-based precision (a) and recall (b) for different methods generating the MSA map
using USGS data.

ing test-based values. Even the order in terms of accuracy among different methods has changed.
SVM with a radial basis kernel is the superior approach with respect to both precision and recall
measures. All other SVM kernels also outperform nearest neighbor and LDA but QDA is compa-
rable to SVM with a polynomial kernel. This set of experiments reveals the fact that the test-based
precision-recall measure is not a reliable measure to evaluate the accuracy of different classifica-
tion methods in generating approximate maps. Instead, the area-based precision-recall measure
examines all the false hits and the missing points in a map region and hence is more reliable.

Figure 7 shows area-based precision-recall values for the methods used to generate the ap-
proximate MSA map. Considering both precision and recall, SVM with radial basis kernel is still
the most accurate method but it results only into a maximum precision of 75% even for dense
training data. Nearest neighbor and QDA are in the second place and all other SVM kernels fol-
low them. LDA is the least accurate method in terms of both precision and recall. The intuition
here is that the LDA density estimator function defines a density center for each map region which
is far from its boundaries in the case of the MSA map with large map regions.

Comparing the two diagrams in Figure 6 and Figure 7 verifies that the zip map generated by
each method using a training dataset is more accurate than the MSA map created by the same
method using the same training dataset. The reason for this difference is that the regions of the
MSA map are much larger than those of the zip map (see Table 1) and the classification method
needs different densities to achieve an acceptable approximation for each of these maps.

Our last set of experiments was aimed to study the impact of the training data distribution on
the accuracy of the approximate map. We generated two approximate zip maps by training the
SVM method using USGS and WP data, respectively. Figure 8 depicts area-based precision-recall
values computed for these maps. USGS data is a uniformly distributed dataset but WP data is more
dense in the areas close to the center of each zip region. As shown in the figure, considering both
precision and recall values, more accurate map regions with small number of training data points
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Figure 8: Area-based precision (a) and recall (b) for the zip maps generated by the SVM method
with a radial basis kernel using USGS and WP data.

can be generated using USGS data. In contrast, the method trained using WP data outperforms the
one trained using USGS data for regions with larger point density. The intuition here is that since
the zip map regions are small, using more than 7 training points in those regions that are denser
close to their center is sufficient to achieve an acceptable approximate map.

5 RELATED WORK
A relevant body of work in building thematic maps from underlying datasets is the area of spatial
interpolation. Spatial interpolation methods use the observation data provided by remote sensing
sites or images taken by radars. These methods have been extensively used for generating thematic
maps such as land coverage and precipitation maps (Bruin 2000; Dungan 1998; Goovaerts 1999).
However, all the studies in this area have focused on different natural phenomena (e.g. vegetation
coverage) and tried to find the most accurate map using an environmental dataset. Most of these
studies have employed the process models of the phenomena to improve the precision of their
interpolation methods. Their approaches are not always applicable to our problem of building
thematic maps for general non-natural features (e.g. zip code). The reason is that no process
model describing the distribution of these features exists.

Another relevant area consists of regression/classification algorithms that have been proposed
in the field of machine learning. These techniques are widely incorporated in numerous research
and industrial projects. Comparing to geospatial methods, these methods are model-free. That is,
they are general enough to interpolate missing values using only a set of labeled sample data. This
feature of the learning algorithms makes them appealing enough to be employed in geospatial-
related problems. Hence, we based our study on these machine learning methods and we have
already discussed them in details in Section 3.

For the remainder of this section, we briefly describe the main spatial interpolation methods
used for mapping natural phenomena. Spatial interpolation is the primary means to estimate val-
ues for unmonitored locations. Visualizing the estimated values combined with the set of labeled
locations forms the thematic map pertaining to the corresponding feature domain.“Spatial inter-
polation is the procedure of estimating the values of properties at unsampled sites within an area
covered by existing observations” (Lam 1983). Different spatial interpolation methods have been
proposed for environmental datasets with discrete observations at some locations in the environ-
ment. These methods are categorized into global and local groups based on the set of observations
they use to interpolate missing values. The group of global methods apply a single function to the
entire set of observations in the space.Kriging is an example of a method in this group. The local
methods instead apply a common function repeatedly to subsets of the observed points. These
methods such asSpatial Moving Average (SMA)andTriangulated Irregular Networkusually gen-
erate the interpolated data as a set of local results.

5.1 Kriging
Kriging (Oliver and Webster 1990) is a complicated interpolation technique developed in the field
of geostatistics. The technique observes the underlying process in the space using representative
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variables (e.g. temperature) and computes unknown values of the variable using the values sam-
pled in a limited set of locations. The interpolation method in Kriging is an optimization procedure
which uses a model of the process to determine unknown values. This model is given as a vari-
ogram of the process. The method assigns optimal weights to the known values in order to predict
the unknown values. Kriging is the most extensively used geostatistical interpolation method for
predicting values at unrecorded locations. In (Goovaerts 1999), Goovaerts uses three variants of
Kriging to incorporate a digital elevation model into the prediction of rainfall. The study reports
on the performance of these methods compared to three univariate techniques and concludes that
employing a model improve the precision of the interpolation. In (Dungan 1998) Kriging is used
to predict the vegetation quantities for an area near the coast of Oregon using samples from a
radar image. We cannot use Kriging for building thematic maps of non-natural features such as
zip code as there is absolutely no model describing the distribution of these features.

5.2 Spatial Moving Average (SMA)
Spatial Moving Average method is widely used in different fields such as GIS and image process-
ing. SMA divides the space using equal size grid cells. The value assigned to each location in the
grid cell is then defined as a weighted average of the values of all observation points inside the
cell. The corresponding weight of each value is1/d whered is its distance from the center of the
grid cell. The method is calledInverse Square Distancewhen the weight of each value is1/d2.
In (Goovaerts 1999), Goovaerts reports on interpolating rainfall values using this method as one
of the univariate techniques. Our study cannot use SMA because the range of values assigned by
SMA is not identical to the discrete finite set of feature values of the labeled observation locations.

5.3 Triangulated Irregular Network (TIN)
TIN (Peucker et al. 1978) is a vector-based method used as a digital elevation model. It is a
method to generate a 3-dimensional model for the elevation data collected at a set of observation
points in 2-d space. The method generates the model in two steps. First, all the observation points
which are of the form(x, y, z) are projected to thexy plane. The Delaunay triangulation of the
xy plane is created using the set of projected points. This is a unique partitioning of the space
using triangles formed by neighboring points in the Voronoi diagram as their vertices. Then, for
each triangle in thexy plane (4s1s2s3 in Fig. 9) the three observation points corresponding to its
vertices are considered. Assuming that the points are not collinear, they define a unique 3-d plane.
The projection of the triangle to this plane forms a 3-d triangle (4s′1s′2s′3). Finally, the set of all
3-d triangles defined by the triangles in the Delaunay triangulation is a 3-d visualization of the
observation data.

Although TIN is a visualization technique but it has also been used as a spatial interpolation
method. Let thez value of each point be the value of the functionf(x, y) to be interpolated. To
interpolate the value of a location(x, y), first it is located in the set of Delaunay triangles. Then, it
is projected to the corresponding 3-d triangle of its surrounding Delaunay triangle. Thez value of
the projected point is the interpolated value of the location(x, y). Interpolation with TIN assigns
values only to the locations inside theconvex hullof the observation points. That is, it assigns



no value to the locations which are outside of all triangles. This shortcoming of the method is
overcome by inserting virtual points on the boundaries of the space. We did not use TIN in our
study as the range of values which TIN assigns to the unknown locations is a continuous set and
need to be discretisized to be used to build maps of discrete regions.

6 CONCLUSION AND FUTURE WORK
We proposed the use of classification methods to build approximate thematic maps. Through sev-
eral empirical experiments we identified the accuracy of different methods using the traditional
test-based precision measure. We introduced the area-based precision-recall measure, a more ac-
curate measure, and performed different sets of experiments to compute these values using a
spatial database system. We also studied the impact of the training dataset distribution on the
generated approximate map. The major observations can be summarized as follows:

• Classification methods that generate decision boundaries for all classes can be applied to
sample data points to build approximate thematic maps.

• The area-based precision-recall measure verifies that SVM with a radial basis kernel out-
performs all the other investigated methods in accuracy.

• The area-based precision-recall values are usually smaller than their corresponding test-
based values. Moreover, the area-based measures are more acceptable in practice.

• A spatial database system can be efficiently used to compute the area-based accuracy mea-
sures.

• Uniformly distributed features in the training dataset lead to a more accurate map for sparse
datastes.

We intend to extract decision boundaries for other classification methods and define new ac-
curacy measures which consider the geometry of the generated map. We also plan to explore more
classification techniques and study the way other factors such as the requested resolution for the
approximate map impact the accuracy of different classification methods.
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