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Abstract—This paper presents a method for constructing a
lightweight taxonomy of geospatial features using OpenStreetMap
(OSM) data. Leveraging the OSM data model, our process
mines frequent tags to efficiently produce a structured hierarchy,
enriching the semantic representation of geo-features. This data-
driven taxonomy supports various geospatial analysis applica-
tions. Accompanying the methodology, we release the source code
of our tool and demonstrate its practical application with tailored
taxonomies for California (US) and Greece, underscoring our
approach’s adaptability and scalability.
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In the era of digital mapping and geographic information

systems (GIS), the availability of accurate and comprehensive

spatial data is crucial for various applications, ranging from

urban planning to scientific research [4], [9], [10], [12].

OpenStreetMap1 (OSM) has emerged as a community-driven

initiative to provide free and open access to global spatial data,

making it the richest publicly available information source

on geographic entities worldwide. However, using OSM data

in downstream applications is challenging due to the large

scale of OSM, the heterogeneity of entity annotations, and

the absence of a standardized ontology to describe entity

semantics [2]. Our taxonomy supports applications from auto-

mated navigation systems, which require precise geographical

feature recognition for route optimization, to the classification

of remotely sensed data, enhancing both the integration and

utility of OSM data in sophisticated GIS applications.
Leveraging the concept of Volunteered Geographic Informa-

tion (VGI) [3], OSM relies on user contributions to map the

geometries and attributes of both natural and urban features.

While OSM has proven to be a valuable resource, certain

limitations hinder its full potential [7]. The utility of OSM data

heavily relies on the consistent tagging of geographical entities

by its users, as the platform does not impose restrictions on tag

choices. Instead, OSM encourages its contributors to follow

a set of best practices for annotation, leading to a highly

heterogeneous landscape of tags. The number of tags and the

level of detail for individual OSM entities is highly variable.

Figure 1 provides an illustration of various building types

within a neighborhood, selected from OSM, showcasing the

most specific tags associated with them. However, OSM lacks

1https://www.openstreetmap.org/

a system that establishes relationships between these tags, hin-

dering the extraction of valuable insights. As a result, the lack

of clear semantics not only hinders the interoperability of OSM

data with other datasets but also severely limits its usability

in various applications. To overcome these limitations, it is

crucial to establish a comprehensive taxonomy extractor from

this dynamic data. This will enable better integration with

other datasets and facilitate the effective utilization of the data

for diverse scientific and practical purposes.

We address the limitations above and unlock the full po-

tential of OSM data by proposing an approach to structure a

taxonomy of geo-feature types from a given OSM data dump.

We demonstrate this approach by creating a comprehensive

and well-defined taxonomy of geospatial features derived from

OpenStreetMap (OSM) data, utilizing a tool that we have

made available as open source2. This taxonomy will enable

users to understand the connections and categorization of

different types of features, facilitating detailed analysis and

utilization of the data. This approach enables better integration

of OSM data into machine learning models and broadens its

application, unlocking new opportunities to harness OSM’s

rich informational spectrum in diverse domains.

I. CONSTRUCTING OSM TAXONOMIES

A. The OpenStreetMap Data Model

To understand our proposed approach, it is crucial to elu-

cidate the structure of the OSM data. Initiated in 2004 as a

collaborative project, OSM strives to generate a publicly acces-

sible vector map encompassing the entire world. Remarkably

successful, the project has over 10 million registered users as

of March 2023. In the OSM data model, each feature is repre-

sented as one or more geometries (nodes, ways, and relations)

with attached attribute data, which contains meaningful infor-

mation for the taxonomy construction. Attribute information is

stored as tags associated with geographic entities in the form

of key-value pairs. As OSM does not prescribe a fixed set of

tags, meticulous filtering becomes imperative to include only

pertinent information. The comprehensiveness and diversity

of features available in OSM can exhibit substantial regional

2https://github.com/basels/osm-taxonomy
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Fig. 1. Simplified illustration of a neighborhood within OpenStreetMap with
different building feature sub-types, depicting instances with type house
in blue, apartments in red, residential in green, school in orange,
and hotel in purple.

variations due to the contributions of volunteers. While this

data model is adequate for numerous applications, it lacks a

meaningful structure between tags or their interrelationships,

which constitutes the focal point of this work.

B. Identification of Meaningful Tags

The initial phase of our methodology centers around the

preprocessing of OSM and reducing the set of its attribute

data into a meaningful one. This dataset consists of a wide

range of tags contributed by OSM users, encompassing both

suggested and self-defined tags [5]. To illustrate the magnitude

of this tag diversity, let us consider a recent snapshot of OSM

data for California from March 2023, where we encountered

an overwhelming 3,000 unique tags. Given the extensive and

heterogeneous nature of these tags, it becomes imperative to

establish a concise and representative set of target labels that

would serve as the foundation for constructing the taxonomy.

During the identification process, we encounter two distinct

challenges. First, we need to address the issue of frequent

tags that are non-informative. For instance, the name tag,

which typically provides the name of a geo-entity (e.g., “The

Ritz-Carlton”), or the maxspeed tag, commonly associated

with road features to indicate the maximum allowable driving

speed. To address this issue, we identify the most commonly

used tags from a user-centric viewpoint and manually curate

a set of “blacklisted” tags. This list is included with the tool

and can be easily modified to accommodate different domains

or specific user preferences.

Secondly, we confront the challenge of infrequent tags that

may possess informative characteristics but are inadequately

represented within the dataset. To mitigate this issue, we apply

a frequency cutoff threshold, effectively filtering out less com-

mon and idiosyncratic tags, and focusing exclusively on the

most prevalent and significant ones. For instance, consider the

key-value pair leisure=sauna which describes a specific

subtype of leisure. In the recent California OSM snapshot, this

pair appeared fewer than 10 times. Consequently, it was not

considered for inclusion in the final taxonomy. Through these

meticulous processes, we strike a delicate balance between

inclusiveness and practicality, ensuring that the resulting tax-

onomy faithfully represents the prominent geo-features while

avoiding an unwieldy and unmanageable taxonomy structure.

C. Establishment of Hierarchical Relationships

We present our methodology for establishing taxonomic

parent-child relationships among various geo-features using

the OSM data. The objective is to construct a hierarchical

taxonomy of labels based on frequent tag assignments. To

accomplish this task, we implemented Algorithm 1, which

takes the OSM snapshot data as input and produces a desired

taxonomy tree data structure.

The algorithm operates as follows. Following the

initial processing and removal of the undesirable tags

(as described in Section I-B), we iterate through the

dataset, creating a key-value path counter to identify

commonly occurring tag assignments (lines 3-8). These

paths serve as the foundation for defining parent-child

relationships within the tree structure, thereby shaping the

taxonomic hierarchy. For instance, consider the set of tags

{highway=service, service=driveway} which

forms the path highway--service--driveway. In this

case, the unique parent-child paths are highway--service
and service--driveway.

Subsequently, we insert paths into the tree, prioritizing

the most frequent ones (line 9). To maintain consistency

and address any ambiguities, we handle instances where

multiple paths may conflict with the evolving tree struc-

ture by favoring the more frequently occurring path and

omitting the less common one (line 10). Moreover, when

integrating a parent-child path into the tree, if a child

tag appears under different parent tags for distinct entities,

we replicate it with a unique identifier (line 13). For in-

stance, the tag (key or value) residential may pertain

to both highway and building; in such cases, they

would be distinctly labeled as residential_highway and

residential_building, respectively.

Algorithm 1: Constructing a lightweight taxonomy.

Data: osmDataset
Result: taxonomyTree

1 taxonomyTree = create empty tree();
2 tagPathsCounter = Counter();
3 for entity in osmDataset do
4 tags = entity.get tags(); // key-value pairs
5 filteredTags = filter tags(tags);
6 if filteredTags is not empty then
7 tagPath = create tag path(filteredTags);
8 tagPathsCounter[tagPath]++;

9 for (tagPath,count) in tagPathsCounter.sort(order=descending) do
10 if is path consistent with tree(tagPath, taxonomyTree) then
11 parent, child = extract parent and child(tagPath);
12 if parent is not null and child is not null then
13 insert parent child pair(taxonomyTree, parent, child);

14 return taxonomyTree;
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By following this process, we construct a taxonomy tree that

encompasses a comprehensive representation of geo-features

within the OSM dataset. The resulting taxonomy allows for a

more nuanced understanding of their interrelationships.

II. QUALITATIVE EVALUATION

To assess the effectiveness of our proposed method for

constructing a lightweight taxonomy of geographic features

using OSM data, we conducted an experiment utilizing two

comprehensive OSM datasets in the form of .osm dump

(snapshot) files. Our evaluation consists of a qualitative analy-

ses, providing insights into the resulting taxonomies generated

from each dataset and comparing them on a surface level. The

first dataset we employed comprised the complete California

(US) OSM geo-data snapshot from March 20233, encompass-

ing approximately 150 million OSM instances. Among these

instances, approximately 10 million contained at least one tag,

with 1 million being nodes, 9 million being ways, and around

68,000 being relations. The number of tags assigned to each

instance varied from 1 to 16, with an average of 2.3 tags

per geographic entity. The second dataset consisted of the

complete Greece OSM snapshot from March 20234, which

included approximately 40 million OSM instances. Around 2

million contained at least one tag, with 266,000 being nodes,

1.7 million being ways, and around 18,000 being relations.

Similarly, the number of tags assigned to each instance ranged

from 1 to 13, with an average of 2.1 tags per geographic entity.

Each dataset comprised around 3,000 unique labels. For both

datasets, we established a minimum threshold of 500 instances

per tag for the purpose of our analysis.

To evaluate the resulting taxonomies, we performed a qual-

itative analysis, examining them from a user perspective to

assess their coherence and utility. The qualitative analysis

revealed several positive findings regarding the constructed

taxonomies. In both cases, the taxonomies successfully cap-

tured the essential characteristics of the geographic features

within the OSM datasets, providing a structured and orga-

nized representation. A snippet from the resulting taxonomy

generated from the California dataset is depicted in Figure 2a,

demonstrating the hierarchical relationships between tags that

facilitated the classification of diverse types of geo-features,

such as aeroway and highway. This hierarchical structure

enhanced the comprehension and interpretation of the roles

and functions of these features. Furthermore, the taxonomy

facilitated the differentiation of various sub-types within the

same feature category, such as cycleway and footway, as

well as different types of service ways, including alley
and drive-through, as illustrated in the same figure.

From a human perspective, the resulting taxonomies exhib-

ited both accurate and inaccurate taxonomic relations. It accu-

rately captured hierarchical relationships between categories

in certain domains, such as transportation (e.g., highway
- residential_highway, aeroway - taxiway) and

3https://download.geofabrik.de/north-america/us/california.html
4https://download.geofabrik.de/europe/greece.html

amenities (e.g., amenity - restaurant, leisure -

park). The resulting relationships reflected intuitive group-

ings and aligned with human understanding. However, certain

inaccuracies were observed in the taxonomy, likely stem-

ming from its automatic generation. Figure 2b illustrates an

example where the taxonomic relation between building
and building_type is redundant and does not provide

additional meaningful information.

(a) Snippet from the Califor-
nia taxonomy showing accu-
rate hierarchical relationships

(b) Snippet from the resulting
California taxonomy showing re-
dundant taxonomic terms and re-
lations.

Fig. 2. Taxonomy snippets from the resulting California (US) dataset.

Furthermore, we conducted a surface-level comparison be-

tween the resulting taxonomies derived from both datasets.

This comparison highlighted how different geographical lo-

cations, such as countries or states, can yield distinct re-

sults. Figure 3 presents a textual comparison between the

resulting taxonomies, demonstrating the differences between

California and Greece. For example, the historic cat-

egory in Greece encompasses types of features, such as

archaeological_site and castle, which are either

uncommon or nonexistent in California. Furthermore, the

usage of the internet_access=wlan tag by OSM users

in Greece was much more prevalent compared to the California

dataset. Additionally, the presence of the kerb tag category,

encompassing different types of the feature (e.g., flush
and raised), was observed in the taxonomy resulting from

the California dataset but not in the Greece dataset. These

variations in the taxonomies could be attributed to factors such

as tagging style, cultural differences, and historical context.

The full taxonomy text files generated from both experimental

datasets are also available in our repository.5

The inaccuracies observed in the taxonomy can be attributed

to the limitations of automatic generation. While automated

approaches can be efficient, they often lack the contextual

understanding and domain knowledge possessed by humans.

The absence of human judgment and expert curation during

the automatic generation process can result in inconsistencies

and illogical relationships within the taxonomy.

5https://github.com/basels/osm-taxonomy/tree/main/data
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Fig. 3. Textual comparison of snippets from two resulting taxonomies:
California (US) on the left and Greece on the right.

To enhance the accuracy of automatically generated tax-

onomies, while still benefiting from the efficiency of the

automated process, it is useful to integrate human oversight

and expert input at key stages. Combining automated tech-

niques with strategic human validation and refinement can

help identify and rectify inaccuracies without undermining the

automation’s extensive groundwork. Moreover, incorporating

domain-specific knowledge and user feedback can further

improve the quality and coherence of the generated taxonomy.

The semantic representation of the taxonomy offers a mean-

ingful utility for OSM, addressing the limitations associated

with unstructured tags, noise, inconsistencies, and the require-

ment of domain knowledge within the OSM suggested schema,

which is vast and constantly evolving. Consequently, it pro-

vides a comprehensive framework for categorizing different

types of features.

III. RELATED WORK

Various approaches have been employed to construct ontolo-

gies suitable for geographical data, introducing more structure.

Sun et al. [6] have developed a three-level ontology for

geospatial data that, although potentially reusable, requires

completion and quality assessment through manual work. Sim-

ilarly, Codescu et al. [1] have created OSMonto, an ontology

for OpenStreetMap tags that facilitates the exploration of

tag hierarchies and relationships with other ontologies, but

also requires manual effort. In contrast, our research initially

surpasses ontology development by automatically constructing

a lightweight taxonomy as a foundational step, which is then

refined with minimal human intervention. This balance of

our approach being primarily automatic while still benefiting

from human expertise not only sets it apart from these works

but also leads to a more targeted representation of geospatial

features, enhancing the analysis and utilization of OSM data.

In the domain of leveraging OSM data and constructing

structured taxonomies for geospatial features, WorldKG [8] is

a geographic knowledge graph that provides a comprehensive

semantic representation of geographic entities from OSM.

Dsouza et al. [11] further leveraged WorldKG to develop

a neural architecture that exploits a shared latent space for

effective tag-to-class alignment of OSM entities. Building on

these pivotal contributions, our methodology enriches this line

of research by dynamically constructing taxonomies that can

assimilate OSM data from any time frame, ensuring an up-to-

date and adaptive representation, thus underlining the enduring

significance of data alignment and structure.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented an automatic approach for

constructing lightweight taxonomies of geospatial features

from OpenStreetMap (OSM) data. By leveraging the OSM

data model and identifying frequent tags, we established

hierarchical relationships to create a structured taxonomy.

Our approach addresses the limitations of unstructured tags

in OSM and enhances the semantic representation of geo-

features. Through qualitative analysis, we demonstrated the

effectiveness and utility of the constructed taxonomy in facil-

itating the classification and interpretation of diverse types of

geo-features, such as buildings and highways.

Future work can focus on improving the scalability and

efficiency of the taxonomy construction process, incorporating

machine learning and natural language processing techniques

to handle ambiguous tags, refining the taxonomy with user

feedback and domain-specific knowledge, and integrating it

into various geospatial analysis applications. These efforts will

advance the understanding and utilization of OSM data for a

wide range of geospatial applications, paving the way for more

efficient and accurate geospatial analysis workflows.
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