
Embedding Spatial and Semantic Contexts for Geo-Entity Typing
in Smart City Applications

Basel Shbita
USC Information Sciences Institute
Marina del Rey, California, USA

shbita@isi.edu

Binh Vu
USC Information Sciences Institute
Marina del Rey, California, USA

binhvu@isi.edu

Fandel Lin
USC Information Sciences Institute
Marina del Rey, California, USA

fandelli@isi.edu

Craig A. Knoblock
USC Information Sciences Institute
Marina del Rey, California, USA

knoblock@isi.edu

Abstract
Geospatial data are critical for urban planning and smart city appli-
cations, yet understanding and classifying geo-entities in diverse
datasets remains challenging. Accurate representation and classifi-
cation of geo-entities are essential for tasks such as geo-entity typ-
ing and linking, enabling better map understanding and informed
decision-making. This paper presents a self-supervised learning
approach to classify geo-entities by embedding their geometric,
spatial, and semantic neighborhood contexts, creating robust rep-
resentations for geo-entity typing. Using OpenStreetMap (OSM)
data, our method links geo-referenced entities to Wikidata classes
and OSM tags with high performance, achieving an 𝐹1 score of
approximately 0.85. Beyond the technical contribution, our method
addresses Responsible AI challenges, including transparency, and
data standardization on the Web, aligning with sustainable smart
city development.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning; Neural networks; • Information systems →
Geographic information systems.
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1 Introduction
The increasing availability of digitized geospatial data is trans-
forming urban development, governance, and public services in
modern smart cities, as well as advancing research in the social
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and natural sciences [3, 9, 18, 41]. Advances in technology have en-
abled the extraction of structured vectorized geospatial information
from open data sources such as OpenStreetMap (OSM) and scanned
maps [11, 28, 38, 40]. These datasets provide a rich foundation for
digital twin technologies, automated city planning, and AI-powered
decision-making in smart urban environments [2].

Despite these advancements, accurately classifying, linking, and
integrating geo-entities remains a significant challenge, mainly
when dealing with heterogeneous, large-scale urban and spatial
data. Understanding the spatial and semantic contexts of entities
such as roads, buildings, and natural features is crucial for appli-
cations ranging from infrastructure monitoring to environmental
sustainability [8, 39]. Figure 1 illustrates different types of vector-
ized geo-entities extracted from urban datasets, emphasizing the
variation in their shapes and spatial footprints.

A major challenge in geospatial AI applications is the lack of
standardized entity classification methods incorporating spatial and
semantic contexts [30]. This challenges data integration systems
that require automatic understanding, such as those that involve
digitized maps and remote sensing data [25, 35, 39].

The Web plays a pivotal role in the sharing and standardizing
geospatial knowledge. Studies are exploring the abundant geospa-
tial information available online for improved understanding of data
and linking of entities with geospatial entities on theWeb [5, 25, 34].
OpenStreetMap1 (OSM), emerging as a significant open knowledge
base on the Web, houses an expansive repository of crowd-sourced
geospatial data obtained through collective efforts of an exten-
sive network of contributors. OSM provides structured yet non-
ontologized tagging systems, offering valuable insights into ur-
ban features and land use through community-driven annotations.
Figure 2 shows an example of a geo-instance on OSM with the
user-assigned tags natural=water and water=reservoir.

To address the challenge of fair, transparent, and scalable geo-
entity classification, we introduce a self-supervised representation
learning approach that embeds geometric, spatial, and semantic
contexts of geo-entities. Our method leverages OSM data and links
geo-referenced entities to structured knowledge bases, such as
Wikidata [42], ensuring semantic consistency and interoperability.
Unlike conventional GIS methods that rely on predefined feature
engineering, our embedding model learns latent geo-entity repre-
sentations based on their spatial configurations and neighboring
1https://www.openstreetmap.org/
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(a) Bodies of water (b) Waterways (c) Residential buildings

Figure 1: Examples of geo-instance shapes and footprints, encoded as vector data and categorized by type.

Figure 2: An OpenStreetMap instance depicting a ge-
ographic feature labeled with tags natural=water and
water=reservoir, offering vital crowd-sourced information
for data understanding, structuring, and integration.

features, reducing bias from manual feature selection and improv-
ing model interpretability.

The representation of a geo-entity faces challenges from its multi-
dimensional nature, including its proximity to various other geo-
entities. For example, the location of a building relative to other
structures, roads, or green spaces and natural features like rivers
can influence its function and size. However, AI-driven geospa-
tial models in smart cities face critical fairness, accountability, and
transparency challenges. Since OSM is community-driven, its data
coverage and labeling quality vary across regions, potentially intro-
ducing biases in classification outcomes. Ensuring responsible AI
in smart city applications requires methods to mitigate these biases,
enforce consistency, and enhance interpretability. Our approach
addresses these concerns by leveraging structured taxonomies to
maintain semantic consistency and improve model interpretability
through contrastive learning techniques.

Embedding-based methods have been successfully applied in
natural language processing (e.g., word embeddings [29, 31], sen-
tence embeddings [33]) and computer vision (e.g., CNNs for image

classification [13, 23]). Inspired by these advances, we apply self-
supervised contrastive learning [12, 24] to geospatial representation
learning, optimizing geo-entity embeddings for semantic typing
and AI-driven urban analytics.
In this paper, we make the following contributions:

(1) We introduce a novel self-supervised embedding method for
geo-entities that combines geometric, spatial, and semantic
contexts. We employ open data from the web, particularly
OSM, to characterize the geo-entity context.

(2) We address responsible AI challenges in smart city applica-
tions by incorporating structured taxonomies to mitigate
bias in geo-entity classification. Our taxonomy-aware con-
trastive learning framework enhances both classification
accuracy and interpretability.

(3) We conduct extensive experiments on real-world datasets,
demonstrating high performance in linking geo-referenced
entities toWikidata classes and OSM tags. We also make our
source code and data publicly available2 as a contribution to
the broader research community.

Our approach contributes to the broader goal of creating web-
based intelligent infrastructures that support the next generation
of human-centric smart cities, where AI and automation enhance
livability while preserving data accountability and ethical decision-
making.

2 Embedding Method
The task at hand involves geospatial entity embedding and represen-
tation learning to enable geo-entity typing and classification. This
paper focuses on classifying geo-referenced entities represented
in Well-Known Text (WKT), a widely used format for encoding
geometric objects [14]. However, our approach is not limited to
WKT, as it can be extended to any digitized geo-referenced data
format, as long as the spatial information is structured and available.
Ultimately, we aim to classify these entities into a set of semantic
types within a given dataset, leveraging their geometric, spatial,
and contextual attributes for robust classification. Figure 3 shows
a visualization of the embedding architecture operating over the
input data in WKT format.

2https://github.com/basels/GeoEntityContextNet
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Figure 3: Illustration of the geo-entity encoding and embedding architecture, integrating shape, spatial, and neighborhood
information, with auxiliary components depicted in blue and the resulting output, representing the latent vector, in green.

2.1 Representation Learning Model
Our architecture encompasses three main components: the shape
encoder, the spatial attributes encoder, and the contextual neigh-
borhood encoder, as depicted in Figure 3. The shape encoder aims
to capture the geometric characteristics of the geospatial object,
while the spatial attributes encoder extracts measurable attributes,
such as area and length, employing standard spatial computational
methods. Conversely, the neighborhood encoder generates a feature
vector based on the semantic types of the neighboring geo-entities
relative to the entity under consideration. To comprehensively rep-
resent the geospatial entity, we utilize the output from each encoder
to train the primary embedding model.

2.1.1 Extracting Geometric and Spatial Features. Our approach
holistically encodes the geo-entity’s shape information, ensuring
that it is not constrained by memorizing the positions of training ex-
amples. Addressing the heterogeneity and variable length of vector
data, we generate a “footprint” outline for each entity to learn its
shape characteristics. The WKT representation is discretized into a
fixed 200 × 200 binary two-dimensional array, serving as a single-
channel binary raster, and identified as the minimum resolution
that adequately depicts lines and multi-lines, rendering visually
perceptible. As depicted in Figure 3, we incorporate augmentation
during training by applying various transformations, such as resiz-
ing, sharpness adjustments, rotations, and flips, to enhance model
robustness and enable generalization across diverse shapes.

Simultaneously, spatial attribute encoding extracts and inte-
grates size and length properties of geo-entities using established
geospatial tools.3 This step is crucial for the final embedding model,
as the geometric shape encoding component captures only relative
form while ignoring absolute scale. By incorporating shape and
spatial dimensions, our approach ensures a more comprehensive
representation of geo-entities, preserving critical distinctions.

2.1.2 Neighborhood Contextual Semantic Encoding. To materialize
the neighborhood context of a specified geo-entity, our encoder
embeds the relative positions of each neighboring feature for the
target entity, ensuring comprehensive encapsulation of the data.
3https://shapely.readthedocs.io/en/stable/

Figure 4 provides a visual illustration, showing an anchor fea-
ture (e.g., school, highlighted in orange), and its neighborhood
context — a collection of geo-features surrounding it at varying dis-
tances and with different type labels shown in different colors. We
employ a “bag-of-features” vector encoding to capture the spatial
relationships among the geospatial entities, using a distance-based
encoding method to generate a “bag-of-distances” feature vector.
This feature vector encodes the relative shortest distance to every
recognized geo-type within the neighborhood, preserving relative
distance and directionality information between entities. Along
with the geometric and spatial features, it serves as an additional
input to the model.

Figure 4: Illustration of a neighborhood, with anchor entity
(school) in orange with surroundings features house in blue;
apartments in red; residential in green; hotel in purple.

A spatial knowledge base or database are essential to compre-
hensively construct a neighborhood encoding. The knowledge base
merely fetches the entities in the context “window”. In this work,
we specifically utilized OSM to retrieve neighboring geo-instances
— including nodes, ways, and relations — within a defined distance
threshold (a model hyperparameter) from the geo-referenced
center of the entity.
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2.2 Taxonomy-Guided Contrastive Learning
Integrating taxonomic information about geo-feature types into the
learning framework provides an auxiliary tool for encoding rich
semantic knowledge. This taxonomic knowledge, often structured
as an ontology, not only enables systematic classification but also
enhances model generalization. By distinguishing between seman-
tically related geo-features, such as commercial vs. residential
buildings or motorway vs. primary highways, our approach im-
proves contrastive learning by identifying meaningful “negatives”.
Furthermore, recognizing hierarchical relationships, such as beach
being a subtype of natural, refines vector representations by in-
corporating semantic similarities and dissimilarities at different
levels of granularity.

Navigating the hierarchical maze of OSM tags presents a unique
challenge due to their inconsistent granularity and dynamic nature.
To address this, rigorous filtering is required to select meaning-
ful labels for taxonomy-guided self-supervised training. We build
upon methodologies proposed by Dsouza et al. [10] and Shbita et
al. [34] to develop a structured taxonomy of OSM labels. The taxon-
omy organizes geo-feature categories into a multi-level hierarchy,
mapping them to corresponding Wikidata classes.

We incorporate the taxonomy weights into the Normalized
Temperature-scaled Cross Entropy loss function [7, 36], which we
define as follows. For each anchor entity 𝑒𝑞 in a given batch, the
taxonomy-aware loss is calculated with respect to the positive and
negative samples in the set, and is given by:

𝐿𝑞 = − log
exp(𝑠𝑖𝑚(𝑒𝑞, 𝑒+)/𝜏)∑𝐾

𝑖=0 exp(𝑠𝑖𝑚(𝑒𝑞, 𝑒𝑖 ) ·𝑤𝑞,𝑖/𝜏)
(1)

where 𝑒+ is a positive sample, 𝑠𝑖𝑚(𝑒𝑖 , 𝑒 𝑗 ) is the cosine similar-
ity between the normalized embeddings of entities 𝑒𝑖 and 𝑒 𝑗 . The
temperature 𝜏 scales the similarity scores. The sum is over one
positive and 𝐾 negative samples. 𝑤𝑞,𝑖 is the weight representing
the taxonomic distance of labels between 𝑒𝑞 and a negative sample
𝑒𝑖 . The taxonomic weight 𝑤𝑖, 𝑗 is defined by the relative distance
within the taxonomy tree as:

𝑤𝑖, 𝑗 =
𝑑tree − 𝑑𝑖, 𝑗
𝑑tree

(2)

where 𝑑tree is the depth of the taxonomy tree, and 𝑑𝑖, 𝑗 is the
depth of the common ancestor of entities 𝑖 and 𝑗 . This normalization
ensures that weights adjust the influence of negative samples in
the loss function to reduce the penalty of misclassifying entities to
similar but still incorrect classes.

In the grand scheme of the embedding model, three distinct data
inputs are combined to train a mapping function. This function
learns to differentiate various geo-instances in a low-dimensional
vector space based on their respective types in the taxonomy. The
resultant embeddings can drive a classifier that effectively discrimi-
nates between target semantic types, as demonstrated in Section 3.

3 Evaluation
We evaluate the effectiveness of our proposed geo-entity embedding
approach by training a model under various settings of our method-
ology and comparing it to two baselines, including the state-of-the-
art (SotA) in geo-entity embedding. Using two distinct datasets,

each model was evaluated through a classification and semantic
typing task. The objective is to explore how different types of in-
formation affect the performance of our approach as an ablation
study and to test our best-performing model against other systems,
aiming to gain insights into the generalizability of the model and
its proficiency in the overall task of semantic typing.

3.1 Experiment Setup
3.1.1 Data. Consistently across all settings, our model was trained
using the same data, which encompassed 200,000 OSM instances
from the California OSM snapshot4. We utilized linear and polygo-
nal features whilst excluding discrete point-based features.5 Cur-
rently, this comprehensive dataset encapsulates around 150 million
instances, of which about 10 million contain at least one tag. In-
stances were tagged with 1 to 16 labels, resulting in an average of
2.3 tags per instance. While the dataset originally featured over
3,000 unique OSM tags, this was filtered down to 75 following the
process described in Section 2.2.

The classification test datasets utilized were crafted by separately
sampling from OSM. We ensured that the geo-instances in the test
datasets were not present in the training data. The first dataset,
WD-2k, comprises 2,146 instances with direct mapping to their
Wikidata classes (based on the Wikidata instance labeled by OSM
users), covering 11 distinct classes. The second dataset, OSM-16k,
consists of 16,059 instances that span 18 OSM “classes” (most fine-
grained tag per instance). Both datasets are publicly available via
our repository.

The resulting embedding was tested using Support Vector Clas-
sification, which rendered the best results compared with other
classifiers like Random Forest, K-Nearest Neighbors, and Logistic
Regression. Model evaluation was measured in precision, recall,
and 𝐹1 scores, utilizing 8-fold cross-validation to divide the data
into mutually exclusive subsets (87.5% training; 12.5% testing).

3.1.2 Experimental Settings. We evaluate our model performance
under varying conditions using four variant settings. The first set-
ting focused solely on shape information, excluding any neighbor-
hood information or spatial attributes, while the second setting
incorporated both shape and spatial data, adding a spatial encoder
to include its area and length. We included shape, spatial, and con-
textual neighborhood data in the third setting but did not consider
taxonomic relations. The fourth and final setting extended the third
setting by adding taxonomic data to further enhance model perfor-
mance.

3.1.3 Model Training. We determined the hyperparameters of the
model systematically through an iterative process of experimen-
tation. We found that within our dataset, the optimal neighbor-
hood size was around 15” degrees (equivalent to approximately
450 meters or 1,500 ft) for the task of semantic typing. We chose
a learning rate of 10−5 and weight decay of 0.05 to enable model
stability throughout training. To accommodate the computational

4https://download.geofabrik.de/north-america/us/california.html
5Point features were excluded as they lack geometric or spatial value due to their zero-
dimensional nature, making it impossible to measure length, area, or shape. Unlike
linear and polygonal features, which represent physical entities with spatial extent,
points typically denote locations or place names, making them unsuitable for our
evaluation.
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Table 1: Summary of results for semantic-type classification in all experimental settings, across both datasets

WD-2k OSM-16k
Setting Precision Recall 𝐹1 Precision Recall 𝐹1

1 Oursshape 0.497 0.506 0.501 0.473 0.512 0.492
2 Oursshape+spatial 0.506 0.545 0.525 0.491 0.536 0.513
3 Oursfull 0.850 0.823 0.836 0.877 0.725 0.794
4 Oursfull w/taxonomy 0.849 0.852 0.850 0.858 0.854 0.856

GPT-3.5-Turbo 0.198 0.209 0.121 0.145 0.063 0.026
GeoVectors [37] 0.819 0.834 0.826 0.833 0.815 0.824

constraints of the available hardware resources, which included
four NVIDIA GeForce RTX 2080 Ti GPUs and an Intel i7 CPU, pro-
viding 4,352 cores and 11 GB DDR6 memory per GPU, the batch
size was established at 32. The model was trained for 100 epochs.
Additionally, the hyperparameter 𝑑 , representing the dimension-
ality of the latent vector, was set to 300, to enable fair evaluation
with the SotA model of this dimensionality.

3.1.4 Baselines. To establish robust baselines for our study, we
include two additional settings. First, we utilize GeoVectors [37]
as a baseline, a pre-trained corpus of OSM embeddings, given its
standing as the nearest SotA model trained to navigate analogous
challenges of embedding geo-entities. GeoVectors was trained by
leveraging two models: a neural location model for spatial relations
and a pre-trained word embedding model to encode semantic simi-
larities based on tags. Furthermore, we explore the capabilities of
Large Language Models (LLMs) in a zero-shot classification setting
to assess their performance with geographic data. Specifically, we
used natural language queries to provide the transformer-based
model, GPT-3.5 Turbo [1], with classification candidates and their
descriptions alongside the geo-referenced input vector in its source
WKT format to generate an answer regarding the semantic type.

3.2 Results and Discussion
We present the results of our experiments across the settings de-
scribed above and discuss their implications for the effectiveness
of our proposed method for semantic typing.

3.2.1 Overall Performance. Table 1 shows the results for each set-
ting across both datasets. In our baseline, Setting 1, we solely relied
on geometric shape data for classification, which resulted in 𝐹1
scores of 0.501 for WD-2k and 0.492 for OSM-16k. Introducing the
spatial attribute encoder in Setting 2, the scores elevated to 0.525
and 0.513, respectively.

Remarkably, performance was significantly boosted when both
contextual neighborhood data and geo-entity type taxonomy were
incorporated (Settings 3 and 4). Setting 4, which combines all these
inputs, yielded the most impressive results: 𝐹1 scores of 0.850 for
WD-2k and 0.856 for OSM-16k. Interestingly, the peak precision
was observed in Setting 3, where taxonomic data was omitted. This
phenomenon suggests that in our non-guided contrastive learning,
treating all negatives uniformly — as opposed to a weight-based
approach in Setting 4 — results in finer distinctions between all
entity types. This could be explained by the higher total (negative)

loss per epoch, as observed in Setting 3 compared to Setting 4. These
findings highlight how incorporating diverse data sources improves
embedding quality and enhances classification performance.

A comparison with the SotA model shows that our model out-
performs on both WD-2k and OSM-16k datasets. Notably, our
model achieved better results on OSM-16k, where classification
was aligned with OSM tags — a logical outcome given the model’s
training on this data source. This distinction is even more signifi-
cant considering the added complexity in the OSM-16k task, with
18 classes versus 11 in WD-2k. However, the GPT-3.5 Turbo, in a
zero-shot setting, scored lower with an 𝐹1 score of 0.121 on the
WD-2k dataset and only 0.026 on the OSM-16k dataset, highlighting
challenges in adapting LLMs to spatial semantic tasks without a
domain-specific and tailored training.

It is important to note that our model was constructed without
embedding direct semantic information or OSM tags about the
geo-entity in the self-learning process, focusing solely on geomet-
ric, spatial, and neighborhood contexts. In contrast, GeoVectors
incorporated such semantic data, including Wikidata connections,
subtly giving them an advantage. Ultimately, the results show our
method’s advantage.

3.2.2 Analysing the Optimal Setting. Figure 5 shows the per-
class confusion matrix results for the WD-2k dataset utilizing
our method’s optimal setting (Setting 4). An initial analysis in-
dicates that our model exhibits exceptional performance across
most classes, notably achieving the highest scores for light rail
line, limited-access road, and stream. This implies that our
model more adeptly distinguishes linear features than polygon-
based features. Various factors could contribute to the fact that
light rail line secured the highest recall score among other
linear features. This could be due to the distinctive geometric and
spatial characteristics of light rail lines, which often display a “twist-
ing”, elongated shape and inhabit distinct environments compared
to other linear features in urban areas.

There were some challenges in differentiating between particular
classes. For instance, 47.8% of school features are misclassified as
high school, and 27.6% as park. While high school (Q9826)
and school (Q3914) are distinct in the labeling scheme, a human
annotator might perceive one as a subclass of the other, rendering
the task potentially redundant. The model’s capability to classify
and meaningfully capture numerous fine-grained high school
instances is noteworthy, lending qualitative confidence to its ability
to differentiate between unique types thatmay exist under a broader,
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Figure 5: Confusion matrix illustrating classification results
of geo-entities toWikidata types using the WD-2k dataset,
employing the model derived from the optimal setting (Set-
ting 4). The matrix aggregates results across all mutually
exclusive subsets of tests.

shared geo-feature taxonomy. The similarity between school and
park may originate from their shared attributes (e.g., similar shape
footprints and neighborhood environment), posing a challenge to
accurate classification without further entity-specific knowledge.

Additional observations indicate that the model occasionally
misinterprets lake instances as reservoir, a plausible error given
the similar footprints and environmental roles of these water bodies.
Likewise, street is confused with limited-access road 11.2%
of the time, a mistake potentially stemming from geometric simi-
larities and proximities to analogous geo-feature types.

Figure 6 shows the per-class confusion matrix results for the
OSM-16k dataset utilizing our method’s optimal setting (Set-
ting 4). The results suggest that the model effectively captures
the defining characteristics and contexts of almost all 18 geo-
feature types, with particularly strong true positive rates indi-
cated by the high scores (dark shades) along the diagonal. Certain
classes, such as track_leisure, beach, and golf_course, show
a high degree of predictive accuracy. However, some classes like
commercial_landuse and parking_amenity demonstrate signifi-
cant confusion with other amenity and building types, often being
misclassified as retail_building and retail_landuse, respec-
tively. This could indicate an overlap in the feature space or insuffi-
cient differentiation between these feature types.

The dashed outlines around entity clusters in the confusion
matrix in Figure 6 represent groups with a common tag “ancestor”,
highlighting the taxonomic hierarchy. Notably, confusion between
entities is more frequent within these clusters than between them,

indicating the model’s proficiency in distinguishing general tags
(buildings vs. natural features) from closely related tags (building
types). Future work could incorporate satellite imagery or aerial
data to enhance land use differentiation and refine the classification
of closely related geo-entities and features.

3.2.3 Visualizing the Latent Space. Furthering our understanding
of the model’s performance, we employed t-Distributed Stochastic
Neighbor Embedding (t-SNE) to plot the embeddings of 10,000
geo-entities from OSM, as depicted in Figure 7. Figure 8 provides
a comparative view to the detailed tags illustrated in Figure 7,
showcasing labels of the identical data points at the highest level
of the OSM tag taxonomy. Each figure displays notable separation
among various classes. Evaluating ground truth labels at a higher
taxonomy level unveils noteworthy clustering, supplying additional
qualitative evidence supporting the model’s generalizability. The
t-SNE plot shows that the clusters representing distinct classes
have minimal overlap, affirming the model’s capacity to discern
inherent patterns in the data. However, it is vital to note that t-
SNE, a two-dimensional representation suited for visualizing high-
dimensional datasets through dimensionality reduction, may incur
some information loss during projection. Nonetheless, visualization
serves as a valuable tool for assessing the quality of the embeddings
and gaining insight into the interrelations among diverse classes. In
summary, our proposed method for semantic embedding utilizing
multi-faceted learning has yielded encouraging results, adeptly
capturing spatial, geometric, and neighborhood information about
geo-entities. The precision, recall, and 𝐹1 scores, together with the
confusion matrix and t-SNE visualization, show the strengths and
potential areas for refinement within our method.

3.2.4 Interoperability and Smart City Applications. Our approach
aligns with existing web-based geospatial standards, including
OGC GeoSPARQL [4], by enabling interoperability with OSM and
Wikidata vocabularies (which follows RDF and Web-compatible
schemas). This alignment enhances cross-platform integration, en-
suring that semantic representations are reusable across smart city
services and enabling seamless data exchange between heteroge-
neous smart city infrastructures. As a result, our method supports
AI-driven geospatial analytics in applications such as urban plan-
ning, mobility optimization, and digital twin systems.

Beyond geospatial data classification, our approach has broader
practical implications for real-world smart city applications. Accu-
rate geo-entity classification can improve urban mobility analysis,
environmental monitoring, and disaster response planning. For
instance, better classification of transportation infrastructure can
inform traffic optimization models, while detecting green spaces
and water bodies can aid in climate adaptation strategies. Addition-
ally, our method can support city governance systems by enabling
smarter urban zoning decisions, infrastructure maintenance, and
land use forecasting. By integrating our embeddings into real-time
smart city platforms, urban planners and policymakers can make
data-driven decisions that promote sustainability and livability.
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Figure 6: Confusion matrix illustrating classification results of geo-entities to OpenStreetMap types using the OSM-16k dataset,
employing the model derived from the Setting 4. The matrix aggregates results across all mutually exclusive subsets of tests.

4 Related Work
The semantics of geospatial information is a rich domain that de-
mands special attention within the web. Although GIS interoper-
ability research has addressed fundamental issues regarding the
geometry of geospatial features, recent surveys indicate that cur-
rent approaches do not effectively address the utilization of specific
semantics by users for performing tasks that leverage geospatial
data [15–17]. Despite these challenges, research on geospatial se-
mantics has seen significant growth in recent years.

Web-based geospatial data presents significant challenges in
interoperability, standardization, and data reliability. While frame-
works like Linked Open Data (LoD), and OGC GeoSPARQL [4]
have improved cross-platform data sharing, challenges remain in
integrating heterogeneous data sources. Our work contributes to

this field by bridging structured and unstructured geospatial knowl-
edge, providing semantic representations that can be integrated
into web-based urban intelligence systems.

The use of machine learning for geospatial data classification has
gained significant attention, with convolutional neural networks
(CNNs) being a popular approach. Castelluccio et al. [6] proposed a
CNN-based approach for land use classification using remote sens-
ing images, and Li et al. [27] developed a CNN-based framework
for automatic recognition of building footprints. Dsouza et al. [10]
proposed a neural architecture that capitalizes upon a shared la-
tent space for tag-to-class alignment for OSM entities. Klemmer et
al. [22] developed a GNN-based approach for context-aware vector
encoding of geographic coordinates, Kaczmarek et al. [20] proposed
a GNN-based method for spatial object classification using topology,
and Xu et al. [44] used a GCN-based approach that incorporates
spatial context and aggregates information of adjacent nodes within
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Figure 7: t-SNE visualization of embeddings derived from a
10k sample of OSM geo-entities from the California snapshot,
generated using ourmodel, and labeled according to themost
fine-grained OSM tag. The colors signify the ground-truth
labels attributed to each instance.

the graph for urban land-use classification. Yan et. al. [45] devel-
oped an approach that combines multiple features extracted from
the boundary of a geospatial object to obtain a cognitively compli-
ant shape encoding. Our work is concerned with a learning task
that incorporates multiple sources of information for use in NNs,
specifically open data, such as OSM, to improve geospatial data
representation and classification.

Geospatial embedding techniques have been explored for geospa-
tial data analysis. Tempelmeier et al. [37] published GeoVectors,
offering a pre-trained OSM embedding corpus we referenced earlier.
Additionally, Jenkins et al. [19] proposed a method for unsupervised
representation learning of spatial data via multimodal embedding.
Another example is SpaBERT [26], a spatial language model that
provides a general-purpose representation of geo-entities based
on named neighboring entities in geospatial data, which can be
helpful for geo-entity typing. Moreover, Qiu et al. [32] introduced
a method that employs geospatial distance to optimize knowledge
embedding for a Geographic Knowledge Graph (GeoKG) to help
refine latent representations of geo-entities and geo-relations. In
contrast to the approaches mentioned above, our work leverages
geometric properties of geospatial features, including their shape,
as part of the input signals and other information, to optimize the
embedding process.

Incorporating open data, such as OpenStreetMap, for geo-entity
representation has received limited attention. Woźniak and Szy-
mański [43] proposed a method to embed OSM regions. This
method is not directly comparable since it does not embed arbitrary
OSM region entities; instead, it decomposes space and embeds each

Figure 8: t-SNE visualization utilizing the same data in Fig-
ure 7, showcasing 10kOSM samples. Here, entities are labeled
according to the highest-level OSM tags. Different colors dis-
tinctly categorize the respective high-level ground-truth la-
bels assigned to each instance.

grid cell using the tags contained in it to learn vector representa-
tions.

5 Conclusion and Future Work
As digitized geospatial data becomes increasingly available, devel-
oping techniques for responsible, AI-driven urban intelligence is
crucial. This work introduces a novel approach for self-supervised
geo-entity embedding, leveraging geometric, spatial, and seman-
tic neighborhood contexts to generate robust representations for
geospatial applications such as smart cities. Our method enables
seamless geo-entity typing and classification by using open web
data, particularly OpenStreetMap (OSM), bridging the gap between
urban geospatial data integration and AI-driven decision-making.
Additionally, we implemented a taxonomy-aware contrastive learn-
ing framework, integrating hierarchical semantic relationships into
the loss function to enhance geo-entity classification.

Future work could integrate explainability techniques to improve
interpretability and user trust and investigate bias detection mech-
anisms to ensure responsible and equitable AI deployment in smart
city environments. Incorporating pre-trained word embeddings and
attention mechanisms could further refine representations, extend-
ing the model’s understanding of urban knowledge beyond local
spatial contexts. Additionally, leveraging textual knowledge from
open knowledge bases, such as Yago2Geo [21], could enrich geo-
entity representations, supporting tasks such as geo-entity linking,
spatial decision-making, and digital twin applications.
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