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Abstract—In this paper, we address the problem of automat-
ically detecting and adapting to sensor failures, which is an
important step towards building long-lasting survivable software.
We present a novel constraint-based learning framework that
performs joint sensor failure detection and adaptation. Our
framework learns sensor relationships from historical data and
expresses them as a set of constraints. These constraints then pro-
vide a joint view for detection and adaptation: detection checks
which constraints are violated, and adaptation reconstructs failed
sensor values. Additionally, we show that our framework can not
only identify the mode of sensor failure but can also estimate
the quality of the proposed adaptation. Our empirical studies
on sensor data from the weather and appliance energy domains
demonstrate the advantages of our approach over other methods.

Index Terms—sensor failure detection and adaptation, sensor
relationships, constraint-based learning

I. INTRODUCTION

Many software systems run on long-lifespan platforms that

operate in dynamic environments. Maintaining the quality,

durability and performance of these software systems is

very challenging and labor-intensive. Failure to effectively or

promptly adapt to hardware and resource changes can result

in technically inferior and potentially vulnerable systems [1].

For example, software systems based on sensor data can

suffer from sensor failures caused by environmental changes

and technical errors. If software systems could automatically

detect and adapt to sensor failures, they would significantly

reduce the time and effort required for their maintenance.

As an important step towards building long-lasting survivable

software systems, we study the problem of automatically

detecting and adapting to sensor failures. Efficient solutions

to this problem can have a broader impact for the increasing

number of sensors deployed in real-world systems [2], [3].

Although sensor failure detection has been studied extensively

in existing work [4]–[7], automatic adaptation to sensor fail-

ures has not been a focus thus far. Typically, human experts

are required to examine detected sensor failures and make

subsequent decisions about how to adapt to them.

To address the overall problem, we present a novel ma-

chine learning framework called JDA (Joint Detection and

Adaptation) that performs sensor failure detection and adap-

tation jointly. The key idea is to determine the reconstruction
relationships among sensors, i.e., how one sensor value can

be reconstructed from other sensor values. This is based on

the observation that, in real-world systems, sensor values are

often correlated [8]. Taking weather sensors as an example,

temperature, dew point and humidity are highly correlated [9];

and each sensor value can be efficiently reconstructed from the

other two. While reconstruction relationships can be generally

complex, our framework decomposes this complexity into a

set of simpler constraints. In particular, it uses a substrate of

inequality constraints that resemble

(temperature− f(dew point, humidity)) ≤ ε2, (1)

where f() is a function that captures known sensor rela-

tionships, and ε2 is the corresponding error bound. These

constraints provide a joint view for sensor failure detection

and adaptation when new sensor value readings come in.

• Detection: Our framework checks each constraint, and a

sensor failure is reported if one or more constraints are

violated. We then infer the likely failed sensor(s) from

the violated constraints.

• Adaptation: Once the failed sensors are identified, our

framework reconstructs the failed sensor values from

the remaining working sensor values by solving the set

of constraints. Tighter constraints correspond to more

accurate reconstruction relationships.

By using the same set of constraints for both detection and

adaptation, our approach provides an extensible way to address

the interrelated problems in one unified framework.

One important challenge in our framework is that the

functions f() are not necessarily given to us beforehand. Thus,

a second operating idea in our framework is to extract them

from historical sensor data. The extraction procedure considers

different combinations of sensors and derives the functions f()
using nonlinear regression methods [10]. Compared to existing

detection methods that extract only linear relationships [2], our

extraction procedure not only enables learning more complex

functions f() but also results in lower reconstruction errors

produced by the entire framework.

To enhance the usefulness of the proposed framework for

practical applications, we provide two additional features.

First, when a sensor failure occurs, we not only detect it but

also identify its mode of failure. This enables our detection

procedure to provide additional information to higher layers
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of the software system, which in turn facilitates faster recovery

operations. We extract features from both observed and recon-

structed sensor values within a time window and classify them

into five common modes of failure (Outlier, Spike, Stuck-At,

High-Noise and Miscalibration) [11].

The second feature is the ability to estimate the quality

of a reconstructed sensor value by a relevant error interval.

This enables the higher layers of the software system to make

decisions about the quality of the reconstructed sensor values

and possibly determine the necessity of further refinement. In

order to produce these error intervals, we develop a data-driven

procedure that first identifies similar sensor values in historical

data and then computes the relevant statistics on them.

An empirical study of sensor data from Weather Under-

ground1 and the Appliances Energy Dataset2 shows that our

framework detects sensor failures more accurately than other

competing methods. The results also demonstrate the overall

efficacy of our constraint-based framework in: (a) successfully

identifying different modes of sensor failures, (b) adapting

to failures by efficiently reconstructing the required sensor

values, and (c) estimating the qualities of the reconstructed

sensor values for higher-level decisions.

Contributions: We present a novel computational frame-

work for joint sensor failure detection and adaptation based

on learning constraints from historical sensor data. These

constraints jointly express sensor relationships. While the rela-

tionships themselves could be fairly complex, each individual

constraint is simple enough to be amenable to state-of-the-art

Machine Learning techniques. Note that a direct application

of Machine Learning techniques to predict the value of one

sensor based on learning its relationship to other sensor

values is unviable for our problem since multiple sensors

can fail at the same time. It is in these situations that our

constraint-based learning framework becomes indispensable.

Importantly, the constraints allow us to first identify the failed

sensors and subsequently reconstruct the corresponding sensor

values. In addition to automatic sensor failure detection and

adaptation, two important features of our approach are that it

can automatically identify different modes of sensor failures

and provide estimates of the adaptation quality. These features

facilitate interpretability and robustness at a practical level.

II. JOINT DETECTION AND ADAPTATION

Our framework exploits the observation that real-world sys-

tems are often equipped with sensors that are correlated with

each other. Such correlations could exist either between dif-

ferent sensor types (e.g., temperature, dew point and humidity

from the same weather station) or within the same sensor type

(e.g., wind speed in nearby weather stations). In this paper, we

explore a specific type of relationship between sensor values

that can be characterized by a reconstruction function f().
A simple example illustrates this concept. Consider humidity

1https://www.wunderground.com/
2https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

HU in %. It is well known that it can be accurately determined

by temperature TP in ◦C and dew point DP in ◦C [9]:

HU ≈ f(TP,DP ) = 100 exp(
aDP

b+DP
− aTP

b+ TP
). (2)

Here, f serves as a reconstruction function that takes input

sensor values TP and DP and outputs sensor value HU . a
and b are constants. In practice, the following constraint holds

between the different sensor values.

(HU − f(TP,DP ))
2 ≤ ε2, (3)

where ε2 is an error bound that intrinsically measures the

reconstruction quality of HU via f(TP,DP ). In addition, ε2

can be derived from historical sensor data. For instance, we

can set ε2 to be the minimum value such that 95% of historical

sensor values satisfy Eq. (3).

Assuming that the sensors for TP and DP work correctly,

a failure in the sensor for HU is characterized by the violation

of the constraint in Eq. (3). In fact, in such a case, we can even

adapt to the failure by reconstructing HU via f(TP,DP );
and doing so automatically satisfies Eq. (3). Additionally,

ε2 in Eq. (3) provides an estimate of the adaptation quality

(discussed later in Section IV). However, the general challenge

is that the sensors for TP and DP may not always work

correctly either. If one or more of them fail in addition to the

failure of the sensor for HU , Eq. (3) can neither be used to

detect this failure nor can it be used to reconstruct the value

of HU . This problem persists whether or not f() is explicitly

known and whether or not it is learned using state-of-the-art

Machine Learning methods. Our framework therefore uses an

additional layer of reasoning beyond just a direct application of

Machine Learning methods to learn relationships between sen-

sor values. In particular, it builds a substrate of constraints that

retain enough simplicity individually and yet capture enough

complexity and redundancy collectively. Our constraint-based

framework can therefore be effectively used to first address

the problem of sensor failure detection and then address the

problem of failed sensor value reconstruction.

We begin by introducing some notation. Let S1, S2, · · · , SK

denote the K sensors in the system. We assume that any sensor

value can be accessed at any time. Let xt
k be the sensor value

generated by Sk at time t. In the first step that addresses

sensor failure detection, we are interested in detecting the

possible failure of each Sk at a desired time t, i.e., determining

whether or not xt
k should be deemed as being reliable. Of

course, doing so allows us to detect sensor failures instantly,

without having to wait for a time window of sensor values. We

also assume that we are given N inequality constraints with

reconstruction functions. (We discuss how to actually derive

such reconstruction functions in Section II-C.) Each such

inequality constraint describes the relationship between a set

of input sensor values and an output sensor value. Specifically,

the nth constraint is as follows.

(yn − fn(zn))
2 ≤ ε2n, (4)

• yn: output sensor value at some time t, e.g., yn = xt
1;
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• zn: input sensor values at time ≤ t, e.g., zn = [xt
2, x

t
3].

Note that zn can also involve input sensor values at time

≤ t, e.g., zn = [xt
2, x

t
3, x

t−1
1 , xt−1

2 ], where xt−1
1 and xt−1

2

can be treated as additional input sensor values;

• fn(): reconstruction function that attempts to reconstruct

yn from zn derived from historical sensor data;

• ε2n: a reconstruction error bound derived from historical

sensor data.

A. Detecting Sensor Failures

As the system receives sensor readings, it can check each

constraint and identify the violated ones at any given time t. If

the nth constraint is violated, then at least one sensor involved

in that constraint has likely failed. Furthermore, the system

can infer the set of failed sensors from the set of violated

constraints. To do this, we first introduce K Boolean variables

{vk}, for k = 1, 2, · · · ,K, where vk is 1 if sensor Sk has

failed, and is 0 otherwise. The existence of at least one failed

sensor corresponding to each violated constraint translates to

a set of linear constraints on {vk}. For instance, if a violated

constraint involves sensors S1 and S3, then the corresponding

linear constraint is v1 + v3 ≥ 1, since at least one of v1, v3
should have value 1. More generally, if the nth constraint is

violated, then the sum of all vk involved in [zn, yn] should be

greater than or equal to 1.
∑

k∈[zn,yn]

vk ≥ 1 (5)

Our goal is to find an assignment of Boolean values to

the variables {vk} so that it represents the best possible

explanation for the observed sensor values. Clearly, such an

assignment should satisfy all linear constraints of the form

Eq. (5). But, of course, this requirement alone is incomplete

since it admits a vacuous solution, e.g., vk = 1 for all k.

Therefore, we further qualify our solution with the requirement

that it has to minimize the total number of failed sensors. This

formalization is based on the intuition that sensors behave

nominally most of the time and their failure probabilities

are typically much smaller than 0.5. Our formalization also

matches the ones popularly used in model-based diagno-

sis [12]. Of course, richer formalizations can be developed

with more information on the prior failure probabilities of

individual sensors and physical models of how they interact

with each other. Importantly, any preferred formalization can

be seamlessly incorporated in our framework.

Overall, we now have the following combinatorial optimiza-

tion problem for sensor failure detection.

min
∑

k∈[1,K]

vk (6)

s.t.
∑

k∈[zn,yn]

vk ≥ 1, ∀n ∈ V (7)

vk ∈ {0, 1}, ∀k ∈ {1, 2, · · · ,K} (8)

where V denotes the set of indices of violated constraints. This

problem is a specific kind of a 0-1 Integer Linear Program

(ILP), called the Hitting Set Problem, and is NP-hard to

solve in general. However, there are a number of heuristic

and approximation algorithms to solve it efficiently. In our

implementation, we use the cutting plane method [13] to

convert it into a series of LPs.

B. Adapting to Sensor Failures

When sensor failures are detected, we would like the system

to automatically adapt to such failures. Our adaptation strategy

is to reconstruct the sensor values of the failed sensors from

the sensor values of other working sensors. This essentially

replaces failed physical sensors with working virtual sensors

that enable the system to continue its operation. For recon-

structing a failed sensor’s values, our approach identifies a

constraint in which the output sensor is the failed sensor and

all input sensors are working sensors. Then, the corresponding

reconstruction function is used. When multiple constraints

qualify to be chosen for reconstruction, our procedure selects

the constraint with the lowest reconstruction error bound for

more accurate results. Specifically, to reconstruct the values of

a failed sensor Sk, we do the following:

1) Find all constraints with working input sensors and

output sensor Sk.

2) Select the constraint with the lowest reconstruction error

bound from this set of constraints.

3) Apply the corresponding reconstruction function on the

working input sensor values.

C. Learning Reconstruction Functions from Historical Data

The detection and adaptation procedures discussed above

assume that the reconstruction functions are already given. In

practice, however, such functions may not be directly avail-

able. Instead, we automatically extract them from historical

sensor data. Ideally, the learned relationships are expected to

have the following properties.

• Accuracy: Each relationship should give us the capability

to reconstruct the output sensor value with reasonably low

reconstruction error.

• Comprehensiveness: The relationships should be rich

enough to help us detect and adapt to various kinds of

sensor failures. That is, we would like to extract various

types of useful relationships. For example, temperature

can be reconstructed using dew point and humidity from

the same weather station, and it may also be reconstructed

using temperature from nearby weather stations.

• Compactness: The relationships should be easy to state

and understand. There are two levels of compactness.

First, each relationship should involve only a small num-

ber of sensors. The lower the number of sensors, the

smaller the chance the constraint is violated. Using a

small number of sensors in each relationship improves

the overall robustness of our framework and makes the

learned relationships more interpretable by humans. Sec-

ond, the number of learned relationships should also be

small since this affects the complexity of our algorithms.
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To learn sensor relationships with the above properties, we

developed a method that groups input sensors into a number

of subsets and then learns reconstruction functions within each

subset. The subsets have the following properties.

• Sparsity: Each subset is of small cardinality.

• Disjointness: Subsets tend to be disjoint from each other.

The above properties significantly reduce the number of con-

straints without compromising the span of what relationships

can be represented. In effect, such a subset selection method

ensures the compactness and comprehensiveness properties.

Our grouping procedure works as follows. Suppose we

want to learn relationships from the input sensor values

x1, x2, · · · , xD to the output sensor value y. To discover the

group of input sensors to include in the first constraint, we

learn a sparse vector w1 ∈ RD that selects a small subset

of the input sensors. Mathematically, we solve the following

LASSO problem [14].

min
w1

∑

t

(w
T

1x
t − yt)2 + λ

∑

d

|w1d| (9)

where
∑

d |w1d| enforces the sparsity of w1 and
∑

t(w
T

1x
t−

yt)2 minimizes the reconstruction error between the linear

combination of selected xt and yt over historical data. λ > 0
is a tradeoff parameter that can be tuned using cross validation.

Once we learn w1 and identify the relevant subset of the

input sensors, a reconstruction function can be learned in many

possible ways. To ensure a high quality, we apply state-of-

the-art nonlinear regression methods (e.g., Neural Networks)

to learn the reconstruction functions from historical data.

min
f

∑

t

(yt − f(subset ofxt))
2 (10)

The subset of input sensors needed for the second constraint

can be learned using a new sparse vector w2 ∈ RD that is

conditioned on w1. Specifically, we have

min
w2

∑

t

(w
T

2x
t − yt)2 + λ

∑

d

|w1d||w2d| (11)

where
∑

d |w1d||w2d| encourages w2 and w1 to retain a

disjoint set of input sensors. As before, we can derive the

second reconstruction function from w2 following Eq. (10).

More generally, we can learn the pth vector wp that identi-

fies the subset of input sensors in the pth constraint by solving

min
wp

∑

t

(w
T

px
t − yt)2 + λ

∑

d

ud|wpd| (12)

where ud = (
∑p−1

i=1 |wid|)/(p − 1), and
∑

d ud|wpd| encour-

ages wp to pick sensors different from the ones chosen in

the previous p − 1 subsets. The procedure stops when the

reconstruction error in Eq. (10) exceeds a pre-defined threshold

or p exceeds an upper bound.

a) Acceleration of Sensor Grouping: When the number

of sensors K is large, solving a series of Eq. (12) instances

can be computationally very expensive. As an acceleration

strategy, we can first cluster the input sensors into several

high-level clusters based on their correlation matrix [15].

After that, we can apply the above grouping procedure within

each high-level cluster. Although this strategy ignores possible

relationships across high-level clusters, it is computationally

attractive and performs well empirically.

III. IDENTIFYING MODES OF SENSOR FAILURES

• Outlier: One or more sensor values are far away from the

normal values.

• Spike: A band of consecutive sensor values exhibits a

greater-than-expected rate of change.

• Stuck-At: There is zero variation in the sensor values for

an unexpected length of time.

• High-Noise: There is an unexpectedly high variation in

the sensor values in a period of time.

• Miscalibration: There is a constant offset from the ground

truth for the sensor values in a period of time.

Identifying the modes of sensor failures is essentially a

multi-class classification problem where the input is a time

window of sensor values and the output is the identified mode

of failure. For such a classification problem, it is important

to consider a time window of sensor values because most

modes of failure are defined and identifiable only through

characteristics of sensor values over a period of time. While

existing studies have already explored Machine Learning tech-

niques like Neural Networks to classify different modes of

failure [16], [17], these methods only capture information from

the failed sensor itself. On the other hand, in our approach,

we are able to naturally leverage information from multiple

related sensors and improve the accuracy and robustness of

classification. Specifically, our approach extracts features from

the observed sensor values as well as the reconstructed sensor

values for a failed sensor. Therefore, the extracted features

capture essential information from the failed sensor and the

other related working sensors.

Let W be the user-specified size of the time window; and

let the observed sensor values of a failed sensor within such

a time window be [xt−W+1, xt−W+2, · · · , xt]. Additionally,

let the reconstructed sensor values computed for this failed

sensor be [x̂t−W+1, x̂t−W+2, · · · , x̂t]. We first compute in-

formative statistics like the mean, minimum, maximum and

standard deviation on both the observed sensor values and

the reconstructed sensor values. We then concatenate the raw

sensor values and these informative statistics to constitute an

input feature vector that can be used to train a classifier. We

note that the length of our feature vector depends only on the

window size W but not on the number of sensors.

IV. ESTIMATING ADAPTATION QUALITY

To build survivable software, estimating the quality of

adaptation is also important since it enables higher-level

software components to determine whether or not to accept a

proposed reconstruction. Towards this end, we would like our

framework to estimate an error interval for the gap between

the reconstructed sensor value and the ground truth. Suppose

the reconstruction relationship (zn, yn, fn, εn) is used for

adaptation at time t. One idea is to directly use εn as an
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reconstruction error 

excess error of 

error interval

reconstructed value y

ground-truth value

y + ɛ 

y - ɛ 

error interval

Fig. 1: Notion of excess error of the error interval

error bound. However, this bound is a static quantity and does

not provide much information about the adaptation itself. We

would therefore like to have an adaptive error interval that is

dynamically estimated based on the observed sensor values.

Our idea is to estimate such an interval using samples in

historical data that are similar to the observed sample. This

leads to the following approach.

1) For a tuple of sensor values at time t, search for its κ
nearest neighbors in the historical sensor data. When

identifying the neighbors, we don’t use failed sensor

values since they can be far away from the normal data.

Instead, we only compute Euclidean distances in the

space of the working sensors zn.

2) For each identified neighbor, compute its exact recon-

struction error using the reconstruction function fn.

3) Compute the average reconstruction error over κ neigh-

bors and denote it as ε̂t.
4) Set the estimated error interval to be [−αε̂t, αε̂t] at time

t, where α > 0 is a scaling factor. An ideal α makes

the error interval as tight as possible. In other words, we

would like the length of the interval to be larger than

the reconstruction error but not exceed it too much. α
can be tuned using historical data as discussed below.

a) Excess Error of the Error Interval: To quantify the

tightness of the estimated error interval, we introduce the

notion of excess error (Fig. 1). The excess error is defined

as the gap between the ground-truth value and the closest

endpoint of the error interval, when the interval subsumes

the reconstruction error. If the interval does not subsume the

reconstruction error, we consider the interval as having failed.

In practice, we can tolerate a small failure rate of the estimated

error interval by setting a recall parameter (e.g., 90%). We

can then find the smallest α to achieve the given recall and

compute the corresponding excess error. Clearly, we favor a

smaller excess error as it results in a tighter error interval.

V. EXPERIMENTAL RESULTS

We evaluate our JDA framework on two real-world sensor

datasets. One dataset consists of sensor data from personal

weather stations, and the other dataset consists of appliance

energy data from a wireless sensor network within a house.

For both datasets, we use the first half of the time series as

historical data required for learning the sensor relationships

and the second half of the time series as test data for evalu-

ation. For the weather dataset, the number of sensor failures

is fairly small and the modes of sensor failures are also not

uniformly distributed. The appliance energy dataset does not

contain any sensor failures at all. In order to better evaluate

the performances of various algorithms, therefore, we simulate
sensor failures in both domains based on a prior history of

failures for each sensor. To simulate sensor failures, we run

the following procedure multiple times for each sensor.

1) Select any point in the time series with probability 0.01.

2) Starting from each selected point, generate a time win-

dow with length chosen uniformly at random from the

interval [1, 30]. The time window should not overlap

with already generated time windows.

3) Select one of the 5 modes of failure uniformly at

random.

4) Simulate sensor failures based on the selected mode.

Specifically, we generate an instance of each mode of

failure in the following ways.

• Outlier: Set the middle point in the time window

to an arbitrary value that significantly deviates from

the mean (by more than 3 standard deviations).

• Spike: Set the middle point in the time window

as an outlier; and set the remaining points in the

time window using linear interpolation between the

middle point and the boundary points.

• Stuck-At: Set all points in the time window to a

fixed arbitrary value.

• High-Noise: Add significant Gaussian noise to all

points in the time window.

• Miscalibration: Offset all points in the time window

with a fixed arbitrary bias.

We note that this procedure allows for simultaneous multiple

sensor failures since time windows generated for different

sensors can overlap.

a) Detection of Failures: For sensor failure detection, we

compare JDA to several baseline algorithms.

• NN: Nearest Neighbor method, which identifies a sensor

failure if the sensor values are far away from normal [18].

This method can detect sensor failure at a vector level

(i.e., a group of sensors), but cannot identify which

individual sensor(s) actually fail. Therefore we use it

for each individual sensor and treat a time window of

consecutive readings as a vector. The length of the time

window is tuned based on historical data.

• Subspace: Subspace method, which learns a set of bases

from historical data and then identifies sensor failures

if the sensor values are difficult to reconstruct via these

bases [19]. Since Subspace only identifies sensor failures

at a vector level, we adopt the same strategy used in NN.

• Bayesian: Probabilistic method, which captures linear

relationships between sensors and is capable of modeling

the working status of each sensor [20].

We consider different values of recall (60% to 100%)

and measure the corresponding precision. For identifying the

modes of failures, we compare JDA to the following methods.
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Fig. 2: Precision-recall curves on sensor data from the Austin
weather stations.

• Neural: Neural Networks trained on sensor values from

a single sensor.

• Ground: The same as JDA, except that the reconstructed

sensor values are replaced by ground truth readings.

Although this method is not realistic, it provides an upper

bound on the classification accuracy.

In all methods, to classify the mode of failure at time t, we use

sensor values in the time window [t−10, t+10]. We compute

the classification accuracy by comparing the identified mode

of failure to the actual mode of failure.

b) Adaptation to Failures: For sensor failure adaptation,

we measure both the average reconstruction error and the

average excess error of the adaptation error interval. Recon-

struction error is measured as the root mean square error

(RMSE) between the reconstructed and the ground truth sensor

values. For comparison, we introduce a baseline algorithm

called Reference that uses a simple strategy to reconstruct

failed sensor values without using any Machine Learning

techniques. We discuss how Reference is implemented for

each dataset later. The excess error of the error interval is also

measured using the RMSE. We compare the excess error of

JDA to that of a baseline algorithm called Const which uses

the constant error bound ε2n in Eq. (4).

TABLE I: Accuracy of identifying different modes of sensor failures
in the Austin weather stations.

Sensor Neural JDA Ground
Temperature 92.4 91.8 96.4

Humidity 89.3 90.7 96.3
Dew Point 91.6 91.3 97.1

Wind Speed 77.4 82.6 94.4
Wind Gust 81.1 83.4 95.8

Pressure 85.7 87.2 96.0

TABLE II: Adaptation performance on sensor data from the Austin
weather stations.

Sensor Reconstruction Error Excess Error
Reference JDA Const JDA

Temperature 1.32 0.23 0.44 0.19
Humidity 5.28 0.41 0.93 0.30
Dew Point 1.15 0.33 1.21 0.17

Wind Speed 5.36 3.81 4.60 3.12
Wind Gust 5.12 3.68 5.09 2.86

Pressure 3.71 2.25 3.35 1.84

c) Results on Weather Dataset: The weather dataset is

collected from Weather Underground3 which contains a large

number of personal weather stations. In our experiments, we

study 3 nearby stations in San Francisco and 3 nearby stations

in Austin. For each station, we examine 6 sensors including

temperature (in ◦F), humidity (in %), dew point (in ◦F),

wind speed (in mph), wind gust (in mph) and pressure (in

Pa). Sensor values are collected every 5-10 minutes, and data

collected over 2 years are used in our experiments.

We only show experimental results on the 3 stations in

Austin. An explicit discussion of the 3 stations in San Fran-

cisco is skipped since these results show very similar trends.

We select one station as the target station to evaluate our

reconstruction results on. Since there are 3 stations, each

sensor type has 3 instances. Due to the spatial proximity of the

3 stations, sensors of the same type are likely to be correlated.

Fig. 2 shows the precision of failure detection on each sen-

sor with recall ranging from 60% to 100%. JDA performs the

best on all sensors, with a significant margin of improvement

on temperature, humidity and dew point. The improvement

is less significant on wind speed and wind gust since these

signals have relatively large variances and are difficult to

reconstruct from other sensor values. When recall is 90%,4

JDA achieves an 8.3% average improvement in precision over

all sensors over the second best performer. Bayesian performs

better than NN and Subspace on most sensors, showing the

benefit of reasoning with multiple sensors. However, JDA out-

performs Bayesian as it captures more nonlinear relationships.

Table I reports on the accuracy of identifying differ-

ent modes of sensor failures. Here, it is easy to see that

JDA performs better than Neural on most sensors, because

JDA exploits information from multiple correlated sensors

while Neural only uses information from a single sensor.

JDA performs fairly close to Ground (except in the case

3https://www.wunderground.com/
485-95% is a range often used in practice.
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Fig. 3: Precision-recall curves on the appliance energy dataset.

TABLE III: Accuracy of identifying different modes of sensor
failures in the appliance energy domain.

Sensor Neural JDA Ground
T-kitchen 91.1 92.5 97.7
H-kitchen 88.7 93.4 96.4
T-living 90.3 91.7 96.8
H-living 87.2 90.6 96.5
T-bath 92.6 93.8 98.0
H-bath 82.4 86.2 94.3

of wind speed and wind gust), highlighting its efficacy in

classifying the different modes of sensor failures.

The adaptation performance of JDA is given in Table II

where Reference is computed as the average RMSE between

the sensor values of same sensors in nearby stations. Here, the

baseline algorithm is to replace a failed sensor with a similar

one from a nearby station. JDA achieves significantly lower

reconstruction errors than Reference, especially on sensors

with small variances in their readings. The excess error of

JDA is consistently better than that of Const, which validates

our claim that dynamic estimation of error intervals is more

accurate than static estimation. It is also easy to see that

the excess error of Const is relatively large compared to the

reconstruction error of JDA.

d) Results on the Appliance Energy Dataset: The appli-

ance energy dataset consists of 28 sensors measuring energy

TABLE IV: Adaptation performance on sensor data from the
appliance energy dataset.

Sensor Reconstruction Error Excess Error
Reference JDA Const JDA

T-kitchen 1.36 0.72 0.75 0.48
H-kitchen 2.85 1.01 1.32 0.83
T-living 1.69 0.80 0.95 0.66
H-living 3.04 1.12 1.34 0.91
T-bath 0.69 0.73 0.85 0.54
H-bath 10.95 8.19 7.93 6.32

usage, in-house conditions, and outside conditions.5 Sensor

values are sampled every 10 minutes for about 4.5 months.

There are multiple temperature and humidity sensors in dif-

ferent rooms. Their physical proximity leads to strong sensor

correlations. In our experiments, we used data from all sensors

and report reconstruction results on 6 in-house sensors which

measure temperature (in ◦C) and humidity (in %) in the

kitchen, living room, and bathroom, respectively.

Figure 3 shows the precision of sensor failure detection by

different methods, with recall ranging from 60% to 100%. We

observe that JDA and Bayesian perform better than NN and

Subspace in most cases, demonstrating that sensor relation-

ships are helpful in detecting sensor failures. On the humidity

sensors, H-kitchen and H-living, JDA achieves significant

improvement even over Bayesian, demonstrating the benefit

of reasoning with a substrate of constraints and nonlinear

relationships proposed in our framework. When recall is 90%,

JDA achieves a 5.2% average improvement in precision for

all sensors over the second best performer.

Table III reports the accuracy of identifying different modes

of sensor failures by different methods, where JDA achieves

higher accuracy than Neural on all sensors. This is because

JDA exploits information from multiple sensors while Neu-
ral only uses information from a single sensor.

Table IV reports the adaptation performance, where the

recall is set to 90%. To compute Reference for a target sensor,

we first find the most similar sensor in terms of sensor values

from historical data and then calculate the RMSE between

the two sensors in the evaluation data. This can be seen as

a simple baseline algorithm for adaptation to sensor failures.

JDA achieves lower reconstruction errors than Reference on 5
sensors. However, on the T-bath sensor, JDA performs slightly

worse than Reference due to overfitting. In terms of excess

error, JDA consistently outperforms Const.

VI. RELATED WORK

Sensor failures can be detected by identifying abrupt

changes in the time series of sensor values. This problem is

often addressed by change-point or outlier detection methods

that have attracted researchers for decades [4]–[7]. A number

of detection methods have been developed in the literature, in-

cluding distribution-based methods [21], [22], reconstruction-

based methods [19], [23], [24], probabilistic methods [2],

and distance-based methods [18], [25], [26]. Among these

5http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
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methods, the reconstruction-based methods are conceptually

the most similar to ours, as they detect failures by checking

whether or not sensor values can be reconstructed well.

However, most of the existing reconstruction-based methods

are unable to identify multiple sensor failures. This prevents

them from succeeding at the further tasks of identifying the

modes of sensor failures or reconstructing the failed sensor

values. Additionally, our framework is capable of reasoning

with many different types of sensor relationships, which

improves reconstruction accuracy and robustness. While prob-

abilistic methods are capable of identifying multiple sensor

failures [27], existing work in this field largely models only

linear relationships for tractable reasoning.
Identifying the different modes of sensor failures [11] has

also attracted significant research interest. Machine Learning

methods have showed better performance than methods origi-

nating from the Digital Signal Processing and/or Physics com-

munities [16], [17]. Our approach differs from such existing

work in that it exploits information from multiple sensors.
Most of the existing work that studies sensor failures focuses

on failure detection and relies on human experts to take subse-

quent actions. While there exist some methods that reconstruct

failed sensor values [28], they are based on the assumption that

the failed sensors have already been identified. In contrast,

our framework performs joint detection and adaptation, which

is more practical. Additionally, our framework provides a

way to reliably estimate the adaptation error interval towards

guaranteeing a quality of reconstruction.

VII. CONCLUSIONS

We presented a novel Machine Learning framework for

automatically detecting and adapting to sensor failures. This is

important for developing long-lived, survivable software. Our

framework is capable of extracting nonlinear sensor relation-

ships from historical data, turning learned relationships into

constraints, and then leveraging these constraints to perform

joint sensor failure detection and adaptation. Supported by our

empirical study, the proposed approach outperforms existing

methods that are based on processing information from only

a single sensor or extracting linear relationships between

multiple sensors. Our future work consists of applying the

proposed framework to more real-world applications as well

as scaling to larger numbers of sensors.
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