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Abstract: Many software systems run on long-lifespan platforms that operate in diverse and dynamic
environments. If these software systems could automatically adapt to hardware changes, it would
significantly reduce the maintenance cost and enable rapid upgrade. In this paper, we study the
problem of how to automatically adapt to sensor changes, as an important step towards building
such long-lived, survivable software systems. We address challenges in sensor adaptation when a
set of sensors are replaced by new sensors. Our approach reconstructs sensor values of replaced
sensors by preserving distributions of sensor values before and after the sensor change, thereby not
warranting a change in higher-layer software. Compared to existing work, our approach has the
following advantages: (a) ability to exploit new sensors without requiring an overlapping period of
time between the new sensors and the old ones; (b) ability to provide an estimation of adaptation
quality; and (c) ability to scale to a large number of sensors. Experiments on weather data and
Unmanned Undersea Vehicle (UUV) data demonstrate that our approach can automatically adapt to
sensor changes with 5.7% higher accuracy compared to baseline methods.

Keywords: sensor adaptation; sensor change; survivable software; machine learning

1. Introduction

An increasing number of applications require long-term autonomy of software systems
and their capability to operate in dynamic environments. Maintaining the quality, dura-
bility, and performance of these software systems is very challenging and labor-intensive.
Failure to effectively and timely adapt to hardware and resource changes can result in tech-
nically inferior and potentially vulnerable systems [1]. For example, software systems based
on sensor data can suffer from sensor failures or changes caused by environmental condi-
tions and technical errors [2]. Occasionally, such failures can cause severe safety issues, e.g.,
faulty sensor data caused the crash of a Lion Air Flight 610, killing all 189 people on board
(https://www.cnn.com/2018/11/28/asia/lion-air-preliminary-report-intl/index.html, ac-
cessed on 17 May 2021). If software systems could automatically detect sensor failures,
these types of catastrophes could be avoided. In addition, if software systems could adapt
to sensor failures and changes, we could significantly reduce the time and effort required
for software maintenance and promote the long-term use of quality software on platforms
that continually change.

As an important step towards building such long-lived, survivable software systems,
we study the problem of how to automatically adapt to changes in sensors. Sensor change
happens when a sensor gets replaced by new sensor(s). Our goal is to build machine-
learning-based adapters that can largely reduce the effect of sensor changes on higher-layer
software. The solutions to this problem can have broad impact since there is an increasing
volume of sensors that are deployed in real-world systems [3,4]. Without proper adaptation
to sensor changes, the higher-layer software may function poorly.
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Sensor changes often occur in real-world systems due to replacement of failed sensors,
sensor upgrade, energy optimization, etc. [1,5,6]. We use the UUV domain as a real-world
scenario: A surge sensor on a UUV may stop working and may be eventually replaced by
a new surge sensor. Although the new surge sensor measures the same type of signal, it
may introduce a bias different from that of the old one. Throughout this paper, we refer
to sensors that are replaced by new sensors as replaced sensors. When sensor change
occurs, sensor values from new sensors may not match those from replaced sensors. For
example, mis-calibration could exist between replaced sensors and new sensors even
when they measure the same types of signals. Furthermore, new sensors may measure
additional types of signals that do not exist before the sensor change. Existing literature
on sensor changes mainly focuses on change detection but rarely addresses how to adapt
to these changes [7–10]. Typically, human experts are required to examine and respond
to detected changes. In order to automatically adapt to sensor changes, we would like to
reconstruct sensor values of replaced sensors using the remaining sensors and the new
sensors. The underlying assumption is that sensor values from a subset of sensors are
correlated, which is often the case in real-world systems [4,11]. For example, temperature,
humidity and dew point measured by weather sensors are correlated [12], and any two
of them can be used to accurately predict the third one. In general, if our adaptation
algorithm can accurately reconstruct the original sensor values, then the reconstructed
values can be directly input to higher-layer software without any changes to the software
itself. Figure 1 shows an example of weather sensors, continually generating timestamp,
latitude, longitude, pressure and temperature values. In the second and third rows, the
temperature sensor is replaced by two new sensors. To recover the original sensor values
of the temperature sensor, we use a reconstruction function f by leveraging sensor values
from the remaining sensors and the new sensors.

f

Compound Sensor 

2018-06-15 15:07   33.29  118.54  35.2    29.1 

2018-06-15 15:12   33.27  118.53  34.8 

2018-06-15 15:18   32.86  118.46  34.5

Reading

Reading

Reading

Location

timestamp

latitude longitude

temperature

pressure

New Sensors 

Reconstruction Function

28.4 

28.1

Adapt

Figure 1. Example of a compound weather sensor that consists of three individual sensors. The
reconstruction function f reconstructs failed temperature values from the two remaining working
sensors (blue arrows) and the two new sensors (red arrows).

One approach to learning such a reconstruction function is to simply ignore the new
sensors and reconstruct the replaced sensors using the remaining ones. Assuming that we
have access to sufficient historical sensor values of these sensors, such a reconstruction
function can be learned straightforwardly via classical regression methods [13]. In such
methods, the sensor values of the remaining sensors are treated as the input variables, and
the sensor values of the replaced sensors are treated as the output variables. However, the
new sensors may contain complementary information over the remaining sensors, which
may help us better reconstruct the replaced sensors. As an extreme example, if the new
sensors are exactly the same as the replaced sensors, using their sensor values definitely
aids reconstruction.

Learning a reconstruction function that exploits new sensors poses unique challenges
since there is no overlapping period of time between the replaced and new sensors. If we
intend to apply classical regression methods to learn the reconstruction function, we need
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training samples that contain the sensor values of both the replaced and the new sensors
at the same timestamps. However, since there is no such overlapping period of time, the
required training samples are not available and classical regression methods are therefore
inapplicable. To address this challenge, we propose an approach called ASC (Adaptation to
Sensor Changes) that learns a reconstruction function to preserve sensor value distributions
before and after the sensor change. We further improve ASC in two aspects motivated by
real-world applications. First, we propose a method to dynamically estimate the adaptation
quality, which enables higher-layer software components to determine whether or not
to accept an adaptation. Second, we develop a procedure to deal with a large number
of sensors by selecting a subset of important sensors. This procedure can significantly
reduce the overfitting to noisy values as well as the overall computational cost. It enables
our approach to continually exploit new sensors in an open environment. For empirical
studies, we evaluate ASC on sensor data from the weather and UUV domains. In most of
the evaluation cases, ASC outperforms other baseline approaches, achieving an average
improvement of 5.7%.

Our work described in this paper appears in the first author’s Ph.D. dissertation [14].

2. Settings and Notations
2.1. Settings

We study the general setting of sensor changes in the context of a compound sensor,
i.e., a sensor consisting of multiple individual or component sensors. For example, a
compound sensor can be a weather station containing several weather sensors measuring
temperature, dew point, wind speed, etc. An instant of time at which some sensor(s) are
replaced by new sensors is called a change point (We only address a single change point.
Repeated invocation of our methods naturally handles multiple change points as well).

In this paper, we consider two scenarios:

• Individual Sensor Change: some but not all of the individual sensors in a compound
sensor are replaced by another set of individual sensors. This corresponds to the cases
where new individual sensors are plugged in manually or automatically when sensor
failures or sensor upgrades occur.

• Compound Sensor Change: the entire compound sensor is replaced by a new com-
pound sensor. This happens in practice for the reason that replacing the compound
sensor is technically easier than replacing individual sensors in certain systems. This
scenario is more challenging than individual sensor change, since no individual sensor
from the compound sensor can be used to calibrate the new sensors.

Automatic adaptation to sensor changes is challenging since there is no overlapping
period between the new sensors and the replaced sensors. In individual sensor change,
the remaining sensors are the key to link the information between the new sensors and
the replaced sensors. We call the remaining sensors as reference sensors. Intuitively, if the
reference sensors are correlated with both the new sensors and the replaced sensors, they
can be helpful for reconstructing the replaced sensor values from the new sensor values.
For compound sensor change, however, there are no reference sensors from the compound
sensor because all sensors are replaced. In this scenario, adaptation to new sensors is very
challenging or even impossible. To enable reasonable adaptation, therefore, we assume
that we have access to some reference sensors outside the compound sensor. For example,
in the context of weather stations, we can use sensors in other stations as reference sensors.

Using the notion of reference sensors, the two scenarios can be viewed in a unified way:

• Reference sensors always work properly.
• Replaced sensors are replaced by new sensors at the change point.

Figure 2 visualizes this unified view and the corresponding notations (explained below).
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Figure 2. Settings and notations for sensor failures and changes.

2.2. Notations

Suppose we are given K individual sensors, among which K′ sensors are reference
sensors. We assume that

• All sensors generate sensor values at fixed time intervals, and sensor values are
temporally aligned.

• Sensor values start at time 1. At time S + 1, K− K′ sensors are replaced by P ≥ 0 new
sensors (P = 0 corresponds to sensor failure). We have sensor values until time S + T.

• There is only a single change point, i.e., time S + 1, and it is already given.

Let x1, x2, · · · , xS be sensor values before the change point, where xs ∈ RK represents
sensor values at time s ∈ {1, 2, · · · , S}, and xs,k represents the corresponding sensor
value from sensor k ∈ {1, 2, · · · , K}. Additionally, let the replaced sensors be sensors
K′ + 1, K′ + 2, · · · , K. Let z1, z2, · · · , zT denote sensor values after the change point, where
zt ∈ RK′+P represents sensor values at time S + t, for t ∈ {1, 2, · · · , T}. Note that we use s
to index x and t to index z. Based on this setting, {xs,k} and {zt,k} for k ∈ {1, 2, · · · , K′}
represent sensor values of reference sensors, and {zt,k}, for k ∈ {K′+ 1, K′+ 2, · · · , K′+ P}
represent sensor values of the P new sensors. Figure 2 illustrates the above notations.

In the following, we often refer to sensor values before the change point as the source
domain, and sensor values after the change point as the target domain. Similar notions are
used in the domain adaptation and transfer learning communities [15].

3. Approach

One baseline approach is to simply ignore information generated by the new sensors
and reconstruct the replaced sensors using only the reference sensors. However, ignoring
information generated by the new sensors is suboptimal since it could often complement
information generated by the reference sensors. Therefore, we propose an approach that
makes use of the new sensors as well as the reference sensors for better reconstruction.

3.1. Assumptions and Intuition

Our approach reconstructs sensor values of the replaced sensors from time S + 1 to
S+ T based on the reference sensors and the new sensors. The underlying assumptions are:

• Sensor values from the reference sensors are correlated with those from the
replaced sensors.

• Sensor values from the reference sensors are correlated with those from the new sensors.

Such assumptions typically hold in real-world systems because sensor values of
different sensors are often correlated [16].

Our approach is based on the following intuition: New sensors may contain comple-
mentary information over reference sensors, useful for reconstructing replaced sensors.
Figure 3 illustrates this intuition, where the reference sensor, replaced sensor, and the new
sensor are temperature, humidity, and dew point, respectively. The left plot shows two
selected samples from historical data. We can see that for the same temperature value,
humidity can take different values. The middle plot shows that if we attempt to reconstruct
humidity from temperature alone, via the g function, then the reconstructed humidity
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values become exactly the same, since the temperature information alone is insufficient for
the reconstruction. The right plot shows that by incorporating dew point as a new signal,
the reconstructed humidity values are distributed similarly to those in the left plot. This is
expected because dew point contains complementary information over temperature for
reconstructing humidity. The above intuition leads to the key idea of our approach: to
learn a reconstruction function that preserves the sensor value distributions before and
after the sensor change.

humidity

temperature

g(temperature) f(temperature, dew point)historical data

68

72

77

68 68

Figure 3. Illustration of the intuition behind ASC.

3.2. Formulation

We follow the notations in Section 2. We refer to sensor values before the sensor
change as the source domain and to sensor values after the sensor change as the target
domain. Specifically, we aim to learn a reconstruction function fΘ(z) that maps sensor
values after the sensor change to values before the sensor change, where Θ denotes the
parameters of the function. Note that the output of fΘ(z) is a matrix when there are more
than one replaced sensor. In our implementation, we use the form

fΘ(z) = Θ
T
h(z) (1)

where h() is a nonlinear feature mapping, e.g., a quadratic function.
We are interested in fΘ(z) such that distributions of sensor values are similar across

domains after the reconstruction. This motivates us to seek fΘ(z) such that the two sets of
samples {xs} and {[zt,1:K′ ; fΘ(zt)]} (i.e., reconstructed samples in the target domain) are
“mixed” as much as possible. We use the notation 1 : K′ to denote a set of indices from 1
to K′. When this happens, each source-domain sample xs becomes close to its k-nearest
neighbors in the target domain, and vice versa. Therefore, we propose the following
objective function to minimize the cross-domain k-nearest neighbor distances

min
Θ

S

∑
s=1

∑
t∈N k

T (s)

D(xs, [zt,1:K′ ; fΘ(zt)])

+
T

∑
t=1

∑
s∈N k

S (t)

D([zt,1:K′ ; fΘ(zt)], xs) + λ‖Θ‖2
2 (2)

where D(·, ·) is the distance function defined in the space x ∈ RK. N k
T (s) denotes the

set of indices corresponding to xs’s k-nearest neighbors in the target domain, and N k
S (t)

denotes the set of indices corresponding to [zt,1:K′ ; fΘ(zt)]’s k-nearest neighbors in the
source domain. Here, nearest neighbors are determined based on the distance function D.
‖Θ‖2

2 is the regularization term on Θ with λ ≥ 0 as the regularization parameter.
For simplicity, we set D to be the squared Euclidean distance. In our implementation,

each dimension is normalized into the same scale. We assume that sensors are generally
informative and that there aren’t many noisy sensors.
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D(xs, [zt,1:K′ ; fΘ(zt)]) = ‖xs,1:K′ − zt,1:K′‖2
2

+ ‖xs,K′+1:K − fΘ(zt)‖2
2 (3)

Letting v2
st = ‖xs,1:K′ − zt,1:K′‖2

2, we can write Equation (2) as

min
Θ

S

∑
s=1

∑
t∈N k

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(4)

+
T

∑
t=1

∑
s∈N k

S (t)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
+ λ‖Θ‖2

2

In Equation (4), N k
T (s) and N k

S (t) are dependent on Θ, making Equation (4) non-
smooth and non-convex in Θ.

3.3. Optimization

For the ease of optimization, we introduce a set of auxiliary variables to decouple
the dependency of N k

T (s) and N k
S (t) on Θ. Let V k

T (s) index any of xs’s (not necessarily
the nearest) k neighbors in the target domain, and V k

S (t) index any of [zt,1:K′ ; fΘ(zt)]’s k
neighbors in the source domain. It is easy to see that

∑
t∈N k

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(5)

= min
V k
T (s)

∑
t∈V k

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(6)

and that the same relationship holds for V k
S (t) andN k

S (t). Thus Equation (4) is equivalent to

min
Θ,{V k

T (s)},{V
k
S (t)}

S

∑
s=1

∑
t∈V k

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(7)

+
T

∑
t=1

∑
s∈V k

S (t)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
+ λ‖Θ‖2

2.

Equation (7) can be efficiently optimized via a procedure with two alternating steps.
When Θ is fixed, we update {V k

T (s)} and {V k
S (t)} based on nearest neighbor search. When

{V k
T (s)} and {V k

S (t)} are fixed, we optimize Θ by solving

min
Θ

S

∑
s=1

∑
t∈V k

T (s)

‖xs,K′+1:K − fΘ(zt)‖2
2 (8)

+
T

∑
t=1

∑
s∈V k

S (t)

‖xs,K′+1:K − fΘ(zt)‖2
2 + λ‖Θ‖2

2 (9)

which can be easier than solving Equation (4) when fΘ is smooth in Θ. When fΘ(zt) is
linear in Θ, the optimal Θ can be computed analytically. In our implementation, we use the
linear form fΘ(z) = Θ

T
h(z), where the nonlinear feature mapping h maps z to a nonlinear

form with linear ({zj}), quadratic ({zjzk}), and exponential ({ezj }) terms.
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The above procedure decreases the value of the objective function in Equation (7) in
each alternating step, and converges to a local minimum of Equation (4). Empirically, the
procedure converges quickly (usually within 50 iterations).

3.4. Initialization

The quality of the solution depends on how we initialize Θ. Suppose we have a way
to accurately predict the values of the new sensors using xs,1:K′ . Let us denote the predicted
values of the new sensors. We can initialize Θ by solving

min
Θ

∑
s
‖xs,1:K − fΘ([xs,1:K′ ; us])‖2

2. (10)

Although estimating us can be very challenging when the correlations between the
replaced sensors and the new sensors are weak, we can still estimate a candidate set for
us based on target-domain data as follows: For each xs,1:K′ , we find a set of its nearest
neighbors in {zt,1:K′} and use the corresponding zt,K′+1:K′+P to form a candidate set Us. We
then minimize the model error by optimizing both Θ and {ûs}:

min
Θ,{ûs}

∑
s

min
ûs∈Us

‖xs,K′+1:K − fΘ([xs,1:K′ , ûs])‖2
2 (11)

where ûs is allowed to be any element of Us. Equation (11) essentially relaxes the depen-
dency between the replaced sensors and the new sensors, and uses the optimal Θ for the
relaxed setting as an initialization. By setting Us to different sizes, we can get different
initial solutions for Θ.

3.5. Parameter Tuning

For tuning the regularization parameter λ, we use a special leave-one-out cross-
validation strategy. We synthesize a set of sensor change scenarios by treating each sensor
in the source domain as the replaced sensor and using a biased version of that sensor as
the new sensor. The biased version is created by offsetting each sensor value by the same
bias. We then select the optimal λ such that the average reconstruction error on these
synthesized scenarios is minimized.

4. Empirical Study

We evaluated ASC on sensor data from the weather and UUV domains.

• Weather Data: the dataset consisted of weather sensor data collected from Weather
Underground (https://www.wunderground.com/, accessed on 17 May 2021). The
dataset involved a number of personal weather stations; and each station (compound
sensor) contains a set of individual sensors including temperature, dew point, humid-
ity, wind speed, wind gust, pressure, etc. These weather stations were selected from a
set of clusters/regions (e.g., Los Angeles, San Francisco, Austin, Chicago, etc.), each
with three stations. The clusters were determined based on the cities in which the
stations are located. Stations within a cluster tended to produce more similar sensor
values than those across clusters. Sensor values were sampled every 5 or 10 min.
We temporally aligned sensor values as a preprocessing step. The data used in our
empirical study are available for download (https://github.com/usc-isi-i2/sensor-
adaptation/tree/master/datasets/weather/dataset, accessed on 17 May 2021). The
data were organized into different geographical clusters where each cluster contains
a few weather stations. Sensor values were represented in JSON format where each
attribute corresponded to a different sensor type.

• UUV Data: the dataset was collected by letting a UUV travel from a starting point
to an end point in a simulated environment. The UUV contained a propeller RPM
sensor, a waterspeed sensor, and a compound sensor called Doppler Velocity Log

https://www.wunderground.com/
https://github.com/usc-isi-i2/sensor-adaptation/tree/master/datasets/weather/dataset
https://github.com/usc-isi-i2/sensor-adaptation/tree/master/datasets/weather/dataset
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(DVL) sensor. The DVL sensor consisted of seven individual sensors including surge,
heave, sway, pitch, roll, depth, and heading. Figure 4 shows the locations of these
sensors on a UUV. Each sensor produced a sensor value every second. We simulated
20 trips and collected sensor values at each second. The trajectory of the UUV varies
in each trip due to different starting/end points and water currents. The total number
of samples in each trip varied between 500 and 2000.

surge, heave, sway, pitch, roll, depth, heading

Figure 4. UUV Sensors (RPM, Waterspeed, DVL).

We compared ASC to three baseline methods:

• Replace: non-adaptation method that substitutes each replaced sensor with a new
sensor that has the closest mean and variance in sensor values.

• Refer: adaptation method that reconstructs sensor values of replaced sensors using
reference sensors, without exploiting any new sensor.

• ReferZ: adaptation method that works in the following three steps:

1. Learn a regression model on the target domain to reconstruct the new sensors
from reference sensors.

2. Use the learned regression model to reconstruct the new sensors on the source
domain.

3. Learn a reconstruction function on the source domain to reconstruct replaced
sensors from reference sensors and reconstructed new sensors.

This method could work well if the new sensors and reference sensors were strongly
correlated, which may not hold in real-world applications.

The reconstruction error of each method was measured by RMSE (Root Mean Square
Error) between the reconstructed sensor values and the ground truth. To show the robust-
ness of the reconstruction errors, we also report the corresponding standard errors.

4.1. Results on Weather Data

We used 30 weather stations from 10 geographical clusters. We generated random
triplets across clusters. We generated each triplet in the following way: (1) randomly select
two clusters; (2) randomly select two stations from the first cluster (denoted as the stations
A1 and A2), and one station from the second cluster (denoted as the station B). We assumed
that sensors in B were correlated with those in A1 and A2. We used sensors in A1 as the
compound sensor, sensors in A2 as the new sensors, and sensors in B as the reference
sensors. We generated 100 random triplets, and we report results averaged on them.

Each station consisted of six sensors including temperature (◦F), humidity (%), dew
point (◦F), wind speed (mph), wind gust (mph), and pressure (Pa). Sensor values were
collected every 5 min and are temporally aligned. Since A1 and A2 were from the same
cluster, sensor values from A1 and A2 were typically more correlated than those from A1
(A2) and B. We used 2 years of data, with data in 2016 as the source domain and data in
2017 as the target domain.

Individual Sensor Changes: we treated each sensor in A1 as the replaced sensor, the
remaining sensors in A1 plus all sensors in B as the reference sensors, and all sensors in A2
as the new sensors. Table 1 reports average reconstruction errors and the corresponding
standard errors, with Imp. showing the average improvement (in %) of ASC over the best
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baseline method. We can see that ASC achieved an average improvement of 6.4% over base-
lines. This showed the high robustness of ASC. In general, ASC showed more statistically
significant improvement on sensors whose values exhibited large variances (e.g., wind gust
and pressure). Replace always underperformed compared to Refer, revealing that directly
using new sensors could cause significant differences in sensor values. ReferZ performed
better than Refer by leveraging new sensors. ASC further improved over ReferZ because it
better exploited information from new sensors.

Table 1. Reconstruction errors (RMSE) on weather data for individual sensor changes. Each entry
shows the average reconstruction error and the corresponding standard error. Imp. shows the
average improvement (in %) of ASC over the best baseline method. The best performing method(s)
(statistically significant up to one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.

temperature 3.94 ± 0.024 0.61 ± 0.011 0.59 ± 0.009 0.57 ± 0.010 4.1
humidity 5.73 ± 0.023 0.72 ± 0.016 0.71 ± 0.015 0.72 ± 0.015 −1.7
dew point 3.89 ± 0.027 0.70 ± 0.010 0.68 ± 0.009 0.67 ± 0.010 2.8

wind speed 8.24 ± 0.084 5.20 ± 0.063 5.21 ± 0.064 5.11 ± 0.060 1.7
wind gust 10.81 ± 0.073 6.65 ± 0.052 6.65 ± 0.048 6.31 ± 0.046 5.0
pressure 7.82 ± 0.16 3.42 ± 0.19 2.48 ± 0.17 1.83 ± 0.17 26.2

Figure 5 visualizes the joint distributions over wind speed and reconstructed pressure
on a station in San Francisco (x-axis: wind speed, y-axis: reconstructed pressure). Figure 5a
is the ground-truth distribution that we would like to approximate after adaptation. As we
can observe, Refer generated a significantly different joint distribution compared to the
ground truth, while ASC produced a much closer distribution by leveraging new sensors.

−0.2 0.2 0.6 1 1.2

−0.2

0.2

0.6

1

1.2

(a) ground truth

−0.2 0.2 0.6 1 1.2
−0.4

0

0.4

0.8

1.2

(b) Refer

−0.2 0.2 0.6 1 1.2
−0.4

0

0.4

0.8

1.2

(c) ASC
Figure 5. Visualization of wind speed and reconstructed pressure on a weather station in San
Francisco (x-axis: wind speed, y-axis: reconstructed pressure produced by different approaches).
Ground truth corresponds to the true pressure values. Values are in normalized scales.

Compound Sensor Changes: we treated all sensors in A1 as the replaced sensors, all
sensors in B as the reference sensors, and all sensors in A2 as the new sensors. Table 2
reports reconstruction errors on each replaced sensor separately. ASC statistically outper-
formed baselines in three cases, achieving an average improvement of 5.7%. Compared to
Table 1, ASC produced larger reconstruction errors mainly because the reference sensors
had lower correlations with the replaced sensors in this case.
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Table 2. Reconstruction errors (RMSE) on weather data for compound sensor changes. Each entry
shows the average reconstruction error and the corresponding standard error. Imp. shows the
average improvement (in %) of ASC over the best baseline method. The best performing method(s)
(statistically significant up to one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.

temperature 3.94 ± 0.024 0.73 ± 0.018 0.71 ± 0.013 0.68 ± 0.014 4.2
humidity 5.73 ± 0.023 0.87 ± 0.021 0.88 ± 0.020 0.87 ± 0.022 0
dew point 3.89 ± 0.027 0.75 ± 0.018 0.74 ± 0.012 0.72 ± 0.011 2.6

wind speed 8.24 ± 0.084 6.07 ± 0.080 6.11 ± 0.074 6.13 ± 0.082 −1.8
wind gust 10.81 ± 0.073 7.24 ± 0.069 7.08 ± 0.072 6.83 ± 0.070 3.5
pressure 7.82 ± 0.16 3.82 ± 0.21 2.83 ± 0.20 2.26 ± 0.18 20.1

4.2. Results on UUV Data

We used the concatenated sensor values in 10 trips as the source domain, and the
remaining as the target domain. We examined reconstruction errors on the surge (m/s),
heave (m/s) and sway (m/s) sensors, whose sensor values are crucial for higher-layer
software. To simulate new sensors, we used a biased version for each of the surge, heave
and sway sensors. The biased version offset the original sensor values by a sensor-specific
bias. We set the bias to 3σ, where σ is the standard deviation of the original sensor values.

Individual Sensor Changes: we treated each of the surge, heave and sway sensors as
the replaced sensor, and the remaining sensors as the reference sensors. Table 3 compares
reconstruction errors of different methods, where ASC improved over the best baseline
by an average of 8.8%. The improvement on surge was the most statistically signifi-
cant. Refer and ReferZ always outperformed Replace, consistent with our observations on
weather data.

Table 3. Reconstruction errors (RMSE) on UUV data for individual sensor changes. Each entry
shows the average reconstruction error and the corresponding standard error. Imp. shows the
average improvement (in %) of ASC over the best baseline method. The best performing method(s)
(statistically significant up to one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.

surge 2.47 ± 0.14 0.66 ± 0.071 0.58 ± 0.048 0.47 ± 0.051 18.9
heave 0.13 ± 0.0068 0.020 ± 0.0062 0.020 ± 0.0046 0.019 ± 0.0049 6.5
sway 2.31 ± 0.13 0.74 ± 0.065 0.72 ± 0.059 0.71 ± 0.063 1.1

Compound Sensor Changes: we treated all sensors in the DVL compound sensor
as the replaced sensors, and the propeller RPM and waterspeed sensors as the reference
sensors. Table 4 reports the results. ASC improved over the best baseline by an average
of 3.0%. Compared to Table 3, the improvement decreased for each sensor because fewer
reference sensors were available.

Table 4. Reconstruction errors (RMSE) on UUV data for compound sensor changes. Each entry
shows the average reconstruction error and the corresponding standard error. Imp. shows the
average improvement (in %) of ASC over the best baseline method. The best performing method(s)
(statistically significant up to one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.

surge 2.47 ± 0.14 0.71 ± 0.084 0.67 ± 0.078 0.62 ± 0.081 6.0
heave 0.094 ± 0.0063 0.026 ± 0.0073 0.026 ± 0.0070 0.024 ± 0.0073 3.4
sway 2.31 ± 0.13 0.78 ± 0.079 0.75 ± 0.080 0.75 ± 0.076 −0.5
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4.3. Evaluation in BRASS Project

In the evaluation of the BRASS Project [1] Phase 1, we conducted extensive experi-
ments on Weather Underground Data. We organized data into 13 clusters, covering 13
regions in Los Angeles, San Francisco, Austin and Chicago. In each cluster, there were
three weather stations, each containing 2 years of weather data. Five individual sensors
(temperature, humidity, dew point, wind speed and wind gust) were used in all stations.

We evaluated our adaptation algorithms over randomly chosen clusters, stations,
sensors, and time periods. Once a random cluster was chosen, we randomly picked two
stations (A1 and A2). Since the two stations were from the same cluster, their sensor values
were relatively similar. We further randomly picked an individual sensor from station A1,
and replaced it with the same individual sensor from station A2. To enable adaptation,
we used training data from a 2-month time period (without sensor change). We then used
1-month data for the adaptation period (sensor change happened in the beginning), and
1-month data for the evaluation period. The 4-month data were consecutive, as shown in
Figure 6. The goal was to learn an adaptation function based on the data in the training and
adaptation periods, and then evaluate adaptation performance in the evaluation period.

Figure 6. Illustration of training, adaptation and evaluation periods in the BRASS project evaluation.
We use data from K sensors (S1, S2, · · · , SK). The training period generates data without sensor
change for 2 months. The adaptation period generates data for 1 month, in which SK is replaced by a
different sensor at the beginning. The evaluation period uses data from the next 1 month.

To determine whether an adaptation succeeds or not, we introduced a benchmark
called the reference error. It defines a domain-specific baseline error bound that our system
could tolerate. If adaptation error was less than the reference error, we considered the
adaptation to be successful. In our implementation, we estimated the reference error
by averaging the errors between every pair of weather stations in a cluster over the
evaluation period.

Table 5 summarizes the adaptation performance on random tests described above.
Our evaluation was performed on cases where the error of no adaptation (i.e., direct
use of the new sensor) exceeded the reference error. ASC achieved high success rate on
temperature, humidity, dew point and wind speed. On wind gust, the success rate was
relatively low due to large variance in the sensor values. Despite performance drops on
wind speed and wind gust, ASC showed positive improvement over reference error on all
individual sensors.

Table 5. Adaptation performance on random tests in the BRASS project evaluation. Imp. shows the
average improvement (in %) over the given reference error.

Sensor Success Rate (%) Imp.

temperature 95.4 61.6
humidity 96 65.8
dew point 100 71.1

wind speed 84.6 28.7
wind gust 66.7 24.0

Figure 7 shows the reconstructed wind gust in one random test. The blue curve
represents the wind gust from a target station and a nearby station. The red curve represents
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the wind gust after adaptation, which was much more similar to the original signal in the
training period.

Figure 7. Visualization of the reconstructed wind gust by ASC. The blue curve represents observed
sensor values and the red curve represents reconstructed sensor values.

5. Extensions
5.1. Estimating Adaptation Quality

To build survivable software, estimating the quality of adaptation is also important
since it enables higher-layer software components to determine whether or not to accept
a proposed adaptation. Towards this end, we developed a method to estimate an error
interval for the gap between the reconstructed sensor value and the ground truth.

We would like to obtain such an error interval for each reconstructed sensor value and
for each sample in the target domain. Given a reconstructed sample in the target domain
[zt,1:K′ ; fΘ(zt)] and a specific reconstructed sensor value, we estimated its error interval
from similar samples in the source domain:

1. Find its κ nearest neighbors in the source domain according to distances defined in
Equation (3).

2. Compute the standard deviation σ on the given reconstructed sensor value among
the κ neighbors found in Step 1.

3. Set the estimated error interval to be [−ασ, ασ], where α > 0 is a scaling factor. An
ideal α makes the error interval as tight as possible. α can be tuned on source-domain
samples by optimizing the “excess error” notion defined below.

Excess Error of the Error Interval: To quantify the tightness of the estimated error
interval, we used the notion of excess error. It is defined as the gap between the ground-
truth value and the closest endpoint of the error interval, when the interval contains the
ground-truth value. Figure 8 illustrates this notion. If the interval did not contain the
ground-truth value, we considered the interval invalid. In practice, we could tolerate a
small failure rate of the estimated error interval by setting a recall parameter (e.g., 90%). We
could then find the smallest α to achieve the given recall and compute the corresponding
excess error. Clearly, we favored a smaller excess error as it resulted in a tighter error
interval. We present the results on excess errors in the next section.
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Figure 8. Notion of excess error of the error interval.

5.2. Ability to Exploit Many Sensors

As an increasing number of sensors are deployed in real-world systems, it is crucial
for ASC to be able to exploit many sensors. This also enables our approach to be deployed
in an open environment where new sensors continually emerge. Dealing with a large
number of sensors is challenging in two aspects:

• Noisy sensors are likely to be involved and can degrade adaptation performance. For
example, if some reference sensors produce highly noisy values, the nearest neighbor
distances can suffer from the noise. Additionally, noisy values in reference or new
sensors can cause the optimization algorithm to get stuck in poor local minima.

• A large number of sensors leads to a large parameter space of Θ, which significantly
increases the computational cost of the adaptation algorithm.

In addressing these issues, we developed a two-step procedure to select a subset of
useful sensors:

1. Selecting a subset of reference sensors: For each reference sensor, compute the average
correlation between its sensor values and those from each replaced sensor, and then
select Nref reference sensors with the largest average correlation scores.

2. Selecting a subset of new sensors: For each new sensor, compute the average correla-
tion between its sensor values and those from each replaced sensor as well as each
selected reference sensor in Step 1, and then select Nnew new sensors with the largest
average correlation scores.

Here, Nref and Nnew were set by the user in specific applications. We denote this
improved approach as ASCSEL.

5.3. Empirical Study

We used the same triplets (A1, A2, B) as in Section 4.1. For each triplet, we used
station A1 as the compound sensor, and simulated reference sensors and new sensors from
the remaining 29 stations. Specifically, sensors from 15 randomly selected stations were
used as reference sensors, and sensors from the other 14 stations were used as new sensors.
This made the total number of sensors exceed 200. Some stations had additional types
of sensors, e.g., precipitation. Table 6 reports the results for individual sensor changes,
where ASCSEL uses Nref = Nnew = 10. In terms of reconstruction errors, ASCSEL achieved
statistically significant improvement over ASC in all cases. Note that ASCSEL outper-
formed ASC from Table 1, which revealed that a large pool of reference and new sensors
actually helped. In contrast, ASC from Table 6 performed worse than itself from Table 1
due to overfitting. This demonstrated the efficacy of our sensor selection procedure when
the number of sensors was large. In terms of excess errors, ASCSEL achieved smaller values
than ASC, consistent with the fact that ASCSEL learned better reconstruction functions.
The excess errors on wind speed and wind gust were relatively large because these sensor
values exhibited large variances and were difficult to reconstruct. We observed similar
trends in the scenario of compound sensor changes.
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Table 6. Individual sensor changes on weather data with many sensors. Each entry shows the
average reconstruction error and the corresponding standard error. The best performing method(s)
(statistically significant up to one standard error) are in bold font.

Replaced Sensor
Reconstruction Error Excess Error

ASC ASCSEL ASC ASCSEL

temperature (◦F) 0.47 ± 0.012 0.38 ± 0.009 0.34 ± 0.010 0.22 ± 0.009
humidity (%) 0.53 ± 0.016 0.47 ± 0.014 0.42 ± 0.014 0.31 ± 0.011

dew point (◦F) 0.47 ± 0.012 0.44 ± 0.009 0.37 ± 0.010 0.25 ± 0.009
wind speed (mph) 5.04 ± 0.061 4.83 ± 0.059 4.36 ± 0.052 3.71 ± 0.055
wind gust (mph) 6.28 ± 0.052 5.61 ± 0.045 4.75 ± 0.041 3.96 ± 0.042

pressure (Pa) 3.17 ± 0.19 1.68 ± 0.18 2.68 ± 0.19 1.04 ± 0.18

6. Related Work

Sensor failures and changes can be detected by identifying abrupt changes in time
series of sensor readings. This problem is often called change point detection, and it
has attracted researchers in statistics and data mining communities for decades [7–10,17].
Change point detection has broad applications in fraud detection, network intrusion detec-
tion, motion detection in vision, fault detection in controlled systems, etc. Change point
detection methods can mainly be categorized into two types: supervised and unsupervised.
Supervised methods treat change point detection as a classification problem and classify
sensor readings into different states learned from training data [18–21]. Unsupervised meth-
ods, on the other hand, are capable of handling a variety of different states without prior
training for each state. Examples of unsupervised methods include distribution-based [22],
reconstruction-based [23,24], probabilistic [2,3,11,25], and distance-based [26,27] methods.

Existing work examining sensor failures and changes mainly focuses on detecting
change points but rarely addresses the issue of adaptation to sensor failures or changes.
Existing approaches typically rely on human experts to examine these change points and
make subsequent decisions. Our work, on the other hand, is motivated by the notion of sur-
vivable software and aims at automatic adaptation to changes [28]. Such adaptation allows
our approach to exploit the new sensors which may contain valuable information [29,30].
Although some of the existing detection methods [2,3,11] can be used to reconstruct sensor
readings because they infer the actual readings through their models, they are not able
to leverage any new sensor(s). The studies of [31,32] also address adaptation to sensor
change; however, they require an overlapping period of time between the new sensors and
the replaced sensors.

Our approach can be viewed as a special case of heterogeneous domain adaptation [15]
if we treat sensor values of the replaced sensors as labels and sensor values of the refer-
ence/new sensors as features [33]. However, existing heterogeneous domain adaptation
approaches are not capable of solving our problem, where the target domain has new
features that are unseen in the source domain.

The notion of survivable software is similar to self-aware software [34], which requires
a system to be aware of itself [35]. Self-awareness requires a system to experiment, model,
hypothesize, and adapt its configuration and behavior. The goal is to improve the reliability
and correctness of a software system in environments with high complexity. Recent
work has studied self-aware software in Internet of Things [36,37], robotic and space
applications [38,39], surveillance and security [40,41], and cloud and data centers [42,43].
Our work can be viewed as a building block for self-aware systems as these systems are
often built upon sensor data.

Our work is also related to autonomic computing, in which a system is automatically
configured in response to external changes, thereby removing the complexity of explicit
user management of system resources [44–46]. However, our work focuses on interpreting
configuration changes—particularly, sensor changes—in a modular fashion so that higher-
layer software modules can function smoothly.
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7. Conclusions

In this paper, we were the first to study a critical problem in building survivable
software, i.e., how to automatically adapt to sensor changes in which a set of sensors
are replaced by new sensors. To address this problem, we proposed a machine learning
approach, called ASC, that is capable of exploiting new sensors, scaling to a large number
of sensors, and estimating adaptation quality. ASC learns a reconstruction function to
preserve sensor value distributions before and after the sensor change(s). It dynamically
estimates the adaptation quality, thereby enabling higher-layer software components to
determine whether or not to accept an adaptation. It also scales to a large number of
sensors by intelligently selecting an important subset of relevant sensors using machine
learning methods. This procedure significantly reduces overfitting to noisy values as well
as the overall computational cost. Furthermore, ASC continually exploits new sensors in
an open life-long environment. For empirical studies, we evaluated ASC on sensor data
from the weather and UUV domains. In most of the evaluation cases, ASC outperformed
other baseline methods. Our work is of highest relevance to researchers and practitioners
working in the areas of Software Systems, Internet of Things, and Machine Learning.

Discussion: The underlying assumption of our approach is that sensor values from a
subset of sensors are well correlated. Although this assumption often holds in real-world
systems, it may not always be the case. This can be viewed as a limitation of our approach
when the correlations among sensors are weak. However, such a limitation can often be
overcome in practice if we are allowed to access or install more reference sensors that are
better correlated with existing sensors.

Future Work: We would like to explore two directions in our future work. The first
is to apply our ideas to new domains with larger volumes of sensor data. For example,
we plan to examine the aviation domain where sensor values are sampled in milliseconds.
The second is to integrate our methods into survivable software systems that operate in
real-world scenarios.
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