
Declar ati ve interface models for user
interface constr ucti on tools: the
M ASTERM I ND appr oach

P. Szekely1, P. Sukaviriya2

P. Castells3, J. Muthukumarasamy2, E. Salcher4

1University of Southern California, Information Sciences Institute
(szekely@isi.edu)
2Georgia Institute of Technology (noi@cc.gatech.edu, jk@cc.gatech.edu)
3Universidad Autonoma de Madrid (castells@lola.iic.uam.es)
4University of Technology, Graz (salcher@icg.tu-graz.ac.at)

Abstract
Currently, building a user interface involves creating a large procedural program. Model-
based programming provides an alternative new paradigm. In the model-based paradigm,
developers create a declarative model that describes the tasks that users are expected to
accomplish with a system, the functional capabiliti es of a system, the style and
requirements of the interface, the characteristics and preferences of the users, and the I/O
techniques supported by the delivery platform. Based on the model, a much smaller
procedural program then determines the behavior of the system.

There are several advantages to this approach. The declarative model is a common
representation that tools can reason about, enabling the construction of tools that automate
various aspects of interface design, that assist system builders in the creation of the
model, that automatically provide context sensitive help and other run-time assistance to
users. The common model also allows the tools that operate on it to cooperate. Because
all components of the system share the knowledge in the model, this promotes interface
consistency within and across systems and reusabilit y in the construction of new
interfaces. The declarative nature of the model allows system builders to more easily
understand and extend systems.

This paper describes the modeling language of MASTERMIND, a model-based user
interface development environment.

Keywords
Model-based interfaces, knowledge-based interface tools, UIMS, user interface design
environments

1 INTRODUCTION

Model-based interface development is a new paradigm for constructing interfaces. In the
model based approach, interfaces are automatically generated from a declarative
specification (model) that describes the tasks users need to perform, the content, structure
and layout of displays, and the role that display elements play in user’s tasks. Developers

using the model based paradigm build interfaces by building the model that describes the
desired interface, rather than by writing a program that exhibits the desired behavior.

The model-based paradigm offers many potential benefits over traditional methods of
building interfaces.

• Powerful design and run-time tools. The declarative model is a common
representation that tools can reason about, enabling the construction of tools to assist
developers at design-time, and end-users at run-time. Examples of design-time tools
are design criti cs [4, 5], which automatically analyze designs to detect questionable
features, automated advisors to help developers refine designs, and automated design
tools that can automatically create certain portions of the interface [9, 21]. Examples
of run-time tools are automatically generated context-sensitive help [23, 31, 32], and
support for end-user customization.

• Consistency and reusability. Because all components of the system share the
knowledge in the model, this promotes interface consistency within and across
systems and reusability in the construction of new interfaces.

• Support for early conceptual design. Models encourage designers to explicitl y
represent the rationale for design decisions, thus encouraging designers to think more
about the artifacts they are building.

• Iterative development. Since models are executable even before all details of the
interface have been designed, developers can experiment with designs early in the
development process, catching design flaws early, before considerable coding effort
has been spent, and more resistance to change has built up.

Several model-based interface development tools have been built [10, 11, 17, 18, 28, 29,
33, 34, 35, 36], but none has achieved a level of maturity to allow them to generate
industrial strength applications. The main shortcomings of today’s model-based tools are:

• Lack of flexibility. The modeling language of existing model-based tools is not
expressive enough to give developers adequate ways to control all the features of the
interface needed for real applications.

• Poor performance. Most model-based tools are experimental, and thus not tuned for
performance. However, a common cause of ineff iciencies is that many tools interpret
the models at run-time, i.e., when the interface is being generated. Unless the models
are suitably restricted, this level of interpretation leads to poor performance. Some
notable exceptions are ADEPT, which compiles the models into executable code, and
ITS [36] which interprets the model at run-time, but uses a model that is less
expressive than those used in other tools.

• Hard to use. Most model-based tools are hard to use, especially when compared with
interface builders. Most model-based tools require models to be specified in a
specialized modeling language. Thus modeling becomes a form of programming,
which is not a skill many interface developers have or wish to learn.

MASTERMIND is a new model-based interface development environment designed to
address the main shortcomings of existing model-based tool. MASTERMIND represents the
continuation of the work on HUMANOID and UIDE, two different but complementary
model-based systems. HUMANOID’s strength lies in the presentation model, modeling
tools and performance, where as UIDE’s strength lies in the dialogue model, the design
critics, and the help generation tools. MASTERMIND is being designed to capitalize on the
best features of HUMANOID and UIDE, and to try to avoid the shortcomings.

This paper documents the MASTERMIND modeling language in detail , discussing most
modeling constructs available in MASTERMIND. The main desiderata in designing the
MASTERMIND modeling language were:

• Expressive power. MASTERMIND is designed to give interface designers extensive
control over all i nterface features. This goal is achieved by allowing developers to
model interfaces at different levels of abstraction. The higher levels are easier to
specify, but offer less control, where as the lower levels offer more control at the
expense of specification cost. MASTERMIND is designed to support mainly the
specification of traditional 2D graphical user interfaces.

• Amenable to interactive specification. MASTERMIND’s modeling language was
designed so that models can be easily specified using interactive modeling tools that
hide the syntax of the language completely. Many aspects of the model were designed
so that they can be specified by demonstration.
 To achieve this goal we did many paper designs of how the modeling tools would
work, and how they could be used to construct the models expressible in the language.
We built a mockup of the design environment using Macromedia Director, to
concretize our vision of the design environment, and help guide the design of the
modeling language. Often, we sacrificed expressivity, or provided multiple ways of
expressing certain features in order to achieve this goal.

• Compilation into efficient representation. For model-based tools to be successful it
must be possible to translate the model into an eff icient representation for use at run-
time. We elected to use a powerful declarative representation at design-time, that
supports sophisticated reasoning about interface designs, in order to enable the
creation of the design and run-time tools. The declarative representation will be
translated into a partially compiled representation where many objects in the
declarative model are translated into eff icient procedures. However, references to the
declarative model remain in the run-time representation to allow the use of
sophisticated run-time tools when needed, without compromising performance.

The interface generation component (run-time system) and the modeling tools are
currently being designed, and have not been implemented yet.

The rest of the paper is organized as follows. Next we briefly describe the
MASTERMIND architecture in order to give some context about the role that models play in
the whole system. The next sections discuss the modeling language in detail . We devote
sections to discuss the models of application capabiliti es, tasks and presentation. We close
with related work, current status and conclusions. An appendix contains an example
model for an electronic mail application.

2 ARCHITECTURE

MASTERMIND uses different architectures for the design-time environment and for the
delivery of applications. The design-time architecture is designed to support fast iterative
development, and powerful design-time tools. To do so, the design-time architecture
preserves the model in its declarative form, and maintains extensive book-keeping
information so that when the models are extended, the interfaces generated from the
model can be incrementally updated. The application delivery architecture is optimized
for performance. It uses a compiled representation of the model that is smaller than the
declarative representation, and supports fast generation of interfaces.

Des i gner

A ppl i cat i on

Model

T as k

Model

P r es ent at i on

Model

COR B A Communi cat i on

A mul et

MAS T E R MI ND

P r ot ot y pi ng S uppor tAppl icat ion

Model ing S ui te

Des ign

Cr i t ics

Pr es entat ion

Model ing S ui te

T as k Model ing

S ui te

Help Author ing

S ui te

Figure 1. Architecture of the MASTERMIND design-time environment.

Figure 1 shows the architecture of the design-time environment. The MASTERMIND

models are represented using the CORBA (Common Object Request Broker Architecture)
object model, and run in a separate process called a model server. All the MASTERMIND

tools and the MASTERMIND prototyping environment also run as separate processes, and
can access and modify the model by communicating with the model server using the
CORBA communication support layer1. This multi -process architecture allows new tools
to be integrated without needing to modify or recompile the complete system, supports
teams of designers working simultaneously, and supports remote collaborations too.

The model server uses a remote procedure call architecture to communicate with its
clients. It provides procedures to create the large variety of structures that compose a
model, procedures to modify and destroy these structures, and procedures to query the
contents of the model. The model server can also save and restore models to and from text
files. The complete set of procedures is specified using CORBA IDL.

MASTERMIND will provide tools for authoring the model (application, task and
presentation modeling tools), tools for critiquing designs, tools for authoring the help
systems, tools for generating portions of the interface automatically (e.g., generating
menus from the task model) and a prototyping environment that can generate executable
interfaces from the model, even before the model is completely specified. The tools are
integrated by sharing the model via the model server. Whenever a model element in the
model server is modified (by request of any tool), all tools that depend on the modified
element are informed so that they can update their state. In particular, the prototyping
environment is always notified about model changes so that it can update the interface
prototypes “on the fly” whenever the design specifications change.

The application delivery environment does not use CORBA (unless the application
itself uses CORBA). For delivery, the models will be translated into C++ source code that
can be compiled and linked in with the rest of the application code, making delivered
applications more compact and eff icient. Delivered applications will retain the abilit y to
contact the model server in order to access the declarative representations of the models

1 Models can be partitioned into parts that execute in separate model servers running in separate

nodes in a network. This makes it possible for teams of designers distributed in remote sites to
collaborate in an efficient manner.

they use. This will allow tools li ke the animated help system, that are invoked during
application execution, to access and analyze the models in an incremental fashion.

3 APPLICATION MODEL

The application model defines the capabiliti es of the application. MASTERMIND’s
application model is an extension of the CORBA object model. MASTERMIND uses
CORBA because it is a widely emerging standard, whose modeling language provides the
basic faciliti es needed to model applications. CORBA’s strength is its support for
distributed heterogeneous applications, so by using CORBA, MASTERMIND will be able to
support interfaces for distributed applications. This section briefly summarizes the
CORBA object model, and the MASTERMIND extensions.

The CORBA object model is very similar to C++ and Smalltalk classes. CORBA
supports the definition of classes (called interfaces in CORBA) using multiple
inheritance. Classes can have attributes and methods. In addition, CORBA has a model of
exceptions. A class can declare a set of exceptions, which consist of a name and
parameters describing data that will be communicated with the exception. The model of
methods lists the exceptions that methods can raise.

MASTERMIND currently supports two extensions to the CORBA IDL language. The
first one is the notion of method preconditions that allow developers to model when it is
legal to call methods. The second extension is the notion of reports: other objects,
including presentations and tasks, can register themselves as consumers of reports, to be
informed when certain changes occur in an object, and update their state accordingly. The
reports mechanism works even when the objects and the consumers are in different
processes.

The example below shows a partial MASTERMIND model for an Email application. The
bold keywords represent CORBA IDL modeling constructs. The bold, underlined
keywords represent the MASTERMIND extensions. The Message object provides attributes
that represent the information typically stored in an Email message. We show examples of
two exceptions, and only three methods. The precondition of the send method specifies
that send can only be invoked if the message_ready_to_send returns true. We show some
of the reports that messages can generate in order to inform clients about changes.
interface Message {

attribute Address sender;
attribute Date arrival_time;
attribute String subject;
attribute sequence<Address> recipients

raises recipient_incorrect;
attribute String body;

exception recipient_incorrect (String recipient);
This exception is raised by the methods that modify the recipients attribute of a
message.

exception undeliverable_message;
This exception is raised when a message cannot be delivered for whatever reason.

boolean message_ready_to_send ();
void send ()

preconditions message_ready_to_send;
void refile (in Folder where);

report sender_changed;
report subject_changed;
report recipient_added (Address new_recipient);
report recipient_removed (Address old_recipient);
report recipients_changed;

}

The application model is not restricted to only contain objects representing the data
structures of the application. Interface designers can model new objects that combine
attributes from other objects, in order to better model the end user’s view of the data. For
example, in an application to allow users to dial the phone from the computer the
interface designer might want to define new objects corresponding to countries and cities,
even though this information is only implicitl y represented in the data structures of the
application (as prefixes to the number to be dialed).

4 EXPRESSIONS

MASTERMIND features an expression language to represent connections that tie the pieces
of the model together. Examples of such expressions are assignment of parameters of
model objects, invocation of application routines, predicates that test that certain
conditions are true, arithmetic expressions, if-then-else and iteration expressions, and
other programming language constructs.

A key feature of the expressions is that they are constraint like. When MASTERMIND

evaluates an expression, it records the model elements on which the expression depends
so that if these elements change later on, the expressions are automatically recomputed.
For example, task preconditions are specified as an expression that tests that the value of
certain task parameters satisfy some condition. Should the values of the parameters
change, the precondition of the task is automatically brought up to date.

The expression language is suitably restricted so that MASTERMIND can analyze their
behavior. For example, MASTERMIND can find out which tasks set the parameters that are
used in the precondition of another task to determine which tasks need to be executed in
order to make the precondition valid. For this reason, the expressions are represented
internally in the model as objects with attributes rather than as textual scripts.

5 TASK MODEL

The task model describes the tasks that users can perform with a system. Task modeling
in MASTERMIND centers around representing and elaborating user tasks by outlining the
steps required to perform these tasks. Designers specify task hierarchies to tell
MASTERMIND what users can do in an application, how the interface changes when users
interact with the system, and what the underlying application does to provide users with
needed or requested information to carry out intended tasks.

For each task, designers specify the goal of the task, the conditions in which the task
can be performed, the effects of the task, information requirements of the task, and the
breakdown into sub-tasks that specify how the task must be performed. The breakdown of
a task is defined as a combination of user tasks, interface tasks, and application tasks.
Designers can specify steps which are optional or steps which are only needed when
certain conditions are true.

The lowest level of user tasks are interaction techniques, which correspond to
primitives such as clicking on a button, or selecting an item from a menu. By putting

interaction techniques as part of a task breakdown, designers tell MASTERMIND what kind
of inputs are expected from the user. By placing a system task designers tell MASTERMIND

how it should update the interface. And by placing an application task, designers tell
MASTERMIND that an application routine must be called at this point in the breakdown
(when the user actually performs the task) to provide the task with information relevant to
the interface or information required in the following steps.

Tasks are modeled in terms of two main objects, Tasks and Task_Connections. These
objects and other auxiliary objects are described in the following sections.

5.1 Task

Tasks are modeled in terms of objects called tasks. The goal and effects attributes specify
what the task does, the parameters specify the data on which the task operates, the
preconditions specify when it is legal to execute the task, and the sub-tasks specify the
steps for carrying out the task. MASTERMIND represents the sub-tasks with a task
connection object that also specifies which of the sub-tasks must be executed and in what
order. In addition, the task objects contain a set of flags that control dialogue sequencing.

Table 1 Attributes of Task.

Attribute Name Type
name Symbol

Prototype Task

task_type USER, PRESENTATION, APPLICATION,
INTERACTION_TECHNIQUE, UNDETERMINED

goal Goal

effects Expression, ...

parameters name: Task_Parameter {...}, ...

precondition Expression

subtasks Task_Connection

is_optional boolean

is_resumable boolean

is_interruptable boolean

is_loop boolean

is_reentrant boolean

A task has a name, and a prototype task from which the newly defined task inherits
information. For example, a task to print an Email message would be defined as a
specialization of the generic Print task.

The task_type specifies the different categories of tasks. User tasks are tasks that the
user performs, Presentation tasks are requests to present information to the user, Application
tasks are tasks that the application performs without user involvement,
Interaction_Technique tasks represent low-level tasks such as mouse clicks, and
Undetermined tasks are a way for the developer to delay committing to a specific task type.

The effects are a specification of the actions to be performed when the task is executed.
Typical effects are to invoke application routines, to present information, to change the
status of other tasks, and to set task parameters. The effects of a task serve a dual purpose.
They describe what the task does in a declarative way that can be analyzed by the various
design and run-time tools. In addition, they are translated into executable code that makes
the appropriate behavior happen at run-time.

The following is a li st of the primitive expressions that can be used in the specification
of the effects of tasks:
Method invocation

This expression is used to invoke a method on a specified object with a given set
of arguments. The object and the arguments are specified by listing the task
parameters that contain the values on which the method should operate.

Parameter setting
This expression is used to set the value of a parameter to the result of evaluating
an arbitrary expression.

Task status modification
This expression is used to start, interrupt, abort and execute tasks.

Data presentation
This expression is used to present information to the user. The data is specified as
a list of the task parameters that contain the information to be presented. Since
expressions behave as constraints, when the task parameters change at run-time,
the presentation is automatically updated.

The parameters are variables to store the data that the task operates on (details below).
The precondition specifies the conditions that must be true before the task can be

executed. Preconditions are specified using expressions that test whether the values of
task parameters satisfy some condition, or whether another task is in a given state.

Tasks provide a set of f lags to control dialogue sequencing in a convenient way,
without the use of preconditions. is_optional specifies whether the task is optional, and
does not need to be performed; is_resumable specifies whether the task can be resumed
after it is interrupted; is_interruptable specifies whether the task can be interrupted once it
is started; is_loop specifies that the task can be performed multiple times, provided that the
preconditions remain true, and is_reentrant specifies whether separate instances of this task
can be spawned at run-time. In many applications users can spawn multiple instances of
the same task, e.g., they can spawn a task to compose a message, and before finishing it,
they can spawn a separate instance to compose a different message. In this case the task is
said to be reentrant. If the task is not reentrant, only one instance of the task is used.

For Interaction_Technique tasks it is necessary to specify fields that depend on the
particular interaction technique. For example, for the mouse click interaction technique it
is necessary to specify which mouse button triggers the interaction technique, the area of
the screen that can be clicked to invoke it, what happens if the user moves the mouse out
of this area before releasing the mouse button, etc. These details are not discussed in this
paper.

5.2 Goal

A goal is a specification of what a task does, in contrast to the effects that specify how a
task accomplishes a goal. Goals can be represented either as text or as formal objects that
MASTERMIND can analyze and operate with.

When a goal is specified as text, it just serves as documentation for what the task does,
and can be shown to the user in help strings.

When a goal is represented formally as an expression, MASTERMIND can evaluate
whether the goal is satisfied in any given context, and so can determine if the task needs
to be executed. For example, if the goal of a task is to select an Email message, and a
message is already selected, there is no need to force the user to execute the task. In this
case, the task goal would be modeled using an expression that checks whether the task
parameter that holds the current selections has a value of type Email message. In general,
only tasks whose necessity is context dependent need to have their goal modeled
formally.

5.3 Task_Parameter

Task parameters are variables defined in task objects for storing information needed for
executing the task. Typical uses of parameters are to store data that needs to be passed to
application routines, data that is needed to evaluate preconditions, and data that needs to
be passed to other tasks.

The values of the parameters of root tasks (tasks without a parent) are set by
MASTERMIND when the application starts. The values of parameters of subtasks can be
defined either with an expression that computes the value based on parameters from other
tasks, or can be explicitl y set by the effects of tasks. Also, task parameters defined in a
task are visible in the sub-tasks and all its descendants.

Table 2 Attributes of Task_Parameter.

Attribute Name Type
name Symbol

type type

value Expression

default Expression

mode PRODUCED, CONSUMED

The type of a parameter can be any standard C++ primitive types, or any type defined in
the application model. The values of parameters are typically defined by expressions that
compute a value in terms of the values of other parameters. Literal expressions are also
allowed to support the specification of constants such as numbers and strings. Parameters
can also have a default value, which is used when the expression for the value cannot
compute a value. The mode specifies whether the task produces or consumes the value of
the parameter.

5.4 Task_Connection

Task_Connections specify the sub-tasks of a task, and also specify which sub-tasks need to
be executed and in what order. At any given moment MASTERMIND determines which
tasks can or need to be executed next based on the information in the Task_Connection,
and based on the information contained in the preconditions. For example, even though a
task connection might specify that the sub-tasks can be done in Unrestricted order, the
preconditions are taken into account too, and subtle, context-dependent sequencing
restrictions get enforced.

Table 3 Attributes of Task_Connection.

Attribute Name Type
tasks name: Task {...}, ...

connection_type SEQUENCE, PARALLEL, UNRESTRICTED, ONE_OF

The attribute tasks contains the list of sub-tasks of a task. Each sub-task can be named
for easy reference from other sub-tasks. The connection_type specifies the order in which
the subtasks of a task should be performed. Sequence specifies that the sub-tasks must be
performed in sequence. Parallel specifies that the tasks can be executed in parallel, i.e.,
there is no need to wait for a task to complete before starting the next one. Unrestricted
specifies that the sub-tasks can be executed in any order, except for ordering restrictions
imposed by the preconditions, and One_Of specifies that only one of the sub-tasks needs
to be executed.

6 PRESENTATION MODEL

The presentation model defines the visual appearance of the interface. Each display
that an application can produce is defined by an object called a Presentation.

6.1 Presentation

This section gives an overview of the main attributes of a Presentation. The sections below
describe the individual attributes in more detail . The appendix contains an example of the
presentation definition for an Email application.

Table 4 Attributes of Presentation.

Attribute Name Type
name Symbol

Prototype Presentation

parts name : Presentation {...},...

parameters name : Presentation_Parameter {...},...

guides name : Guide {...},...

magnitudes name : Magnitude {...},...

replication Replication {...}, ...

grids name : Grid {...}, ...

conditionals Conditional {...}, ...

A presentation has a name, and a prototype presentation from which the newly defined
presentation inherits information. For example, a dialogue-box would be defined as a
specialization of the generic Dialogue-Box presentation.

Presentations are typically built up from smaller parts, which are also presentations.
For example, the presentation definition for an Email program will define a part for
command buttons, a part to show the headers of the messages in the user’s mailbox, and a
part to show the body of the selected message.

Presentations can have both standard parameters such as font and color, and
application-specific parameters, such as the set of Email messages to be shown in a
window. The guides are used to define layouts. For example, to specify that a collection of
buttons should be placed in a row, a guide is defined, and the baselines of the buttons are
snapped to the guide. The magnitudes are used to specify properties of the presentation
such as the width and the height.

When a presentation is used as a part in another presentation, it can have a replication
attribute to indicate that multiple copies of this part should be generated. For example, in
an Email application, the presentation that displays the message headers is a replicated
part, that gets replicated once for each message in the mailbox.

The grids support the definition of layouts, especially for defining the layout of
replicated parts. Replicated parts can be attached to grids to align them with other parts,
and to specify how the multiple replications should be laid out.

The conditionals support the specification of alternative presentations depending on
characteristics of the data being displayed, or on characteristics of the display, such as the
amount of space available. Conditionals can override any element of the specification
where they appear (e.g., the position of grids, the prototype for a part), and can also add
and remove parts.

6.2 Presentation_Parameters and Magnitudes

Presentation_Parameters are variables defined in presentation objects for storing values
that control the appearance of the presentation. For example, a button presentation object

has parameters to specify the label of the button, the font for the label, whether the button
is pressed or not, the color, etc.

MASTERMIND also supports application-specific parameters. Developers can add new
parameters to presentation objects to keep track of whatever information is appropriate.
For example, the presentation object for our Email application shown in appendix 1
defines a parameter called mailbox to store a pointer to the mailbox object that holds all
the user’s Email messages. In many cases the values of application-specific parameters
are passed down to the parts of presentations, which extract from it information that is
directly presented, or that is further passed down to other parts. As shown in appendix 1,
the value of current folder is passed down to the headers, which extract from the current
folder the individual messages. Then each message is further decomposed into date,
sender and subject, and the pieces are passed as the values of label presentation.

As shown in the Table 5, presentation parameters are identical to task parameters,
except that they don’ t have a mode attribute. Presentation parameters cannot produce
values.

Table 5 Attributes of Presentation_Parameter.

Attribute Name Type
name Symbol

type type

value Expression

default Expression

Magnitudes are special kinds of parameters used to store sizes of presentation components.
In addition to the value, magnitudes support the specification of stretchabilit y, and
minimum and maximum values, which are useful in the specification of layouts.

Table 6 Attributes of Magnitudes.

Attribute Name Type
is_a Presentation_Parameter

name Symbol

stretchability float

min_value float

max_value float

6.3 Gr ids and Guides

Grids and guides are the basic faciliti es for defining layouts. Grids and guides have been
used for many years by graphic designers to specify the layouts of pages in books,
newsletters and advertisements because they provide a powerful framework for defining
pleasing layouts. Grid theory has been adapted to electronic documents and interfaces and
is part of many current user interface guidelines. For these reasons, MASTERMIND

incorporates the notions of grids and guides into the presentation model. In addition,
MASTERMIND supports a constraint language to allow the specification of layouts where
the regularity that grids and guides enforce is not appropriate.

Grids and guides represent a departure from the layout mechanisms found in many
interface builders and tool-kits, which organize layouts using rows and columns (hboxes
and vboxes). The main problem with rows and columns is that they do not provide a way

to align elements of a display that are far apart, leading to layouts that are not visually
appealing. Grids and guides solve this problem.

6.3.1 Grid

A grid is a set of parallel li nes that span an area of the display. Parts of a presentation can
be snapped to grid lines to define the layout. Grid lines in a parent presentation are visible
in the children of the presentation and their children and so on. This allows deeply nested
parts to be aligned with less nested parts.

Table 7 Attributes of Grids.

Attribute Name Type
name Symbol

direction HORIZONTAL, VERTICAL

start Expression<integer>

end Expression<integer>

distance Expression<integer>

num_lines Expression<integer>

is_stretchable Expression <boolean>

exceptions list<index, distance>

The direction attribute specifies the direction of the lines in the grid. Most displays will
contain at least one vertical and one horizontal grid. The start attribute specifies the
coordinate where the first line of the grid should be placed. This coordinate can be a
constant, or an integer expression that depends on a guide or parameter of a presentation.
Typically, the expression is just a reference to a guide, which causes the grid to start at the
location of the guide. The end attribute specifies the coordinate where the grid ends. The
distance and num_lines attributes specify the distance between the lines of the grid, and the
the number of lines in the grid. The is_stretchable attribute specifies how the grid should
be adjusted when the start or end of the grid change. If the grid is stretchable, when the
start or end change, the distance between the grid lines is proportionally adjusted, and the
number of lines remains fixed. If the grid is not stretchable, the number of lines is
adjusted.

The start, end, distance, num_lines and is_stretchable attributes cannot all be specified.
For example, if start, end, distance and is_stretchable are specified, MASTERMIND

automatically derives the value for num_lines.
The exceptions allow the definition of irregular grids, where the distance between some

grid lines is different from the default. This is useful for applications such as spread-
sheets, where the user can manually adjust the size of columns.

6.3.2 Guide

A guide is a single line to which parts can be snapped. By default, all presentations have
guides corresponding to their left, right, top and bottom. In addition, developers can
define other guides as appropriate (e.g., a guide one third of the distance from the left).
Layouts are defined by snapping guides to other guides or to grids.

Table 8 Attributes of Guides.

Attribute Name Type
name Symbol

direction HORIZONTAL, VERTICAL

position Expression<integer>

margin_1 Expression<integer>

margin_2 Expression<integer>

The direction attribute specifies the direction of the line. Its position can be a constant or an
expression that depends on other guides and grids. Guides can have margins which are
lines on both sides of the guide, parallel to it, and offset a certain amount. They make it
easy to define the gaps between parts of a presentation. For example, when defining a row
of buttons, consecutive buttons can be snapped to the margin_1 and margin_2 of the guides,
rather than to the position, to define a gap between them.

Grids and guides are design time elements, i.e., they are used by developers to define
the layout of the display, but they don’ t appear in the final interface that the end-user sees.
However, it is possible to define tasks that manipulate the guide position, thus giving the
end-user a way to adjust the layout of the display.

6.4 Replications

Most applications manipulate collections of information, for example, a collection of
messages in a mailbox, a collection of notes in a music score, collections of nodes and
lines in a graph editor. To define the presentations for these applications it is necessary to
specify that some part of the presentation should be replicated as many times as there are
elements in the collections to be displayed. The MASTERMIND replication construct is the
mechanism to model presentations of collections. When combined with the conditional
construct, replications can be used to specify the presentation of heterogeneous
collections of information (e.g., Email and voice messages in a messaging application).

Table 9 Attributes of Replications.

Attribute Name Type
name Symbol

replication_data Expression<Set>

is_on_demand boolean

references Reference {...}, ...

anchor Presentation {...}

generic Presentation {...}

The replication_data is an expression that computes the set of elements to be displayed.
Typically this is an expression that invokes an application routine (e.g., a routine that
extracts from a mailbox object the collection of messages it contains).

The is_on_demand attribute specifies whether all replicas of the part should be
generated in advance, or only as needed. This attribute gives developers the flexibilit y to
define presentations where all elements of a collection are displayed at once (e.g., in a
scrollable window), or presentations where the display of the elements is constructed
incrementally (e.g., a display composed of multiple pages, where pages are added only as
needed).

The references specify how to lay out the multiple replicas of the part using grids or
using other parts as a reference (see description of Reference object).

The anchor and generic provide an alternative to references for specifying the layout of
replicated parts. This mechanism is used for layouts that cannot be defined appropriately
in terms of grids or other parts. The basic idea is to define the layout by defining the
position of the first element (anchor), and then defining the position of the nth element
(generic) based in the position of the nth minus one element (generic).The anchor is a
presentation skeleton that defines how the first replica should be laid out. Typically the
skeleton presentation only contains definitions for two guides (e.g., left and top), in terms
of guides and grids of the parents. The generic is a li st of presentation skeletons that

defines how all the other elements are laid out. Typically two generic presentations are
defined, corresponding to the nth (n) and nth minus one (n-1) replicas. Expressions for
guides in the nth presentation define the layout with respect to the guides for the n-1
presentation. More than two generic presentations can be defined to define layouts that
depend on the n-1, n-2, etc. replications.

Table 10 Attributes of References.

Attribute Name Type
name Symbol

reference Grid | Replication

init_index integer

end_condition Expression<boolean>

init_procedure Expression<grid_index | part_index>

References provide a convenient way for specifying the layout for replicated parts by
specifying that the replications should fill a grid, or by specifying that the replications
should be laid out according to some other replication which is already laid out (e.g.,
specifying that an icon should be placed to the right of every other element of a list).

It is possible to specify multiple references in a replication object. A common case is
to use two references, containing a vertical and a horizontal grid. The effect is that
elements are laid out in rows according to the vertical grid. When the columns in the
vertical grid are exhausted, the next row in the horizontal grid is used. In general, the use
of multiple references supports the specification of a large variety of layouts.

The reference attribute specifies the grid or replication on which the layout is based.
When the layout is based on another replication, it means that each part will be laid out
with respect to each part of the other replication (e.g., to the right of it).

The init_index specifies which grid line or replication element should be used to place
the first element in this reference, which by default is the first one. The init_procedure is an
advanced feature that provides more flexibilit y for specifying the init_index by allowing a
procedure to be called, rather than always using the same init_index. The end_condition
specifies when to stop using this reference for placing objects (e.g., when reaching the last
column in a vertical grid).

6.5 Conditionals

Conditionals allow the definition of presentations whose appearance depends on the
characteristics of the data to be displayed (e.g., Email messages and voice messages in a
messaging application), on the characteristics of the platform (e.g., color display vs. black
and white), or on the characteristics of the interface at any given moment (e.g., given a
row of buttons, if the window is narrowed, rather than truncating the row, some buttons
become pull-down menus, so that all commands remain accessible without scrolling).

A template can have several conditionals, which is a case statement, consisting of
several Case_Clauses. MASTERMIND evaluates each case statement independently: it
evaluates the predicate of each clause in the sequence until one returns true, and then uses
the specification associated with the successful clause.

Table 11 Attributes of Case_Clause.

Attribute Name Type
predicate Expression<boolean>

specification Presentation {...}

The predicate is an expression that depends on presentation or task parameters, guides and
grids of the containing presentation and its ancestors. When it is true, the features of the
Presentation specified in the specification attribute are applied to the presentation being
constructed. For example, the Presentation might specify values for only a few parameters
or guides, and perhaps override the prototype presentation for a part.

When MASTERMIND evaluates conditionals, it records the dependencies of all the
predicates it evaluates, so that if any of the parameters, guides or grids on which the
predicates depend changes value, MASTERMIND will re-evaluate the appropriate
predicates, re-apply the appropriate specifications, and update the display.

7 RELATED WORK

The tools for constructing user interfaces can be divided into three basic categories:
interface builders, UIMSs and model-based tools. The following sections compare
MASTERMIND to the tools in these categories.

7.1 Interface Builders

Interface builders [25, 26] are the most popular interface construction tools in the market.
They provide an easy to use, WYSIWYG interface for constructing interfaces where
designers can draw the screens of the interface. Interface builders use a very low level
description of the interface consisting mainly of the location, properties and type of all the
elements of the display. This is not enough information to support sophisticated analytic
tools for design evaluation and critiquing, tools for retargetting the interface to a new
platform or tools for automatically generating help.

In contrast, the model-based tools, and MASTERMIND in particular contain a rich model
of the interface that supports the above-mentioned tools. Unlike other model-based tools
[2, 10, 33, 34, 35, 36], MASTERMIND is designed to provide an easy to use interface for
building the models, similar to the designer’s interface that interface builders provide. The
appendix shows a mockup of MASTERMIND’s presentation editor: it is similar to an
interface builder, but captures a much richer representation of the presentation. In
addition, MASTERMIND can be used to specify all aspects of the interface, including the
dynamic aspects that interface builders do not support.

7.2 UIMSs

UIMSs [30] are user interface construction tools used mainly to construct the dialogue
component of the interface. They use specialized languages to describe the dialogue
(transition networks, grammars or events). Some UIMSs also provide some faciliti es for
specifying presentations, but they are very primitive. MASTERMIND’s dialogue
specification is more comprehensive. It captures not only the high level user tasks that
end users are expected to perform with the system, but also their decomposition into low
level tasks that correspond to dialogue specifications used in UIMSs.

Some UIMSs [1, 27] automatically generate interfaces from specifications that are
similar to the MASTERMIND application model. MASTERMIND improves on these systems
by providing much more comprehensive models of tasks and presentations, allowing
designers much better control over the interfaces generated.

7.3 Model-Based Tools

In this section we compare MASTERMIND to other model-based tools based on the features
and capabilities enabled by the task and presentation models.

7.3.1 Task Models

Task analysis is a very important part of the user interface design process leading to
interface designs which better meet user requirements. In the past, a number of
researchers have developed task representations which capture user task information in a
processable form. Most of these representations capture the hierarchical nature of task
decomposition in the same fashion as MASTERMIND.

The MASTERMIND task models are similar to GOMS [16, 20], TAKD [7] and UAN
[12], but unlike GOMS, TAKD and UAN, the MASTERMIND models are also used to
drive the interfaces at run-time, rather than just describing them. GOMS's task
representation is useful for evaluating interfaces by predicting speed of use based on
specified task decompositions. The representation emphasizes recording paths of user
actions including both motor steps and mental steps in performing tasks. GOMS's
representation is not intended to capture situations where multiple actions could be
performed by the users in a concise fashion. The MASTERMIND task model was designed
to be a superset of the GOMS representation, and a translator will be built that generates
GOMS models from the MASTERMIND representation so that GOMS techniques can be
used to evaluate interface designs represented in MASTERMIND. Task Analysis for
Knowledge Description (TAKD) is a taxonomy developed to systematically capture
objects and their functions. By applying TAKD, objects and functions in a domain can be
precisely specified and classified. Unlike MASTERMIND, TAKD helps designers
conceptualize tasks and objects. MASTERMIND only facilit ates creating objects and task
descriptions and leaves the responsibilit y for doing so to the designers. UAN uses task
descriptions and hierarchical task decomposition as a way to specify links from the task
model to the interface specification. This helps make sure all user requirements are
fulfill ed and all functions have accessing mechanisms for users. UAN's task
representation is rather extensive including specification for time, parallelism, and task
interruption.

Recently, several systems are using task models to drive the interfaces at run-time
(ADEPT [17, 18] and TRIDENT [2, 35]). ADEPT automatically generates user interfaces
from its task descriptions; however, its limitation lies in the environment which does not
allow interface styles to be added or allow designers enough control over interface details.
TRIDENT uses task descriptions to help in automatic generation of user interfaces.
TRIDENT does a very good job in generating high quality interfaces because it makes use
of a machine analyzable representation of interface guidelines. However, unlike
MASTERMIND, TRIDENT only addresses the generation of form-based interfaces.

Like UIDE, MASTERMIND makes uses of pre and post-conditions (called preconditions
and effects in MASTERMIND) to model the dialogue component of the interface.
MASTERMIND improves on UIDE in that it uses an eff icient constraint system to evaluate
and maintain the preconditions, thus allowing MASTERMIND to scale up to large
applications.

7.3.2 Presentation Models

MASTERMIND’s presentation model is similar to HUMANOID’S [33, 34], and to ITS’s [36].
MASTERMIND’s main contribution is that its presentation model is designed to support
graphical specification of presentations similar to that of interface builders. In addition,
MASTERMIND supports notions of visual graphic design (grid design) [38] not supported
in these systems.

MASTERMIND’s presentation model is similar to Garnet [24] in that both make heavy
use of constraints to define layouts. MASTERMIND provides less control over interface
details than Garnet does, but provides higher level components that automatically update
the display when the data being presented changes, and so are easier to use.

8 CURRENT STATUS AND FUTURE WORK

The specification of the MASTERMIND modeling language as described in this paper is
complete. The modeling language is specified in a CORBA callable frame-based system.
In addition, we developed a grammar to for the textual specification of the models, which
is used to store models in files. We will use the textual specification to bootstrap the
interactive modeling tools, which will become the standard way for specifying models.
We do not expect developers to use the textual modeling language.

The prototyping environment is being designed, and implementation started in the
Spring of 1995. Some of the interactive tools have been partially designed too, and their
implementation will commence once the prototyping environment is ready. We expect to
have an initial version of the system complete by the end of the Fall of 1995.

This paper reports work in progress, and we expect to need to modify the modeling
language as we gain more experience using MASTERMIND to build interfaces. The
following are a set of issues that we have not yet resolved satisfactorily, and which will
have an impact on the modeling language, the prototyping environment and the generated
interfaces.

• Expressiveness. No matter how hard we try to make a declarative modeling language
expressive, there will be interface designs that cannot be modeled. Our approach to
deal with this problem is to allow interface developers to use “ foreign” components,
such as OLE custom controls. These foreign components will be minimally modeled,
by specifying the parameters and methods that can be called on them. MASTERMIND

will not be able to reason with them fully, but at least will allow them to be included
in the designs.

• Extensibilit y. The MASTERMIND modeling language is extensible in the sense that new
attributes and objects can be added to the modeling language. The problem is that for
the extensions to have any effect, the tools must be updated to take into account the
new information. We envision two kinds of extensions: extensions to the
MASTERMIND core, which will be done by the MASTERMIND developers, and tool-
specific extensions that can be done by anyone who wants to incorporate a new tool
into the MASTERMIND suite of tools. As the system evolves, some of the tool-specific
extensions will be migrated into the core.

• Semantics. Currently there is no formal semantics for the MASTERMIND modeling
language. The semantics of the frame-based system used for modeling are straight
forward (inheritance, and part/whole hierarchies), but a lot of the semantics of the
model is implicit in they way that the tools make use of the attributes being modeled.
We expect that we or others will construct tools to check models for consistency, and
various notions of quality, but we do not expect to develop a formal semantics for our
model.

• Relationship to other task modeling schemes. The literature on task modeling is very
rich, and many schemes for modeling tasks have been proposed. We have tried to
arrive at a compromise that satisfies many conflicting goals: easy to specify, directly
executable and expressive. We have given more weight to the first goals, and expect
to enhance the modeling language to incorporate features of the more expressive
notations.

9 CONCLUSIONS

MASTERMIND is a model-based interface development environment designed to address
the shortcomings of existing model-based tools. The modeling language is designed to be
as expressive as possible without making it hard for developers to model interfaces:

• The application modeling language is an extension of the CORBA IDL language.
MASTERMIND allows applications to be specified in IDL, so they can use CORBA to
support application embedding and network distribution (li ke OLE and OpenDoc).
The application model complements the IDL with information needed to drive the
user interface.

• In addition to the task, sub-task decomposition features of other task modeling
systems, in MASTERMIND it is possible to specify detailed ordering constraints for
tasks, optional and repeatable tasks, preconditions and effects. In addition the
MASTERMIND specifications are described in a formal language that supports
generation of the interface as well as analysis.

• The presentation modeling language features grids and guides to allow the
specification of pleasing layouts, it features a constraint system to support the
specification of complex layouts, and to support screen resize and update, and it
features iteration and conditional constructs to support the specification of displays of
dynamic information. Together, these features support the specification of the main
windows of applications, not just the menus and dialogue boxes.

In addition to its expressivity, the MASTERMIND modeling language is implemented as
separate process so that it can be used by an open set of tools, and by several designers
working simultaneously.

10 ACKNOWLEDGMENTS

We wish to thank David Kieras for spending several days with us explaining how the
GOMS models work, and helping us design a modeling language that is as expressive as
GOMS, executable, as needed by the prototyping environment, and analyzable, as needed
by the tools. We also want to thank the reviewers for their extensive and insightful
comments.

11 APPENDIX

The appendix describes parts of the model for an Email application. The example is
expressed in the syntax of the textual representation of MASTERMIND models.
Figure 2 shows the presentation model for an Email application. The parts of the template
are shown as boxes labeled with the name of the part. The presentation editor allows
parts, guides, grids, iterations and conditionals to be added, deleted and manipulated in a
graphical way. Layout is defined by dragging parts until they snap to guides or grids. The
region bounded by hguide 1 and hguide 2 contains a replication of a part to show the
message headers (see Header_Template below). Each replication consists of three labels to
show the date, sender and subject of a message.

Figure 3 shows the interface that MASTERMIND would generate using the model
specified in the previous figure. The parts of all the presentation objects have been
instantiated and bound to data from the application.

Below is the textual specification that defines the model that builds the interface
shown in Figure 3. Words formatted like Mail_Interface represent the names of objects
being defined. Words formatted like Parameter represent the type of an object or a value
of an enumeration, and expressions in square brackets (e.g., [(hguide1 + bottom) / 2])
represent Expressions.

The presentation object for the main window is called Mail_Interface. The parameter
mailbox is bound to the mailbox parameter defined in the root task for the Email i nterface.

Send

Labe l

Labe l

Labe l

Labe l

Labe l

Quit

Forw ard

File Print

Compose

Labe l

Labe l

Labe l

Labe l

Labe l

Labe l

Labe l

Labe l

Labe l

Labe l

Reply

He lp

Text Box

Window Tit le

}

vguide1 vguide2

hguide1

hguide2

hgrid1

Figure 2 A mockup of the presentation modeling tool showing the model for the
main display of an Email application.

Send

Mail

Quit He lp

Forw ard Reply

File Print

Compose

01/27 Me lissa Smith Red Cross driv e

01/27 Noi Sukav iriya Re : Example s

01/26 Tom Wisniew ski Re : CC w orks

To: maste rmind
From: Pedro Sz eke ly <sz eke ly@isi.edu>
Subj ect : Manuals
Date : Fri, 27 Jan 95 17:02:38 PST

We rev ised the manual f ormats and the

01/26 Pedro Sz eke ly Mode l f ile s

01/27 Pedro Sz eke ly Manuals

Figure 3. Screen shot of the interface that MASTERMIND would generate from the
presentation model specified in Figure 2.

This task parameter is initialized when the application starts. The definitions of guides
hguide2, vguide1 and vguide2 use expressions that depend on parameters of the window
itself (bottom, left, etc.) so that the space is proportionally assigned when the window is
resized. The definition of the gird hgrid1 depends on the font used for the window, so that
the grid is adjusted according to the font being used. We only show the definition of one
part of the window that displays the message headers (the other parts are defined
similarly). The header part is replicated according to the contents of the mailbox, which
are computed calli ng the contents method on the value of the mailbox parameter. The
reference for the replication is hgrid1, so that the headers are displayed in a column.
Mail_Interface : Window {

parameters = mailbox : Parameter {

value = Email_Task.mailbox },

font : Parameter {value = Chicago12;};

guides = left : Guide { // To leave a small space at the left of the window.

direction = VERTICAL; right_margin = 5;},

right : Guide {

direction = VERTICAL; left_margin = 5;},

hguide1 : Guide { // Top for headers.

direction = HORIZONTAL; position = 200;},

hguide2 : Guide { // Bottom for headers.

direction = HORIZONTAL; position = [(hguide1 + bottom) / 2];},

vguide1 : Guide { // Position for message sender field.

direction = VERTICAL; position = [2/3 * left + 1/3 * right];

right_margin = 2; left_margin = 2;},

vguide2 : Guide { // Position for subject field

direction = VERTICAL; position = [1/3 * left + 2/3 * right];

left_margin = 2; right_margin = 2;};

grids = hgrid1 : Grid {

direction = HORIZONTAL; start = [hguide1]; end = [hguide2];

stretchable = FALSE; distance = [font.height () + 2];};

parts = header : Header_Presentation {

replication = {

is_on_demand = FALSE;

replication_data = [mailbox.contents ()];

references = grid_ref {

reference = [hgrid1];};

};

guides = top : Guide {

 direction = HORIZONTAL; position = [grid_ref];};

};

};

Header_Pres specifies how to display each individual header. The value of the message
parameter each data element of the replication defined above. The presentation has three
parts, for the date, sender and subject attributes of the message. The parts are aligned to
the top guide defined in the replication in of the Mail_Interface presentation object. Note the
use of consume_reports in the definition of the sender part. It declares that when the

message produces the sender_changed report, this part will be informed so that the display
can be appropriately updated.
Header_Pres : Presentation {

parameters = message : Parameter

value = [Mail_Interface.header.replication.replication_data];};

parts = date : Label {

parameters = text : Parameter {

value = [message.date ()];};

guides = top : Guide {

direction = HORIZONTAL; position = [Header_Pres.top];},

left : Guide {

direction = VERTICAL;

position = [Mail_Interface.left.right_margin];},

right : Guide {

direction = VERTICAL;

position = [Mail_Interface.vguide1.left_margin];};

},

sender : Label {

parameters = text : Parameter {

value = [message.sender ()];

consume_reports = sender_changed;};

guides = top : Guide {

direction = HORIZONTAL; position = [Header_Pres.top];},

left : Guide {

direction = VERTICAL;

position = [Mail_Interface.vguide1.right_margin];},

right : Guide {

direction = VERTICAL;

position = [Mail_Interface.vguide2.left_margin];};

},

subject : Label {

parameters = text : Parameter {

value = [message.subject ()];};

consume_reports = subject_changed;};

guides = top : Guide {

direction = HORIZONTAL; position = [Header_Pres.top];},

left : Guide {

direction = HORIZONTAL;

position = [Mail_Interface.vguide2.right_margin];},

right : Guide {

direction = HORIZONTAL;

position = [Mail_Interface.right.left_margin];};

};

};

The following is the task model for the task to forward a message. The message parameter
specifies the message to be forwarded. Its value is specified as the effect of the
Select_Message task, which is not shown here. In order to forward a message, the user has
to complete the tasks specified in the subtasks attribute. These subtasks must be done in
sequence. The precondition of the task specifies that the Forward_Message task cannot be
invoked if a message is not selected.
Forward_Message : Task {

goal = "To forward a received message to a different recipient.";

task_type = User;

parameters = message : Parameter {

type = Message; mode = CONSUMED;},

recipient : Parameter {

type = String;};

subtasks = :Task_Connection {

connection_type = SEQUENCE;

tasks = Invoke_Forward, Specify_Recipient, Fill_in_Message, Send;};

preconditions = [selected_msg != NULL];

is_reentrant = TRUE;

is_interruptable = TRUE;

};

The Invoke_Forward task is a leaf task bound to the interaction technique bound to the
Forward_Button presentation object (not shown here). In the interactive environment the
developer would only have to define the goal of the task, because the task would have
been automatically created when the button part was added to the Email_Window
presentation. This task has no explicit effects. It serves to block the following tasks until
the user clicks on the forward button.
Invoke_Forward : Task {

goal = "Indicating that a message is to be forwarded.";

task_type = Interaction_Technique;

task_extension = :Technique_extension {

interactor = :Am_Choice_Command {

object = Forward_button;

...

};

};

};

After the user clicks on the forward button, he has to specify to whom the message should
be forwarded. The effect of the task is to set the recipient parameter string that the user
types in (the contents of the text edit interaction technique).
Specify_Recipient : Task {

goal = "Indicate who will receive the forwarded message.";

task_type = Interaction_Technique;

task_extension = :Technique_extension {

interactor = :Am_Text_Edit_Interactor {

object = Forward_Address_Field

};

};

effects = [recipient <- Forward_Address_Field.contents];

};

Once the recipient has been specified, the system will display the message being
composed using the Display_Message task, and the user has to specify the body of the
message in the Modify_Text task. These tasks are not described here.
Fill_in_message : Task {

goal: "To add to the forwarded message.";

task_type = USER;

subtasks = :Task_Connection {

connection_type = SEQUENCE;

tasks = Display_Message, Modify_Text;

};

};

Once the message is fill ed in, the user can send it by completing the Send task. This task
involves two steps. The first one, Invoke_Send is an Interaction_Technique task where the
user clicks on a button to request that the new message be sent. The second one, Call_Send
is an Application task that invokes the application routine that sends the message.
Send : Task {

goal = "Finishing off the message to be forwarded.";

task_type = USER;

subtasks = :Task_Connection {

connection_type = SEQUENCE; tasks = Invoke_Send, Call_Send;

};

};

12 REFERENCES

1. M. Beshers and S. Feiner. Scope: Automated Generation of Graphical Interface. In
Proceedings of ACM SIGGRAPH 1989 Symposium on User Interface Software and
Technology (UIST '89). pp.76-85.

2. F. Bodart, A. Hennebert, I. Provot, J. Leheureux, J. Vanderdonckt. A Model-Based
Approach to Presentation: A Continuum from Task Analysis to Prototype. In the
Proceedings of the Eurographics Workshop on Design, Specification, and Verification
of Interactive Systems. Bocca di Magra, Italy, June 8-10, 1994.

3. F. Bodart and J. Vanderdonckt. On the Problem of Selecting Interaction Objects, in
Proceedings of HCI'94 "People and Computers IX" (Glasgow, 23-26 August 1994),
G. Cockton, S.W. Draper, G.R.S. Weir (Eds.), Cambridge University Press,
Cambridge, 1994, pp. 163-178.

4. R. Braudes, A Framework for Conceptual Consistency Verification, D.Sc.
Dissertation, Dept. of EE&CS, The George Washington University, Washington, DC
20052, 1990.

5. M. D. Byrne, P. Sukaviriya, S. D. Wood, J. D. Foley and D. Kieras. Automating
Interface Evaluation. In Proceedings of Human Factors in Computing Systems,
CHI’94. Boston, April 1994.

6. D.J.M.J. de Baar, J.D. Foley, and K.E. Coupling Application Design and User
Interface Design. In Proceedings of Human Factors in Computing Systems, CHI’ 92.
Monterey, California, May 1992, pp. 259–266.

7. D. Diaper. Analysing Focused Interview Data with TASK Analysis for Knowledge
Description (TAKD). In the Proceedings of IFIP INTERACT' 90: Human-Computer
Interaction.

8. S.K. Feiner. APEX: An Experiment in the Automated Creation of Pictorial
Explanations. IEEE Transactions on Computer Graphics and Applications, November
1985.

9. S.K. Feiner. and K. R. McKeown. Generating Coordinated Multimedia Explanations,
Proceedings of the 6th IEEE Conference on Artificial Intelli gence Applications, pp.
290-303, 1990.

10. J. Foley, W. Kim, S. Kovacevic and K. Murray, UIDE - An Intelli gent User Interface
Design Environment, in J. Sulli van and S. Tyler (eds.) Architectures forIntelli gent
User Interfaces: Elements and Prototypes, Addison-Wesley, Reading MA, 1991,
pp.339-384.

11. D.F. Gieskens and J.D. Foley. Controlli ng User Interface Objects through Pre- and
Postconditions. In Proceedings of Human Factors in Computing Systems, CHI’ 92.
Monterey, California, May 1992, pp. 189–194.

12. R. Hartson, K. Mayo. A Framework for Precise, Reusable Task Abstractions. In the
Proceedings of the Eurographics Workshop on Design, Specification, and Verification
of Interactive Systems. Bocca di Magra, Italy, June 8-10, 1994.

13. P. J. Hayes. and P. Szekely. Graceful interaction through the COUSIN user interface,
International Journal of Man-Machine Studies, vol. 19, pp. 285-305.

14. P. J. Hayes, P. Szekely and, R Lerner. Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN, in Proceedings of CHI'85
(San Francisco, 14-18 April 1985), Addison-Wesley, Reading, 1985, pp. 169-175.

15. P. J. Hayes. Executable Interface Definitions Using Form-Based Interface
Abstractions, in Advances in Human-Computer Interaction, vol. 1, Hartson, R. (Ed.),
Ablex Publishing Corp., Norwood, Chapter 6, pp. 161-189.

16. B.E. John and A.H. Vera. A GOMS Analysis of a Graphic, Machine-Paced, Highly
Interactive Task. In Proceedings of Human Factors in Computing Systems, CHI'94.
Monterey, California, May 1992, pp. 251-258.

17. P. Johnson, S. Wilson, P. Markopoulos, J. Pycock. ADEPT - Advanced Design
Environment for Prototyping with Task Models. In the Proceedings of INTERCHI
'93.

18. P. Johnson, S. Wilson and H. Johnson. Scenarios, Task Analysis And The Adept
Design Environment. In J. Carroll (ed) Scenario based Design. Addison Wesley. (In
Press).

19. P. Johnson, H. Johnson, and S. Wilson. Rapid Prototyping of User Interfaces Driven
by Task Models, to appear in Scenario-Based Design, John M. Carroll (Ed.), John
Wiley & Sons, 1995, pp. 209-246.

20. D. E. Kieras and P. G. Polson. An Approach to the Formal Analysis of User
Complexity. International Journal of Man Machine Studies, 22, 365-394.

21. W. Kim and J. Foley, DON: User Interface Presentation Design Assistant, In
Proceedings UIST’90. October 1990, pp. 10-20.

22. J. Mackinlay. Automating the Design of Graphical Presentations of Relational
Information. ACM Transactions on Graphics, pp. 110-141, April 1986.

23. R. Moriyon, P. Szekely and R. Neches. Automatic Generation of Help from Interface
Design Models. In Proceedings of Human Factors in Computing Systems, CHI’ 94.
Boston, April 1994.

24. B. Myers, et. al. The Garnet Reference Manuals. Technical Report CMU-CS-90-117-
R2, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
May 1992.

25. Neuron Data, Inc. 1991. Open Interface Toolkit. 146 University Ave. Palo Alto, CA
94301.

26. NeXTStep and the NeXT Interface Builder. NeXT, Inc. 900 Chesapeake Drive,
Redwood City, CA 94063. 1991.

27. D. Olsen. MIKE: The Menu Interaction Kontrol Environment. ACM Transactions on
Graphics, vol 17, no 3, pp. 43-50, 1986.

28. A. Puerta. The Study of Models of Intelli gent Interfaces. In Proceedings of the ACM
International Workshop on Intelligent User Interfaces. Jan, 1993. pp. 71-78.

29. A.R.Puerta, H. Eriksson, J.H. Gennari and M.A. Musen. Toward ontology-based
frameworks for knowledge-acquisition tools. In Proceedings of the Eigth Knowledge-
Acquisition Workshop for Knowledge-Based Systems. Banff , Alberta, Canada,
February 1994.

30. G. Singh and M. Green. A High-level User Interface Management System. In
Proceedings SIGCHI'89. April 1989, pp. 133-138.

31. P. Sukaviriya. Dynamic Construction of Animated Help from Application Context,
Proceedings of ACM SIGGRAPH 1988 Symposium on User Interface Software and
Technology (UIST '88), 1988, ACM, New York, NY, pp. 190-202.

32. P. Sukaviriya and J. Foley. Coupling a UI Framework with Automatic Generation of
Context-Sensitive Animated Help. In Proceedings of UIST '90. October 1990, pp.
142-146.

33. P. Szekely, P, Luo, and R. Neches. Facilit ating the Exploration of Interface Design
Alternatives: The HUMANOID Model of Interface Design. In Proceedings SIGCHI’ 92.
May 1992, pp. 507-515.

34. P. Szekely, P. Luo, and R. Neches. Beyond Interface Builders: Model-Based
Interface Tools. In Proceedings of INTERCHI'93 April, 1993, pp. 383-390.

35. J. M. Vanderdonckt , F. Bodart. Encapsulating Knowledge for Intelli gent Automatic
Interaction Objects Selection. In INTERCHI'93 Proceedings, Amsterdam,
Netherlands. April, 1993, pp. 424-429.

36. C. Wiecha, W. Bennett, S. Boies, J. Gould and S. Greene. ITS: A Tool For Rapidly
Developing Interactive Applications. ACM Transactions on Information Systems
8(3), July 1990. pp. 204-236.

37. S. Wilson, P. Johnson, C. Kelly, J. Cunningham and P. Markopoulos. Beyond
hacking: a model-based approach to user interface design, in Proceedings of the
HCI'93 "People and Computer VIII ", Cambridge, University Press, 1993, pp. 215-
231.

38. R. Willi ams. The Non-Designer Design Book. Peachpit Press Inc., Berkeley,
California, 1994.

13 BIOGRAPHIES

13.1 Pedro Szekely

Pedro Szekely is a research assistant professor at ISI concerned with the development
of principled, general-purpose user interface management systems. He received his Ph.D.
in Computer Science from Carnegie Mellon University in 1987 for research on user
interface management systems, focusing on defining clear standards for the requirements
of communication between application programs and a user interface management
system. He was one of the designers and implementors of COUSIN, one of the first
model-based user interface management systems. He also developed the initial version of
the constraint-based graphics system for the Garnet project. At the ISI Dr. Szekely
developed HUMANOID, a model-based user interface design environment, and is now
principal investigator for the MASTERMIND project, an ARPA funded project in
collaboration with Georgia Tech. MASTERMIND will produce a next generation model-
based interface development environment by combining the best features of HUMANOID
and Georgia Tech’s UIDE system.

13.2 Piyawadee “ Noi” Sukavir iya

Piyawadee Sukaviriya , is a Research Scientist II (equivalent of Research Assistant
Professor) in the College of Computing at Georgia Institute of Technology. She earned
her doctoral degree from the George Washington University, where her dissertation work
was on automatic generation of context-sensitive animated help. Her interests include
model-based user interface technology, automatic generation of intelli gent help for on-
line applications, multimedia help, interactive help, high-level specifications of user
interfaces, the user interface design process, adaptive interfaces, usabilit y testing, and
international user interfaces.

13.3 Pablo Castells

Pablo Castells is a visiting scientist at the Information Sciences Institute. He received
his Ph.D. degree in Computer Science in 1994 from the Universidad Autonoma of
Madrid, Spain, where his dissertation was on the use of metaknowledge and high-level
heuristics as a way to provide guidance and control for automatic problem solving in
mathematics. In the past years Dr. Castells was involved in several projects funded by the
Spanish government in the area of knowledge-based systems. His research at ISI is
currently focused on providing knowledge-based support for user interface design, in the
context of a model-based framework.

13.4 Jeyakumar “J K” Muthukumarasamy

Jayakumar Muthukumarasamy, is a member of the technical staff at Sili con Graphics.
He has an M.S. in Computer Science from the Georgia Institute of Technology. His
interests include programming, user interfaces, and distributed systems.

13.5 Ewald Salcher

Ewald Salcher is a doctoral candidate at the Institute for Computer Graphics at Graz
University of Technology. He expects to complete his degree in July, 1996. Mr. Salcher is
interested in tools for raising the level of abstraction for programming user interfaces, and
in semi-automatically generating user interfaces from models of the semantics of an
application.

