Dedarative interface models for user
Interface onstruction tools: the
MASTERMIND approach

P. Szekely', P. Sukaviriya’®

P. Castells’, J. Muthukumarasamy’, E. Salcher*

"University of Southern California, |nformation Sciences Institute
(szekely@isi.edu)

“Georgia I nstitute of Technology (noi @cc.gatech.edu, jk@cc.gatech.edu)
*Universidad Autonoma de Madrid (castells@lola.iic.uam.es)
“University of Technology, Graz (sal cher @icg.tu-graz.ac.at)

Abstract

Currently, bulding a user interfaceinvolves creaing alarge procedural program. Model-
based programming provides an aternative new paradigm. In the model-based paradigm,
developers crede adedarative model that describes the tasks that users are expeded to
acomplish with a system, the functional cagpabilities of a system, the style ad
requirements of the interface the dharaderistics and preferences of the users, and the I/O
techniques suppated by the deivery platform. Based on the model, a much smaller
procedural program then determines the behavior of the system.

There ae several advantages to this approach. The dedarative model is a common
representation that todls can reason abou, enabling the cnstruction d toadls that automate
various aspeds of interface design, that asdst system builders in the aeaion d the
model, that automaticdly provide context sensitive help and dher runtime asgstanceto
users. The ommon model aso alows the todls that operate on it to cooperate. Becaise
al comporents of the system share the knowledge in the model, this promotes interface
consistency within and aaoss gstems and reusability in the nstruction d new
interfaces. The dedarative nature of the model alows g/stem builders to more eaily
understand and extend systems.

This paper describes the modeling language of MASTERMIND, a model-based user
interface development environment.

Keywords
Model-based interfaces, knowledge-based interface tods, UIMS, user interface design
environments

1 INTRODUCTION

Model-based interfacedevelopment is a new paradigm for constructing interfaces. In the
model based approadh, interfaces are aitomaticdly generated from a dedarative
spedficaion (model) that describes the tasks users neal to perform, the content, structure
and layout of displays, and the role that display elements play in user’s tasks. Developers

using the model based paradigm build interfaces by bulding the model that describes the
desired interface, rather than by writing a program that exhibits the desired behavior.

The model-based paradigm offers many paential benefits over traditional methods of
building interfaces.

* Powerful design and run-time tools. The dedarative model is a mmon
representation that tools can reason abou, enabling the mnstruction d todsto asgst
developers at designtime, and end-users at runtime. Examples of design-time toadls
are design critics [4, 5], which automaticadly analyze designs to deted questionable
fedures, automated advisors to help developers refine designs, and automated design
tods that can automaticaly creae cetain pations of the interface[9, 21]. Examples
of runtime tods are aitomaticdly generated context-sensitive help [23, 31, 32], and
support for end-user customization.

* Consistency and reusability. Because dl comporents of the system share the
knowledge in the model, this promotes interface onsistency within and aaoss
systems and reusability in the construction of new interfaces.

e Support for early conceptual design. Models encourage designers to explicitly
represent the rationale for design dedsions, thus encouraging designers to think more
about the artifacts they are building.

* |terative development. Since models are exeautable even before dl details of the
interface have been designed, developers can experiment with designs ealy in the
development process catching design flaws ealy, before wmnsiderable mding effort
has been spent, and more resistance to chasgeuilt up.

Several model-based interfacedevelopment tod s have been built [10, 11, 17, 18, 28, 29,

33, 34, 35, 36], bu nore has achieved a level of maturity to allow them to generate

industrial strength applications. The main shortcomings of today’s model-based tools are:

* Lack of flexibility. The modeling language of existing model-based tods is nat
expressve enoughto gve developers adequate ways to control all the fegures of the
interface needed for real applications.

* Poor performance. Most model-based todls are experimental, and thus nat tuned for
performance. However, a ommon cause of inefficiencies is that many tods interpret
the models at run-time, i.e., when the interfaceis being generated. Unlessthe models
are suitably restricted, this level of interpretation leads to poa performance Some
notable exceptions are ADEPT, which compil es the models into exeautable ade, and
ITS [36] which interprets the model at runtime, bu uses a mode that is less
expressive than those used in other tools.

* Hard to use. Most model-based todls are hard to use, espedally when compared with
interface bulders. Most model-based todls require models to be spedfied in a
spedalized modeling language. Thus modeling kecomes a form of programming,
which is not a skill many interface developers have or wish to learn.

MASTERMIND is a hew model-based interface development environment designed to

addressthe main shortcomings of existing model-based tool. MASTERMIND represents the

continuation d the work on HumANoID and UIDE, two dfferent but complementary
model-based systems. HUMANOID's drength lies in the presentation model, modeling
tods and performance, where & UIDE'’s drength lies in the didlogue model, the design
critics, and the help generation tools. MASTERMIND is being designed to capitalize on the
best features of bMANOID andUIDE, and to try to avoid the shortcomings.

This paper documents the MASTERMIND modeling language in detail, discussng most
modeling constructs available in MASTERMIND. The main desiderata in designing the

MASTERMIND modeling language were:

* Expressive power. MASTERMIND is designed to give interface designers extensive
control over al interfacefeaures. This goa is achieved by alowing developers to
model interfaces at different levels of abstradion. The higher levels are eaier to
spedfy, bu offer less control, where a the lower levels offer more wntrol at the
expense of spedficaion cost. MASTERMIND is designed to suppat mainly the
specification of traditional 2D graphical user interfaces.

* Amenable to interactive specification. MASTERMIND'S modeling language was
designed so that models can be eaily spedfied using interadive modeling tod's that
hide the syntax of the language completely. Many aspeds of the model were designed
so that they can be specified by demonstration.

To achieve this goal we did many paper designs of how the modeling tools would
work, and hav they could be used to construct the models expressble in the language.
We built a mockup d the design environment using Maaomedia Diredor, to
concretize our vision d the design environment, and help gude the design d the
modeling language. Often, we sacaificed expressvity, or provided multiple ways of
expressing certain features in order to achieve this goal.

e Compilation into efficient representation. For model-based todls to be succesdul it
must be passble to translate the model into an efficient representation for use & run-
time. We deded to use apowerful dedarative representation at design-time, that
suppats phisticaed reassoning abou interface designs, in order to enable the
credion d the design and runtime tods. The dedarative representation will be
trandated into a partially compiled representation where many olbeds in the
dedarative model are trandated into efficient procedures. However, references to the
dedarative model remain in the runtime representation to alow the use of
sophisticated run-time tools when needed, without compromising performance.

The interface generation comporent (runtime system) and the modeling tods are

currently being designed, and have not been implemented yet.

The rest of the paper is organized as follows. Next we briefly describe the
MASTERMIND architedure in order to gve some ontext abou the role that models play in
the whole system. The next sedions discussthe modeling language in detail. We devote
sedionsto dscussthe models of application capabiliti es, tasks and presentation. We dose
with related work, current status and conclusions. An appendix contains an example
model for an electronic mail application.

2 ARCHITECTURE

MASTERMIND uses different architedures for the designtime environment and for the
delivery of applicaions. The designtime achitedure is designed to suppat fast iterative
development, and powverful designtime tods. To do so, the designtime achitedure
preserves the model in its dedarative form, and maintains extensive book-keeging
information so that when the models are extended, the interfaces generated from the
model can be incrementally updbted. The gplicaion dHivery architedure is optimized
for performance It uses a wmpiled representation o the model that is snaller than the
declarative representation, and supports fast generation of interfaces.

Application Task Presentation
Model Model Model

CORBA Coinmunication

MASTERMIND
Application Pr ot ot yping S uppor t Presentation Help Author ing
Modeling Suite Modeling Suite Suite

T osk Modeling Desiogn
Suite Critics

Amul et

Designer

Figure 1. Architecture of the MASTERMIND design-time environment.

Figure 1 shows the achitedure of the designtime environment. The MASTERMIND
models are represented using the CORBA (Common Objed Request Broker Architedure)
objed model, and run in a separate processcaled a model server. All the MASTERMIND
tods and the MASTERMIND prototyping environment also run as sparate processs, and
can access and modify the model by communicaing with the model server using the
CORBA communication suppat layer'. This multi-process architedure dlows new todls
to be integrated withou needing to modify or recompile the complete system, suppats
teams of designers working simultaneously, and supports remote collaborations too.

The model server uses a remote procedure cdl architedure to communicate with its
clients. It provides procedures to crede the large variety of structures that compose a
model, procedures to modify and destroy these structures, and procedures to query the
contents of the model. The model server can aso save and restore models to and from text
files. The complete set of procedures is specified using CORBA IDL.

MASTERMIND will provide tods for authoring the model (applicaion, task and
presentation modeling toadls), toadls for critiquing designs, toads for authoring the help
systems, tools for generating pations of the interface atomaticdly (e.g., generating
menus from the task model) and a prototyping environment that can generate exeautable
interfaces from the model, even before the model is completely spedfied. The todls are
integrated by sharing the model via the model server. Whenever a model element in the
model server is modified (by request of any tod), all tods that depend onthe modified
element are informed so that they can updite their state. In particular, the prototyping
environment is aways natified abou model changes that it can updie the interface
prototypes'on the fly whenever the design specifications change.

The gplicaion ddivery environment does not use CORBA (unless the gplicaion
itself uses CORBA). For delivery, the models will be transated into C++ source @de that
can be compiled and linked in with the rest of the gplicaion code, making ddlivered
applications more compad and efficient. Delivered applicaions will retain the aility to
contad the model server in order to accessthe dedarative representations of the models

' Models can be partitioned into parts that execute in separate model servers running in separate
nodes in a network. This makes it possible for teams of designers distributed in remote sites to
collaborate in an efficient manner.

they use. This will alow todls like the animated help system, that are invoked duing
application execution, to accemsd analyze theodet in an incremental fashion

3 APPLICATION MODEL

The agplicaion model defines the caabilities of the gplicaion. MASTERMIND’'S
applicaion model is an extenson d the CORBA objed model. MASTERMIND uses
CORBA becaise it isawidely emerging standard, whose modeling language provides the
basic faalities needed to model applications. CORBA’s drength is its suppat for
distributed heterogeneous applicaions, so by tsing CORBA, MASTERMIND will be aleto
suppat interfaces for distributed applicaions. This sdion lriefly summarizes the
CORBA object model, and the AMTERMIND extensions.

The CORBA objed mode is very similar to C++ and Smalltalk classes. CORBA
suppats the definition d classes (cdled interfaces in CORBA) using multiple
inheritance Classes can have dtributes and methods. In addition, CORBA has a moddl of
exceptions. A class can dedare a set of exceptions, which consist of a nhame ad
parameters describing data that will be communicaed with the exception. The model of
methods lists the exceptions tha¢thodscan raise.

MASTERMIND currently suppats two extensions to the CORBA IDL language. The
first oneis the nation d method precondtions that allow developers to model when it is
legal to cdl methods. The seand extension is the nation d reports: other objeds,
including presentations and tasks, can register themselves as consumers of reports, to be
informed when certain changes occur in an ojed, and updie their state acordingly. The
reports mechanism works even when the objeds and the @nsumers are in dfferent
processes.

The example below shows a partial MASTERMIND model for an Email applicaion. The
bod keywords represent CORBA IDL modeling constructs. The bold, underlined
keywords represent the MASTERMIND extensions. The Message objed provides attributes
that represent the information typicaly stored in an Email message. We show exampl es of
two exceptions, and orly three methods. The precondtion d the send method spedfies
that send can only be invoked if the message_ready_to_send returns true. We show some
of the reports that messages can generate in order to inform clients about changes.
interface Message {

attribute Address sender;

attribute Date arrival_time;

attribute String subject;

attribute sequence<Address> recipients
raises recipient_incorrect;

attribute String body;

exception recipient_incorrect (String recipient);
This exception is raised by the methods that modify the redpients attribute of a
message.

exception undeliverable_message;
This exception is raised when a message cannot be delivered for whatever reason.

boolean message_ready_to_send ();
void send ()

preconditions message_ready_to_send;
void refile (in Folder where);

report sender_changed;
report subject_changed;
report recipient_added (Address new_recipient);
report recipient_removed (Address old_recipient);
report recipients_changed,;

}

The gplicaion model is not restricted to only contain oljeds representing the data
structures of the gplicaion. Interface designers can model new objeds that combine
attributes from other objeds, in arder to better model the end wser’s view of the data. For
example, in an applicdion to alow users to da the phore from the cmputer the
interfacedesigner might want to define new objeds correspondng to courtries and cities,
even thoughthis information is only implicitly represented in the data structures of the
application (as prefixes to the number to be dialed).

4 EXPRESSONS

MASTERMIND feaures an expresson language to represent conredions that tie the pieces
of the model together. Examples of such expressons are assgnment of parameters of
model objeds, invocdion d applicaion routines, predicaes that test that certan
condtions are true, arithmetic expressons, if-then-else and iteration expressons, and
other programming language constructs.

A key fedure of the expressons is that they are onstraint like. When MASTERMIND
evaluates an expresson, it records the model elements on which the expresson depends
so that if these dements change later on, the expressons are aitomaticaly recomputed.
For example, task precondtions are spedfied as an expresgon that tests that the value of
cetain task parameters stisfy some @ndtion. Shoud the values of the parameters
change, the precondition of the task is automatically brought up to date.

The expresson languege is siitably restricted so that MASTERMIND can analyze their
behavior. For example, MASTERMIND can find ou which tasks st the parameters that are
used in the precondtion d ancther task to determine which tasks need to be exeauted in
order to make the precmndtion valid. For this reason, the expressons are represented
internallyin the model as objects with attributes rather than as textual scripts.

5 TASK MODEL

The task model describes the tasks that users can perform with a system. Task modeling
in MASTERMIND centers around representing and elaborating wser tasks by oulining the
steps required to perform these tasks. Designers gedfy task hierarchies to tell
MASTERMIND What users can doin an applicaion, hav the interface tanges when users
interad with the system, and what the underlying applicaion daes to provide users with
needed or requested information to carry out intended tasks.

For ead task, designers edfy the goal of the task, the condtions in which the task
can be performed, the dfeds of the task, information requirements of the task, and the
breakdown into sub-tasks that spedfy how the task must be performed. The breakdown of
atask is defined as a combination d user tasks, interfacetasks, and application tasks.
Designers can spedfy steps which are optional or steps which are only needed when
certain conditions are true.

The lowest level of user tasks are interadion tediniques, which correspond to
primitives such as clicking ona button, a seleding an item from a menu. By putting

interadion techniques as part of atask breakdown, designers tell MASTERMIND what kind
of inpus are expeded from the user. By pladng a system task designers tell MASTERMIND
how it shodd updie the interfface And by padng an applicaion task, designers tell
MASTERMIND that an applicaion routine must be cdled at this point in the breakdown
(when the user adtually performs the task) to provide the task with information relevant to
the interface or information required in the following steps.

Tasks are modeled in terms of two main oljeds, Tasks and Task_Connections. These
objects and other auxiliary objects are described in the following sections.

5.1 Task

Tasks are modeled in terms of objeds cdled tasks. The goal and eff eds attributes edfy
what the task does, the parameters gedfy the data on which the task operates, the
precondtions gedfy when it is legal to exeaute the task, and the sub-tasks gedfy the
steps for carying ou the task. MASTERMIND represents the sub-tasks with a task
conredion ohed that also spedfies which o the sub-tasks must be exeauted and in what
order. In addition, the task objects contain a set of flags that control dialogue sequencing.

Table 1 Attributes of Task.

Attribute Name Type

name Symbol

Prototype Task

task_type USER, PRESENTATION, APPLICATION,
INTERACTION_TECHNIQUE, UNDETERMINED

goal Goal

effects Expression, ...

parameters name: Task_Parameter {...}, ...

precondition Expression

subtasks Task Connection

is_optional boolean

is_resumable boolean

is_interruptable boolean

is_loop boolean

is_reentrant boolean

A task has a name, and a prototype task from which the newly defined task inherits
information. For example, a task to print an Email message would be defined as a
specialization of the generrint task.

The task_type spedfies the different caegories of tasks. User tasks are tasks that the
user performs, Presentation tasks are requests to present information to the user, Application
tasks are tasks that the @aplicaion performs withou wuser involvement,
Interaction_Technique tasks represent low-level tasks suich as mouse dicks, and
Undetermined tasks are a way for the developer to delay committing to a specific task type.

The effects are aspedficaion d the adionsto be performed when the task is exeauted.
Typicd effeds are to invoke goplication routines, to present information, to change the
status of other tasks, andto set task parameters. The dfeds of atask serve adual purpose.
They describe what the task does in a dedarative way that can be analyzed by the various
design and run-time todls. In addition, they are translated into exeautable ade that makes
the appropriate behavior happen at run-time.

Thefollowingisalist of the primitive expressons that can be used in the speaficaion
of the effects of tasks:

Method invocation

This expressonis used to invoke amethod ona spedfied oljed with a given set
of arguments. The objed and the aguments are spedfied by listing the task
parameters that contain the values on which the method should operate.
Parameter setting
This expressonis used to set the value of a parameter to the result of evaluating
an arbitrary expression.
Task status modification
This expression is used to start, interrupt, abort and execute tasks.
Data presentation
This expressonisused to present information to the user. The datais gedfied as
alist of the task parameters that contain the information to be presented. Since
expressons behave & constraints, when the task parameters change & run-time,
the presentatiols automatically updated.
Theparameters are variables to store the data that the task operates on (details below).
The precondition spedfies the mndtions that must be true before the task can be
exeauted. Precondtions are spedfied using expressons that test whether the values of
task parameters satisfy some condition, or whether another task is in a given state.
Tasks provide aset of flags to control dialogue sequencing in a nwvenient way,
withou the use of premndtions. is_optional spedfies whether the task is optional, and
does nat need to be performed; is_resumable spedfies whether the task can be resumed
after it is interrupted; is_interruptable spedfies whether the task can be interrupted orce it
IS darted; is_loop Spedfiesthat the task can be performed multi ple times, provided that the
precondtions remain true, andis_reentrant spedfies whether separate instances of this task
can be spawned at rurrtime. In many applicaions users can spawn multi ple instances of
the same task, e.g., they can spawn a task to compose amessage, and before finishing it,
they can spawn a separate instance to compaose adifferent message. In this case the task is
said to be reentrant. If the task is not reentrant, only one instance of the task is used.
For Interaction_Technique tasks it is necessary to spedfy fields that depend on the
particular interadion technique. For example, for the mouse dick interadion technique it
IS necessary to speafy which mouse button triggers the interadion technique, the aeaof
the screen that can be dicked to invoke it, what happens if the user moves the mouse out
of this areabefore releasing the mouse button, etc. These detail s are not discussed in this
paper.

5.2 God

A goal is aspedficaion d what atask does, in contrast to the dfeds that spedfy how a
task acaomplishes agoal. Goals can be represented either as text or as formal objeds that
MASTERMIND can analyze and operate with.

When agaoal is pedfied astext, it just serves as documentation for what the task does,
and can be shown to the user in help strings.

When a goa is represented formally as an expresson, MASTERMIND can evauate
whether the goal is stisfied in any gven context, and so can determine if the task needs
to be exeauted. For example, if the goal of atask is to seled an Email message, and a
message is arealy seleded, there is no red to force the user to exeaute the task. In this
case, the task goal would be modeled using an expresson that chedks whether the task
parameter that holds the arrent seledions has a value of type Email message. In genera,
only tasks whose necessty is context dependent need to have their goal modeled
formally.

5.3 Task Parameter

Task parameters are variables defined in task oljeds for storing information reeded for
exeauting the task. Typicd uses of parameters are to store data that needs to be passed to
applicaion routines, data that is needed to evaluate precondtions, and data that needs to
be passed to other tasks.

The values of the parameters of root tasks (tasks withou a parent) are set by
MASTERMIND when the gplication starts. The values of parameters of subtasks can be
defined either with an expressgon that computes the value based on @rameters from other
tasks, or can be explicitly set by the dfeds of tasks. Also, task parameters defined in a
task are visible in the sub-tasks and all its descendants.

Table 2 Attributes of Task_Parameter.

Attribute Name Type

name Symbol

type type

value Expression

default Expression

mode PRODUCED, CONSUMED

The type of a parameter can be any standard C++ primitive types, or any type defined in
the gplication model. The values of parameters are typicdly defined by expressons that
compute avalue in terms of the values of other parameters. Literal expressons are dso
allowed to suppat the spedficaion d constants such as numbers and strings. Parameters
can aso have adefault value, which is used when the expresgon for the value caana
compute avalue. The mode spedfies whether the task produces or consumes the value of
the parameter.

5.4 Task_Connedion

Task_Connections spedfy the sub-tasks of atask, and also spedfy which sub-tasks neal to
be exeauted and in what order. At any gven moment MASTERMIND determines which
tasks can o nedal to be exeauted next based onthe information in the Task_Connection,
and baesed onthe information contained in the precondtions. For example, even thougha
task connedion might spedfy that the sub-tasks can be dore in Unrestricted order, the
precondtions are taken into acount too, and subtle, context-dependent sequencing
restrictions get enforced.

Table 3 Attributes of Task_Connection.

Attribute Name Type
tasks name: Task {...}, ...
connection_type SEQUENCE, PARALLEL, UNRESTRICTED, ONE_OF

The attribute tasks contains the list of sub-tasks of atask. Each sub-task can be named
for easy reference from other sub-tasks. The connection_type spedfies the order in which
the subtasks of atask shoud be performed. Sequence spedfies that the sub-tasks must be
performed in sequence Parallel spedfies that the tasks can be exeauted in parald, i.e.,
there is no real to wait for a task to complete before starting the next one. Unrestricted
spedfies that the sub-tasks can be exeauted in any arder, except for ordering restrictions
impased by the precondtions, and One_Of spedfies that only one of the sub-tasks neeals
to be executed.

6 PRESENTATION MODEL

The presentation model defines the visual appeaance of the interface Each dsplay
that an application can produce is defined by an object calledentation.

6.1 Presentation

This ®dion gves an overview of the main attributes of a Presentation. The sedions below
describe the individual attributes in more detail . The gpendix contains an example of the
presentation definition for an Email application.

Table 4 Attributes of Presentation.

Attribute Name Type

name Symbol

Prototype Presentation

parts name : Presentation {...},...
parameters name : Presentation_Parameter {...},...
guides name : Guide {...},...

magnitudes name : Magnitude {...},...

replication Replication {...}, ...

grids name : Grid {...}, ...

conditionals Conditional {...}, ...

A presentation hes a name, and a prototype presentation from which the newly defined
presentation inherits information. For example, a dialogue-box would be defined as a
specialization of the genertalogue-Box presentation.

Presentations are typicdly bult up from smaller parts, which are dso presentations.
For example, the presentation dcfinition for an Email program will define a part for
command butons, a part to show the headers of the messages in the user’s mailbox, and a
part to show the body of the selected message.

Presentations can have both standard parameters such as font and color, and
applicaion-spedfic parameters, such as the set of Emal messages to be shown in a
window. The guides are used to define layouts. For example, to spedfy that a wlledion d
buttons shoud be placal in arow, a guide is defined, and the baselines of the buttons are
snapped to the guide. The magnitudes are used to spedfy properties of the presentation
such as the width and the height.

When a presentation is used as a part in another presentation, it can have areplication
attribute to indicate that multiple wpies of this part shoud be generated. For example, in
an Email applicaion, the presentation that displays the message headers is a replicaed
part, that gets replicated once for each message in the mailbox.

The grids suppat the definition o layouts, espedally for defining the layout of
replicaed perts. Replicaed perts can be atadhed to grids to aign them with ather parts,
and to specify how the multiple replications should be laid out.

The conditionals suppat the speaficaion d alternative presentations depending on
charaderistics of the data being dsplayed, a on charaderistics of the display, such as the
amount of space aailable. Condtionals can owerride any element of the spedficaion
where they appea (e.g., the pasition d grids, the prototype for a part), and can also add
and remove parts.

6.2 Presentation_Parametersand Magnitudes

Presentation_Parameters are variables defined in presentation oheds for storing values
that control the gppeaance of the presentation. For example, a button presentation ojed

has parameters to spedfy the label of the button, the fort for the label, whether the button
IS pressed or not, the color, etc

MASTERMIND also suppats applicaion-spedfic parameters. Developers can add rew
parameters to presentation oheds to ke track of whatever information is appropriate.
For example, the presentation ojed for our Email applicaion shown in appendix 1
defines a parameter cdled mailbox to store apointer to the mailbox ohed that holds al
the user’s Email messages. In many cases the values of application-spedfic parameters
are passd down to the parts of presentations, which extrad from it information that is
diredly presented, o that is further passed down to ather parts As shown in appendix 1,
the value of current folder is passed down to the healers, which extrad from the aurrent
folder the individua messages. Then ead message is further decompaosed into date,
sender and subject, and the pieces are passed as the values of label presentation

As down in the Table 5, presentation parameters are identicd to task parameters,
except that they dorit have amode attribute. Presentation parameters canna produce
values.

Table 5 Attributes of Presentation_Parameter.

Attribute Name Type
name Symbol
type type

value Expression
default Expression

Magnitudes are spedal kinds of parameters used to store sizes of presentation components.
In addition to the value, magnitudes suppat the spedficaion d stretchability, and
minimum and maximum values, which are useful in the specification of layouts.

Table 6 Attributes of Magnitudes.

Attribute Name Type

is_a Presentation_Parameter
name Symbol

stretchability float

min_value float

max_value float

6.3 Gridsand Guides

Grids and gudes are the basic fadliti es for defining layouts. Grids and gudes have been
used for many yeas by gaphic designers to spedfy the layouts of pages in bools,
newsl etters and advertisements becaise they provide apowerful framework for defining
pleasing layouts. Grid theory has been adapted to eledronic documents and interfaces and
Is part of many current user interface guidelines. For these reasons, MASTERMIND
incorporates the nations of grids and gudes into the presentation model. In addition,
MASTERMIND suppats a anstraint language to allow the spedficaion d layouts where
the regularity that grids and guides enforce is not appropriate.

Grids and gudes represent a departure from the layout medhanisms found in many
interfacebuil ders and tod-kits, which arganize layouts using rows and columns (hboxes
and vboyes). The main problem with rows and columns is that they do nat provide away

to align elements of a display that are far apart, leading to layouts that are not visually
appealing. Grids and guides solve this problem.

6.31 Grid

A grid isaset of paralée lines that span an areaof the display. Parts of a presentation can
be snapped to grid linesto define the layout. Grid lines in a parent presentation are visible
in the dhildren of the presentation and their children and so on. This all ows deeoly nested
parts to be aligned with less nested parts.

Table 7 Attributes of Grids.

Attribute Name Type

name Symbol

direction HORIZONTAL, VERTICAL
start Expression<integer>
end Expression<integer>
distance Expression<integer>
num_lines Expression<integer>
is_stretchable Expression <boolean>
exceptions list<index, distance>

The direction attribute spedfies the diredion d the linesin the grid. Most displays will
contain at lesst one verticd and ore horizontal grid. The start attribute spedfies the
coordinate where the first line of the grid shoud be placeal. This coordinate can be a
constant, or an integer expresson that depends on a guide or parameter of a presentation.
Typicdly, the expressonisjust areferenceto a guide, which causesthe grid to start at the
locaion d the guide. The end attribute spedfies the mordinate where the grid ends. The
distance and num_lines attributes gedfy the distance between the lines of the grid, and the
the number of lines in the grid. The is_stretchable attribute spedfies how the grid shoud
be adjusted when the start or end d the grid change. If the grid is gretchable, when the
start or end change, the distance between the grid lines is propartionaly adjusted, and the
number of lines remains fixed. If the grid is nat stretchable, the number of lines is
adjusted.

The start, end, distance, num_lines and is_stretchable attributes cannat all be speafied.
For example, if start, end, distance and is_stretchable are spedfied, MASTERMIND
automatically derives the value fimim_lines.

The exceptions alow the definition o irregular grids, where the distance between some
grid lines is different from the default. This is useful for applicaions sich as gread-
sheets, where the user can manually adjust the size of columns.

6.3.2 Guide

A guide isasinge line to which parts can be snapped. By default, al presentations have
guides correspondng to their left, right, top and bdtom. In addition, developers can
define other guides as appropriate (e.g., a guide one third o the distance from the left).
Layouts are defined by snapping guides to other guides or to grids.

Table 8 Attributes of Guides.

Attribute Name Type

name Symbol

direction HORIZONTAL, VERTICAL
position Expression<integer>
margin_1 Expression<integer>

| margin_2 | Expression<integer> |

The direction attribute spedfies the diredion of the line. Its position can be a ©nstant or an
expresson that depends on daher guides and gids. Guides can have margins which are
lines on bah sides of the guide, parallel to it, and dfset a cetain amourt. They make it
easy to define the gaps between parts of a presentation. For example, when defining arow
of buttons, conseautive buttons can be snapped to the margin_1 and margin_2 of the guides,
rather than to the position, to define a gap between them.

Grids and gudes are design time dements, i.e., they are used by developers to define
the layout of the display, bu they dorit appea in the final interfacethat the end-user sees.
However, it is possble to define tasks that manipulate the guide position, thus giving the
end-user a way to adjust the layout of the display.

6.4 Replications

Most applications manipulate @lledions of information, for example, a olledion d
messages in a mailbox, a wlledion d notes in a music score, colledions of nodes and
linesin agraph editor. To define the presentations for these gplicaionsit is necessary to
speafy that some part of the presentation shoud be replicated as many times as there ae
elements in the colledions to be displayed. The MASTERMIND repli caion construct is the
medanism to model presentations of colledions. When combined with the condtional
construct, replicaions can be used to spedfy the presentation d heterogeneous
collections of information (e.g., Email and voice messages in a messaging application).

Table 9 Attributes of Replications.

Attribute Name Type

name Symbol
replication_data Expression<Set>
is_on_demand boolean
references Reference {...}, ...
anchor Presentation {...}
generic Presentation {...}

The replication_data is an expresgon that computes the set of elements to be displayed.
Typicdly this is an expressgon that invokes an applicaion routine (e.g., a routine that
extracts from a mailbox object the collection of messages it contains)

The is_on_demand attribute spedfies whether al replicas of the part shoud be
generated in advance, or only as nealed. This attribute gives devel opers the flexibility to
define presentations where dl elements of a wlledion are displayed at once (e.g., in a
scrollable window), or presentations where the display of the dements is constructed
incrementally (e.g.,adisplay composed of multi ple pages, where pages are alded oy as
needed).

The references spedfy how to lay ou the multiple replicas of the part using gids or
using other parts as a reference (see descriptiraf@tnce object).

The anchor and generic provide an aternative to references for spedfying the layout of
replicated parts. This medhanism is used for layouts that canna be defined appropriately
in terms of grids or other parts. The basic ideais to define the layout by defining the
position d the first element (anchor), and then defining the position d the nth element
(generic) based in the paosition d the nth minus one dement (generic).The anchor is a
presentation skeleton that defines how the first replica shoud be laid ou. Typicdly the
skeleton presentation only contains definitions for two gudes (e.g., left and top), in terms
of guides and gids of the parents. The generic is a list of presentation skeletons that

defines how al the other elements are laid ou. Typicdly two generic presentations are
defined, correspondng to the nth (n) and rth minus one (n-1) replicas. Expressons for
guides in the nth presentation define the layout with resped to the guides for the n-1
presentation. More than two generic presentations can be defined to define layouts that
depend on the n-1, n-2, etc. replications.

Table 10 Attributes of References.

Attribute Name Type

name Symbol

reference Grid | Replication

init_index integer

end_condition Expression<boolean>
init_procedure Expression<grid_index | part_index>

References provide a onvenient way for speafying the layout for replicaed parts by
spedfying that the replicaions oud fill a grid, o by spedfying that the replications
shoud be laid ou acwording to some other replicaion which is arealy laid ou (e.g.,
specifying that an icon should be placed to the right of every other element of a list).

It is possble to spedafy multiple references in a replicaion oed. A common case is
to use two references, containing a verticd and a horizontal grid. The dfed is that
elements are laid ou in rows ac®rding to the verticd grid. When the wlumns in the
verticd grid are exhausted, the next row in the horizontal grid is used. In general, the use
of multiple references supports the specification of a large variety of layouts.

The reference attribute spedfies the grid or replication onwhich the layout is based.
When the layout is based onancther replicaion, it means that ead part will be laid ou
with respect to each part of the other replication (e.g., to the right of it).

The init_index spedfies which grid line or replicaion element shoud be used to place
thefirst element in this reference, which by default isthe first one. Theinit_procedure is an
advanced fedure that provides more flexibility for speafying the init_index by alowing a
procedure to be cdled, rather than aways using the same init_index. The end_condition
spedfies when to stop wsingthis referencefor pladng oheds (e.g., when reading the last
column in a vertical grid).

6.5 Conditionals

Condtionas allow the definition d presentations whose gpeaance depends on the
charaderistics of the data to be displayed (e.g., Email messages and vdce messagesin a
messaging appli caion), onthe dharaderistics of the platform (e.g., color display vs. bladk
and white), or on the charaderistics of the interface & any gven moment (e.g., gven a
row of buttons, if the window is narrowed, rather than truncaing the row, some buttons
become pull-down menus, so that all commands remain accessible without scrolling).

A template can have several condtionals, which is a cae statement, consisting of
several Case_Clauses. MASTERMIND evaluates ead case statement independently: it
evaluates the predicae of ead clause in the sequence until one returns true, and then uses
the specification associated with the successful clause.

Table 11 Attributes of Case_Clause.

Attribute Name Type
predicate Expression<boolean>

specification Presentation {...}

The predicate is an expresson that depends on presentation a task parameters, gudes and
grids of the containing presentation and its ancestors. When it is true, the feaures of the
Presentation spedfied in the specification attribute ae gplied to the presentation being
constructed. For example, the Presentation might speafy values for only afew parameters
or guides, and perhaps override thetgiygpe presentation for a part.

When MASTERMIND evaluates condtionals, it records the dependencies of al the
predicaes it evaluates, so that if any of the parameters, gudes or grids on which the
predicates depend changes value, MASTERMIND will re-evaluate the gpropriate
predicates, re-apply the appropriate specifications, and update the display.

7/ RELATED WORK

The tods for constructing wser interfaces can be divided into three basic caegories:
interface builders, UIMSs and model-based tods. The following sedions compare
MASTERMIND to the tools in these categories.

7.1 InterfaceBuilders

Interfacebuil ders [25, 26] are the most popuar interface onstruction toals in the market.
They provide an easy to use, WYSIWYG interface for constructing interfaces where
designers can draw the screens of the interface Interfacebuilders use avery low level
description d the interface onsisting mainly of the location, poperties andtype of al the
elements of the display. This is nat enoughinformation to suppat sophisticaed analytic
tods for design evaluation and critiquing, todls for retargetting the interfaceto a new
platform or tools for automatically generating help.

In contrast, the model-based tod's, and MASTERMIND in particular contain a rich model
of the interfacethat suppats the @ove-mentioned toadls. Unlike other model-based todls
[2, 10, 33, 34, 35, 36], MASTERMIND is designed to provide an easy to use interfacefor
buil ding the models, similar to the designer’ s interfacethat interfacebuil ders provide. The
appendix shows a mockup d MASTERMIND’S presentation editor: it is smilar to an
interface builder, bu cgptures a much richer representation o the presentation. In
addition, MASTERMIND can be used to speafy al aspeds of the interface including the
dynamic aspects that interface builders do not support.

7.2 UIMSs

UIMSs [30] are user interface onstruction tools used mainly to construct the dialogue
comporent of the interface They use spedalized languages to describe the dialogue
(transition retworks, grammars or events). Some UIMSs also provide some fadliti es for
spedfying presentations, bu they are very primitive. MASTERMIND'S dialogue
spedficaion is more comprehensive. It captures nat only the high level user tasks that
end wsers are expeded to perform with the system, bu also their decomposition into low
level tasks that correspond to dialogue specifications used in UIMSs.

Some UIMSs [1, 27] automaticdly generate interfaces from spedficaions that are
similar to the MASTERMIND applicaion model. MASTERMIND improves on these systems
by providing much more comprehensive models of tasks and presentations, allowing
designers much better control over the interfaces generated.

7.3 Model-Based Tools

In this dion we mmpare MASTERMIND to ather model-based todls based onthe fedures
and capabilities enabled by the task and presentation models.

7.31 Task Models

Task analysis is a very important part of the user interface design process lealing to
interface designs which better med user requirements. In the past, a number of
reseachers have developed task representations which capture user task information in a
processable form. Most of these representations cgpture the hierarchicd nature of task
decomposition in the same fashion asSVERMIND.

The MASTERMIND task models are similar to GOMS [16, 20], TAKD [7] and UAN
[12], bu unlike GOMS, TAKD and UAN, the MASTERMIND models are dso used to
drive the interfaces at runtime, rather than just describing them. GOMS's task
representation is useful for evaluating interfaces by predicting speed of use based on
spedfied task decompasitions. The representation emphasizes rewrding paths of user
adions including bah motor steps and mental steps in performing tasks. GOMS's
representation is not intended to cepture situations where multiple adions could be
performed by the usersin a cncise fashion. The MASTERMIND task model was designed
to be asuperset of the GOMS representation, and a translator will be built that generates
GOMS models from the MASTERMIND representation so that GOMS techniques can be
used to evauate interface designs represented in MASTERMIND. Task Anaysis for
Knowledge Description (TAKD) is a taxonamy developed to systematicdly cegpture
objeds and their functions. By applying TAKD, oljeds and functions in adomain can be
predsely spedfied and clasdfied. Unlike MASTERMIND, TAKD helps designers
conceptudi ze tasks and oheds. MASTERMIND only fadlitates creaing oljeds and task
descriptions and leaves the resporsibility for doing so to the designers. UAN uses task
descriptions and herarchicd task decompasition as a way to spedfy links from the task
modd to the interface spedficaion. This helps make sure dl user requirements are
fulfilled and al functions have accesng medanisms for users. UAN's task
representation is rather extensive including spedficaion for time, parallelism, and task
interruption.

Recatly, severa systems are using task models to drive the interfaces at runtime
(ADEPT [17, 18] and TRIDENT [2, 35]). ADEPT automaticdly generates user interfaces
from its task descriptions; however, its limitation lies in the eavironment which dces not
alow interfacestylesto be added or allow designers enoughcontrol over interfacedetall s.
TRIDENT uses task descriptions to help in automatic generation d user interfaces.
TRIDENT does avery goodjobin generating hgh quality interfaces because it makes use
of a madine aayzadle representation o interface guidelines. However, urlike
MASTERMIND, TRIDENT only addresses the generation of form-based interfaces.

Like UIDE, MASTERMIND makes uses of pre and past-condtions (cdled precondtions
and effeds in MASTERMIND) to model the diadogue cmporent of the interface
MASTERMIND improves on UIDE in that it uses an efficient constraint system to evaluate
and maintain the precondtions, thus alowing MASTERMIND to scde up to large
applications.

7.3.2 Presentation Models

MASTERMIND'’S presentation model is smilar to HUMANOID’ S [33, 34], andto ITS s [36].
MASTERMIND’S main contribution is that its presentation model is designed to suppat
graphicd speaficaion d presentations smilar to that of interfacebuilders. In addition,
MASTERMIND suppats nations of visual graphic design (grid design) [38] not suppated
in these systems.

MASTERMIND’S presentation model is smilar to Garnet [24] in that bath make heavy
use of constraints to define layouts. MASTERMIND provides less control over interface
detail s than Garnet does, bu provides higher level comporents that automaticaly upcdate
the display when the data being presented changes, and so are easier to use.

8 CURRENT STATUS AND FUTURE WORK

The spedficaion d the MASTERMIND modeling language as described in this paper is
complete. The modeling language is edfied in a CORBA cdl able frame-based system.
In addition, we developed a grammar to for the textual spedficaion d the models, which
Is used to store models in files. We will use the textual spedficaion to bodstrap the
interadive modeling toadls, which will becmme the standard way for spedfying models.
We do not expect developers to use the textual modeling language.

The prototyping environment is being designed, and implementation started in the
Spring d 1995 Some of the interadive tods have been partially designed too, and their
implementation will commence once the prototyping environment is ready. We exped to
have an initial version of the system complete by the end ¢fahef 1995.

This paper reports work in progress and we exped to need to modify the modeling
language @& we gain more eperience using MASTERMIND to buld interfaces. The
following are aset of isaues that we have nat yet resolved satisfadorily, and which will
have an impad on the modeling language, the prototyping environment and the generated
interfaces.

* Expressveness No matter how hard we try to make adedarative modeling language
expressve, there will be interfacedesigns that canna be modeled. Our approad to
ded with this problem is to alow interfacedevelopers to use “foreign” comporents,
such as OLE custom controls. These foreign comporents will be minimally modeled,
by speafying the parameters and methods that can be cdled onthem. MASTERMIND
will not be ale to reason with them fully, bu at least will allow them to be included
in the designs.

e Extensibility. The MASTERMIND modeling language is extensible in the sense that new
attributes and oljeds can be alded to the modeling language. The problem is that for
the extensions to have awy effed, the toodls must be updated to take into acount the
new information. We ewison two kinds of extensions: extensions to the
MASTERMIND core, which will be dore by the MASTERMIND developers, and tod-
spedfic extensions that can be dore by anyore who wants to incorporate anew tool
into the MASTERMIND suite of tods. As the system evolves, some of the tod-speafic
extensions will be migrated into the core.

* Semantics. Currently there is no formal semantics for the MASTERMIND modeling
language. The semantics of the frame-based system used for modeling are straight
forward (inheritance and part/whole hierarchies), bu a lot of the semantics of the
model isimplicit in they way that the tools make use of the dtributes being modeled.
We exped that we or others will construct toadls to chedk models for consistency, and
various nations of quality, bu we do nd exped to develop aforma semantics for our
model.

* Reationship to ather task modeling schemes. The literature on task modeling is very
rich, and many schemes for modeling tasks have been proposed. We have tried to
arrive & a ompromise that satisfies many corflicting gals: easy to spedfy, diredly
exeautable and expressve. We have given more weight to the first goals, and exped
to enhance the modeling language to incorporate fedures of the more expressve
notations.

9 CONCLUSIONS

MASTERMIND is a model-based interface development environment designed to address
the shortcomings of existing model-based tods. The modeling languege is designed to be
as expressive as possible without making it hard for developers to model interfaces:

* The gplicaion modeling language is an extension d the CORBA IDL language.
MASTERMIND allows applications to be spedfied in IDL, so they can use CORBA to
suppat applicaion embedding and retwork distribution (like OLE and OpenDoc).
The gplicaion model complements the IDL with information reeded to drive the
user interface.

* |In addition to the task, sub-task deacmpasition fedures of other task modeling
systems, in MASTERMIND it is possble to spedfy detailed ordering constraints for
tasks, opiona and repedable tasks, precndtions and effeds. In addtion the
MASTERMIND spedficaions are described in a formal languege that suppats
generation of the interface as well as analysis.

* The presentation modeling languege fedures grids and gudes to alow the
spedficaion d pleasing layouts, it feaures a cnstraint system to suppat the
spedficaion d complex layouts, and to suppat screen resize and updie, and it
fedures iteration and condtional constructs to suppat the spedfication d displays of
dynamic information. Together, these feaures suppat the spedficaion d the main
windows of applications, not just the menus and dialogue boxes.

In addition to its expressvity, the MASTERMIND modeling language is implemented as

separate process ® that it can be used by an open set of todls, and by several designers

working simultaneously.

10 ACKNOWLEDGMENTS

We wish to thank David Kieras for spending several days with us explaining howv the
GOMS models work, and helping us design a modeling language that is as expressve &
GOMS, exeautable, as neaded by the prototyping environment, and analyzable, as needed
by the tods. We dso want to thank the reviewers for their extensive and insightful
comments.

11 APPENDIX

The gpendix describes parts of the model for an Email applicaion. The example is
expressed in the syntax of the textual representatiomeffkMIND models.
Figure 2 shows the presentation model for an Email application. The parts of the template
are shown as boxes labeled with the name of the part. The presentation editor allows
parts, gudes, grids, iterations and condtionas to be alded, deleted and manipulated in a
graphicd way. Layout is defined by dagging parts until they snap to gudes or grids. The
region bounad by hgude 1 and hgude 2 contains a replicaion d a part to show the
message headers (seeHeader_Template below). Eacdh replication consists of threelabels to
show the date, sender and subject of a message.

Figure 3 shows the interface that MASTERMIND would generate using the model
spedfied in the previous figure. The parts of al the presentation oheds have been
instantiated and bound to data from the application.

vguidel vguide2

Window ’Iitle

ICTT Ty e

hguidel

gridl

hguide2 — —— - —

Figure 2 A mockup of the presentation modeling tool showing the model for the
main display of an Email application.

Below is the textual spedficaion that defines the modd that builds the interface
shown in Figure 3. Words formatted like Mail_Interface represent the names of objeds
being defined. Words formatted like Parameter represent the type of an ojed or a value
of an enumeration, and expressons in square bradets (e.g., [(hguidel + bottom) / 2])
represenkxpressions.

The presentation oljed for the main window is cdled Mail_Interface. The parameter
mailbox is boundto the mailbox parameter defined in the roct task for the Email i nterface

01/27 Pedro Szekely Manuals

Figure 3. Screen shot of the interface thata$#ErRMIND would generate from the
presentation model specifiedkigure 2

This task parameter is initialized when the gplicaion starts. The definitions of guides
hguide2, vguidel and vguide2 use expressons that depend on @rameters of the window
itself (bottom, left, etc.) so that the spaceis propartionally assgned when the window is
resized. The definition d the gird hgrid1 depends on the font used for the window, so that
the grid is adjusted acwrding to the font being used. We only show the definition d one
part of the window that displays the message headers (the other parts are defined
similarly). The header part is replicated acmrding to the wntents of the mail box, which
are omputed cdling the contents method onthe value of the mailbox parameter. The
reference for the replication is hgridl, so that the headers are displayed in a column.
Mail_Interface : Window {

parameters = mailbox : Parameter {
value = Email_Task.mailbox },
font : Parameter {value = Chicago12;};

guides = left : Guide { /l To leave a small space at the left of the window.
direction = VERTICAL; right_margin = 5;},
right : Guide {
direction = VERTICAL; left_margin = 5;},
hguidel : Guide { // Top for headers
direction = HORIZONTAL; position = 200;},
hguide2 : Guide { // Bottom for headers

direction = HORIZONTAL; position = [(hguidel + bottom) / 2];},
vguidel : Guide { // Position for message sender field.
direction = VERTICAL; position = [2/3 * left + 1/3 * right];
right_margin = 2; left_margin = 2;},
vguide2 : Guide { // Position for subject field

direction = VERTICAL; position = [1/3 * left + 2/3 * right];
left_margin = 2; right_margin = 2;};

grids = hgrid1 : Grid {
direction = HORIZONTAL; start = [hguidel]; end = [hguide2];
stretchable = FALSE; distance = [font.height () + 2];};

parts = header : Header_Presentation {
replication = {

is_on_demand = FALSE;
replication_data = [mailbox.contents ()];
references = grid_ref {
reference = [hgrid1];};
h
guides = top : Guide {
direction = HORIZONTAL; position = [grid_ref];};

Header_Pres spedfies how to dsplay ead individua healer. The value of the message
parameter ead data dement of the replicaion defined above. The presentation les three
parts, for the date, sender and subjed attributes of the message. The parts are digned to
the top gude defined in the replicaionin o the Mail_Interface presentation oljed. Note the
use of consume_reports in the definition d the sender part. It dedares that when the

message produces the sender_changed report, this part will be informed so that the display
can be appropriately updated.
Header_Pres : Presentation {
parameters = message : Parameter
value = [Mail_Interface.header.replication.replication_data];};
parts = date : Label {
parameters = text: Parameter {
value = [message.date ()];};

guides = top : Guide {
direction = HORIZONTAL; position = [Header_Pres.top];},
left : Guide {

direction = VERTICAL;
position = [Mail_Interface.left.right_margin];},
right : Guide {
direction = VERTICAL;
position = [Mail_Interface.vguidel.left_margin];};
h
sender : Label {
parameters = text: Parameter {
value = [message.sender ()];
consume_reports = sender_changed;};

guides = top : Guide {
direction = HORIZONTAL; position = [Header_Pres.top];},
left : Guide {

direction = VERTICAL;
position = [Mail_Interface.vguidel.right_margin];},
right : Guide {

direction = VERTICAL;
position = [Mail_Interface.vguide2.left_margin];};

h

subject : Label {

parameters = text: Parameter {

value = [message.subject ()];};
consume_reports = subject_changed;};

guides = top : Guide {
direction = HORIZONTAL; position = [Header_Pres.top];},
left : Guide {

direction = HORIZONTAL;

position = [Mail_Interface.vguide2.right_margin];},
right : Guide {

direction = HORIZONTAL;

position = [Mail_Interface.right.left_margin];};

The followingis the task model for the task to forward a message. The message parameter
spedfies the message to be forwarded. Its value is gedfied as the dfed of the
Select_Message task, which is nat shown here. In order to forward a message, the user has
to complete the tasks gedfied in the subtasks attribute. These subtasks must be dore in
sequence The precmondtion d the task spedfies that the Forward_Message task canna be
invoked if a message is not selected.
Forward_Message : Task {
goal ="To forward a received message to a different recipient.";
task_type = User;
parameters = message : Parameter {
type = Message; mode = CONSUMED;},
recipient : Parameter {
type = String;};
subtasks = :Task_Connection {

connection_type = SEQUENCE;

tasks = Invoke_Forward, Specify_Recipient, Fill_in_Message, Send:};
preconditions = [selected_msg = NULL];
is_reentrant = TRUE;

is_interruptable = TRUE;

The Invoke_Forward task is a led task boundto the interadion technique boundto the
Forward_Button presentation ohed (not shown here). In the interadive environment the
developer would only have to define the goal of the task, becaise the task would have
been automaticdly creded when the button part was added to the Email_Window
presentation. This task has no explicit effeds. It serves to block the following tasks urtil
the user clicks on the forward button.
Invoke Forward : Task {

goal = "Indicating that a message is to be forwarded.";

task_type = Interaction_Technique;

task_extension = :Technique_extension {

interactor = :Am_Choice_Command {

object = Forward_button;

After the user clicks onthe forward buton, e hasto spedfy to whom the message shoud
be forwarded. The dfed of the task is to set the reapient parameter string that the user
types in (the contents of the text edit interaction technique).
Specify_Recipient : Task {

goal = "Indicate who will receive the forwarded message.”;

task_type = Interaction_Technique;

task_extension = :Technique_extension {

interactor = :Am_Text_Edit_Interactor {

object = Forward_Address_Field

3
effects = [recipient <- Forward_Address_Field.contents];
h

Once the redpient has been spedfied, the system will display the message being
compaosed using the Display_Message task, and the user has to spedfy the body d the
message in thelodify_Text task. These tasks are not described here.
Fill_in_message : Task {

goal: "To add to the forwarded message.";

task type = USER;

subtasks = :Task_Connection {

connection _type = SEQUENCE;
tasks = Display_Message, Modify_Text;

k

Oncethe message is fill ed in, the user can send it by completing the Send task. This task
involves two steps. The first one, Invoke_Send iS an Interaction_Technique task where the
user clicks on abutton to request that the new message be sent. The second ore, Call_Send
is anApplication task that invokes the application routine that sends the message.
Send : Task {

goal = "Finishing off the message to be forwarded.";
task type = USER;
subtasks = :Task_Connection {
connection_type = SEQUENCE; tasks = Invoke_Send, Call_Send;

12 REFERENCES

1. M. Beshers and S. Feiner. Scope: Automated Generation d Graphicd Interface In
Procealings of ACM SIGGRAPH 1989 Symposium on User Interface Software and
Technology (UIST '89). pp.76-85.

2. F. Bodart, A. Hennebert, |I. Provat, J. Leheureux, J. Vanderdonckt. A Model-Based
Approach to Presentation: A Continuum from Task Analysis to Prototype. In the
Procealings of the Eurographics Workshop onDesign, Spedficaion, and Verificaion
of Interactive Systems. Bocca di Magra, Italy, June 8-10, 1994,

3. F. Bodart and J. Vanderdorckt. On the Problem of Seleding Interadion Objeds, in
Procealings of HCI'94 "People and Computers IX" (Glasgow, 23-26 August 1994,
G. Cockton, SW. Draper, G.R.S. Wer (Eds), Cambridge University Press
Cambridge, 1994, pp. 163-178.

4. R. Braudes, A Framework for Conceptual Consistency Verificaion, D.Sc.
Dissertation, Dept. of EE& CS, The George Washington University, Washington, DC
20052, 1990.

o

M. D. Byrne, P. Sukaviriya, S. D. Wood, J. D. Foley and D. Kieras. Automating
Interface Evaluation. In Proceadings of Human Fadors in Computing Systems,
CHI'94. Boston, April 1994.

6. D.JM.J. de Baa, JD. Foley, and K.E. Cougding Application Design and User
InterfaceDesign. In Procealings of Human Fadors in Computing Systems, CHI’ 92.
Monterey, California, May 1992, pp. 25266.

7. D. Diaper. Analysing Focused Interview Data with TASK Analysis for Knowledge
Description (TAKD). In the Proceadings of IFIP INTERACT' 90. Human-Computer
Interaction.

8. SK. Feiner. APEX: An Experiment in the Automated Creaion d Pictoria
Explanations. |[EEE Transadions on Computer Graphics and Appli caions, November
1985.

9. SK. Fener. and K. R. McKeown. Generating Coordinated Multimedia Explanations,
Procealings of the 6th IEEE Conference on Artificial Intelligence Applicaions, pp.
290-303, 1990.

10.J. Foley, W. Kim, S. Kovacevic and K. Murray, UIDE - An Intelli gent User Interface
Design Environment, in J. Sullivan and S. Tyler (eds.) Architedures forlntelli gent
User Interfaces: Elements and Prototypes, AddisonWesey, Realing MA, 1991,
pp.339-384.

11.D.F. Gieskens and J.D. Foley. Controlling User Interface Objeds through Pre- and
Postcondtions. In Proceealings of Human Fadors in Computing Systems, CHI' 92.
Monterey, California, May 1992, pp. 18B94.

12.R. Hartson, K. Mayo. A Framework for Predse, Reusable Task Abstradions. In the
Procealings of the Eurographics Workshop onDesign, Spedficaion, and Verificdion
of Interactive Systems. Bocca di Magra, Italy, June 8-10, 1994.

13.P. J. Hayes. and P. Szekely. Gracdul interadion throughthe COUSIN user interface
International Journal of Man-Machine Studies, vol. 19, pp. 285-305.

14.P. J. Hayes, P. Szekely and, R Lerner. Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN, in Proceeadings of CHI'85
(San Francisco, 14-18 April 1985), Addison-Wesley, Reading, 1985, pp. 169-175.

15.P. J Hayes. Exeautable Interface Definitions Using Form-Based Interface
Abstradions, in Advances in Human-Computer Interadion, vd. 1, Hartson, R. (Ed.),
Ablex Publishing Corp., Norwood, Chapter 6, pp. 161-189.

16.B.E. Johnand A.H. Vera. A GOMS Analysis of a Graphic, Maciine-Pacal, Highly
Interadive Task. In Procealings of Human Fadors in Computing Systems, CHI'94.
Monterey, California, May 1992, pp. 251-258.

17.P. Johrson, S. Wilson, P. Markopouos, J. Pycock. ADEPT - Advanced Design
Environment for Prototyping with Task Models. In the Procealings of INTERCHI
'93.

18.P. Johrson, S. Wilson and H. Johrson. Scenarios, Task Anaysis And The Adept
Design Environment. In J. Carroll (ed) Scenario based Design. Addison Wesley. (In
Press).

19.P. Johnson, H. Johrson, and S. Wilson. Rapid Prototyping o User Interfaces Driven
by Task Models, to appea in Scenario-Based Design, John M. Carroll (Ed.), John
Wiley & Sons, 1995, pp. 209-246.

20.D. E. Kieras and P. G. Polson. An Approach to the Formal Analysis of User
Complexity. International Journal of Man Machine Studies, 22, 365-394.

21.W. Kim and J. Foley, DON: User Interface Presentation Design Asdstant, In
Proceedings UIST’'90. October 1990, pp. 10-20.

22.J. Madinlay. Automating the Design d Graphicd Presentations of Relational
Information. ACM Transactions on Graphics, pp. 110-141, April 1986.

23.R. Moriyon, P. Szekely and R. Nedhes. Automatic Generation d Help from Interface
Design Models. In Procealings of Human Fadors in Computing Systems, CHI’ 94.
Boston, April 1994.

24.B. Myers, et. d. The Garnet Reference Manuals. Tednicd Report CMU-CS-90-117-
R2, Schod of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
May 1992.

25.Neuron Data, Inc. 1991.0Open Interface Toalkit. 146 University Ave. Palo Alto, CA
94301.

26.NeXTStep and the NeXT Interface Builder. NeXT, Inc. 900 Chesapedke Drive,
Redwood City, CA 94063. 1991.

27.D. Olsen. MIKE: The Menu Interadion Kontrol Environment. ACM Transadions on
Graphics, vol 17, no 3, pp. 43-50, 1986.

28.A. Puerta. The Study d Models of Intelli gent Interfaces. In Proceadings of the ACM
International Workshop on Intelligent User Interfaces. Jan, 1993. pp. 71-78.

29.A.R.Puerta, H. Erikson, JH. Gennari and M.A. Musen. Toward ortology-based
frameworks for knowledge-aqquisitiontodls. In Procealdings of the Eigth Knowledge-
Acquisition Workshop for Knowledge-Based Systems. Banff, Alberta, Canada,
February 1994.

30.G. Singh and M. Green. A Highlevel User Interface Management System. In
Proceedings SIGCHI'89. April 1989, pp. 133-138.

31.P. Sukaviriya. Dynamic Construction d Animated Help from Application Context,
Procealings of ACM SIGGRAPH 1988 Symposium on User Interface Software and
Technology (UIST '88), 1988, ACM, New York, NY, pp. 190-202.

32.P. Sukaviriya and J. Foley. Cougding a Ul Framework with Automatic Generation o
Context-Sensitive Animated Help. In Proceadings of UIST '90. October 1990, pp.
142-146.

33.P. Szekely, P, Luo, and R. Nedhes. Fadlit ating the Exploration d Interface Design
Alternatives. The HumaNOID Model of InterfaceDesign. In Proceadings SIGCHI’ 92.
May 1992, pp. 507-515.

34.P. Szekely, P. Luo, and R. Nedes. Beyond Interface Builders: Model-Based
Interface Tools. In Proceedings of INTERCHI'93 April, 1993, pp. 383-390.

35.J. M. Vanderdorckt , F. Bodart. Encgpsulating Knowledge for Intelli gent Automatic
Interadion Objeds Seledion. In INTERCHI'93 Procealings, Amsterdam,
Netherlands. April, 1993, pp. 424-429.

36.C. Wiedha, W. Bennett, S. Boies, J. Gould and S. Greene. ITS: A Tod For Rapidly
Developing Interadive Applications. ACM Transadions on Information Systems
8(3), July 1990. pp. 204-236.

37.S. Wilson, P. Johrson, C. Kdly, J. Cunningham and P. Markopoudos. Beyond
hadking: a model-based approach to user interface design, in Procealings of the
HCI'93 "People and Computer VIII", Cambridge, University Press 1993, pp. 215
231.

38.R. Williams. The Non-Designer Design Book. Peadipit Press Inc., Berkeley,
California, 1994.

13 BIOGRAPHIES

13.1 Pedro Szekely

Pedro Szekely is a research asgstant professor at ISI concerned with the development
of principled, general-purpase user interfacemanagement systems. Herecaved his Ph.D.
in Computer Science from Carnegie Mellon University in 1987 for reseach on ser
interfacemanagement systems, focusing ondefining clea standards for the requirements
of communicaion between applicaion pograms and a user interface management
system. He was one of the designers and implementors of COUSIN, ore of the first
model-based user interfacemanagement systems. He dso developed the initial version d
the constraint-based graphics g/stem for the Garnet projed. At the ISI Dr. Szekely
developed HUMANOID, a model-based user interfacedesign environment, and is now
principal investigator for the MASTERMIND projed, an ARPA funded projed in
coll aboration with Georgia Tech. MASTERMIND will produce anext generation model -
based interfacedevel opment environment by combining the best feaures of HUMANOID
and Georgia Tech’s UIDE system.

13.2 Piyawadee” Noi” Sukaviriya

Piyawadee Sukaviriya , is a Reseach Scientist Il (equivalent of Reseach Asdgstant
Profesr) in the College of Computing at Georgia Institute of Tedhndogy. She eaned
her doctoral degreefrom the George Washington University, where her dissertation work
was on automatic generation d context-sensitive animated help. Her interests include
model-based user interfacetedindogy, automatic generation o intelligent help for on
line gplicaions, multimedia help, interadive help, highlevel spedficaions of user
interfaces, the user interface design process adaptive interfaces, usability testing, and
international user interfaces.

13.3 Pablo Castells

Pablo Castells is a visiting scientist at the Information Sciences Institute. He receved
his Ph.D. degree in Computer Science in 1994 from the Universidad Autonama of
Madrid, Spain, where his dissrtation was on the use of metaknowledge and high-level
heuristics as a way to provide guidance and control for automatic problem solving in
mathematics. In the past yeas Dr. Castells was involved in severa projeds funded by the
Spanish government in the aea of knowledge-based systems. His reseach at ISl is
currently focused on providing knavledge-based suppat for user interfacedesign, in the
context of a model-based framework.

13.4 Jeyakumar “J K” Muthukumarasamy

Jayakumar Muthukumarasamy, is a member of the technicd staff at Silicon Graphics.
He has an M.S. in Computer Science from the Georgia Institute of Techndogy. His
interests include programming, user interfaces, and distributed systems.

135 Ewald Salcher

Ewald Salcher is a doctoral candidate & the Institute for Computer Graphics at Graz
University of Techndogy. He expeds to complete his degreein July, 1996.Mr. Salcher is
interested in tods for raising the level of abstradion for programming user interfaces, and
in semi-automaticdly generating wer interfaces from models of the semantics of an
application.

