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ABSTRACT

Using today’s GIS tools, users without programming exper-
tise are unable to fully exploit the growing amount of geospa-
tial data becoming available because today’s tools limit them
to displaying data as layers for a region on a map. Fusing the
data in more complex ways requires the ability to invoke pro-
cessing algorithms and to combine the data these algorithms
produce in sophisticated ways. Our approach, implemented
in a tool called Karma, encapsulates these algorithms as Web
services described using semantic models that not only spec-
ify the data types for the inputs and outputs, but also specify
the relationships between them. Karma semi-automatically
builds these models from sample data and then uses these
models to provide an easy to use interface that lets users
seamlessly implement workflows that combine and process
the data in sophisticated ways.

Categories and Subject Descriptors
1.2.4 [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods—Semantic Networks; H.2.8 [Database

Management]: Database applications—Spatial databases
and GIS; H.3.5 [Information Storage and Retrievall:
On-line Information Services; H.5.2 [Information Inter-
faces and Presentation]: User Interfaces—Theory and
methods.

General Terms

Information integration, geospatial fusion, data cleaning, se-
mantic modeling.
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modeling, ontology, data cleaning, information integration,
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RDF generation.

1. INTRODUCTION

There is a tremendous amount of geospatial data available
and there are numerous methods for processing, integrating
and fusing geospatial sources. However, the ability for users
to combine this type of data today is limited to using GIS
systems to display the various layers for a region on a single
map. If a user wants to combine or fuse the data in novel
ways, they have to do this by building specialized applica-
tions that are then applied to specific data sources. This
approach does not support the need for rapid integration or
fusion of geospatial sources and does not support the reuse of
the methods for reasoning or fusion of the available sources.

The object of this work is to provide end-users with an
interactive tool to enable them to easily perform a wide va-
riety of geospatial fusion tasks. Our focus is on usability, and
our target is to enable users who would be comfortable us-
ing spreadsheets to perform geospatial data fusion tasks that
today would require programming expertise in scripting lan-
guages and Web technologies. To succeed, we must provide
users support for the complete workflow, starting with im-
porting data, normalizing it, integrating it with other data,
invoking data fusion algorithms, visualizing the results and
finally publishing new datasets with the fused data.

Our approach is based on our prior work on Karma [18,
19], a general information integration tool that already sup-
ports many of the steps required for geospatial data fusion.
Karma already supports importing data from a variety of
sources including relational databases, spreadsheet and de-
limited text files, KML and semi-structured Web pages. It
provides support for cleaning and normalizing the data and
integrating it using data integration operators such as join
and union, and for publishing it in a variety of formats in-
cluding RDF.

The focus of this paper is on how to integrate reason-
ing and fusion algorithms into the larger information inte-
gration workflow required to solve complex problems. Our
approach, consistent with the overall Karma approach, is to
model the fusion algorithms as services that users can invoke
using data from the Karma workspace. Semantics already
plays a central role in our approach to information integra-
tion. When users import data, Karma semi-automatically
builds models of the data according to a user selected on-
tology. The models that Karma builds are based on models
that users built before, when working with data with simi-
lar characteristics. Karma proposes models for the data, and
users can adjust them to satisfy the particular characteristics
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Figure 1: The workflow for associating telephone
book information with a building or structure shown
in a satellite image.

of the data they are working with. The new work presented
here focuses on extending our semi-automatic modeling ap-
proach to model services and on the mechanisms needed to
invoke the services with the correct data and to integrate
the output of the services with the other data.

In the next section we will present a motivating example
on linking data from online sources to structures identified
in satellite imagery. Then we describe the overall approach
and present our methods for modeling sources, modeling ser-
vices, invoking the fusion algorithms on this data, and then
visualizing and/or publishing the results. Next we describe
the related work and finally conclude with a discussion of
the contributions and future directions.

2. MOTIVATING EXAMPLE

In this section we describe an example that we will use to
motivate the remainder of the paper. The general problem
that we want to address is how to dynamically combine a
set of data sources and fusion algorithms to produce needed
results. The specific instance of this problem that we will
focus on is how to associate information from the telephone
books with buildings or structures visible in satellite imagery
[13, 6].

The workflow for solving this task is shown in Figure 1.
There are four inputs for the overall task. The first input is
Points, which are a set of points that correspond to the loca-
tions of all of the buildings in the image. These points could
be identified manually or extracted from LIDAR data, which
can be used to build 3D models of all of the buildings [22].
The second input is Streets, which is a labeled road net-
work for the same region. The road network could come from
a source such as OpenStreetMap (www.openstreetmap.org)

or could be extracted from a raster maps using techniques
that we previously developed [2]. The third input is Yel-
low Pages, which is a online source providing yellow page
data that gives the details of the businesses in a region. And
the fourth input is White Pages, which is an online source
providing while page data that provides the data on people
that live in a given region.

In addition to the data sources, the workflow also requires
a set of services for performing various steps in the fusion
process. In this particular example, there are three services
required. First, there is the service called FindClosestVec-
tor, which is given a point and set of vectors and it finds
the closest vector to a point. In this case, this service is used
to find the streets that each building could be located on.
If the building is located in the middle of the block, there
would only one street, but for a building on a corner there
could be several streets. Second, there is a service called
ParseStreet, which takes a street address and extracts out
the street name and building number. Third, there is a ser-
vice called MapPointsToAddresses, which takes as input the
building points, the corresponding streets that they are lo-
cated on, and the possible address numbers for each street
and performs a constraint reasoning process to determine
the possible addresses of each of the building points [13].

The workflow in Figure 1 shows the overall process for
combining the data and the services to fuse the data. This
entire workflow can be defined and executed in the Karma
framework and the overall process is described in the rest of
the paper. The result of this workflow is shown in Figure 11.

3. APPROACH

In this section we describe the details of our approach
and illustrate it using the example described in Section 2.
Figure 2 shows the ontology that we use in our motivating
example. The Business and Person classes will be used to
model the information extracted from the Yellow and White
pages. The Address class will be used to model the address
information extracted from the Yellow and White pages, as
well as the street vector data from the Streets source. The
Point class is used to model the building locations provided
in the Points input source as well as the polylines defining
the street vectors in the Streets source. The ontology uses
semantically meaningful data types even for the primitive
types (e.g., BusinessCategory, BuildingNumber).
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Figure 2: Ontology for our example scenario.
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Figure 3: Extracting and cleaning data from the Bel-
grade online white pages

The first step in the geospatial data fusion workflow in-
volves importing into Karma data from the original sources.
Figure 3 (a) shows a screen shot of the Belgrade online
white pages from where we extract information about possi-
ble street addresses. Several research and commercial tools
to extract information from Web pages are available [9]2
(we used Fetch Agent platform®). Users can invoke these
extraction tools directly from Karma, which then loads the
extracted data and shows it to users as a table.

Raw data, especially data extracted from Web pages is of-
ten noisy and needs to be cleaned before it can be processed
further. For example, the data extracted from the Belgrade
white pages contains “&nbsp;” characters that need to be
removed. Consistent with our goal to not require program-
ming expertise from our users, Karma uses a programming-
by-example [12] technique for data cleaning and data nor-
malization. To clean data in Karma, users first choose the
column of data they want to clean, and then they provide
an example of the clean data. For example, in Figure 3(b)
the user provided an example of the cleaned address. Karma
uses the examples provided to learn a general transforma-
tion rule that it then applies to all the values in the selected
column. If the results are incorrect, users can provide ad-
ditional examples to guide Karma to infer an appropriate
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Figure 4: Karma screen to model data extracted
from the Belgrade yellow pages.

rule, or they can manually edit the incorrectly cleaned val-
ues. Our approach to cleaning is described in more detail
elsewhere [19]. Figure 3(c) shows the cleaned data.

3.2 Modeling Sources

Once data is clean, it is ready to be modeled (next step in
the Karma approach, as illustrated in Figure 1). A distin-
guishing aspect of our approach is that Karma automatically
builds models of imported data according to the ontology
that the users have provided. If the models Karma builds
are incorrect, it offers menus to enable users to easily fix the
incorrect elements. As we describe later, these models play
an important role in helping users assemble the workflow
to process their data. This help users integrate the data as
needed to satisfy the requirements of the services that fuse
the data and produce the desired outputs.

Consider Belgrade’s online yellow pages data extracted
and cleaned similarly to how white pages data was extracted
and cleaned. The data modeling process has two parts. The
first part is to identify the semantic types (nodes in the on-
tology) of each column of data. Here we use our CRF based
technique [4] that automatically assign labels to sets of data
based on learned labelings of previously processed data. We
assume that in prior sessions, users trained the system to
recognize phone numbers and addresses. As shown in Fig-
ure 4, Karma assigned the semantic type Phone to the col-
umn labeled TELEPHONE. When Karma sees data for the
first time, or when the format for data differs significantly
from the formats that Karma was trained on, Karma may
not assign the semantic type correctly. In our example, the
addresses do not include the country, so Karma did not as-
sign them the AddressString semantic type. In such cases,
users can click on the incorrectly assigned type to invoke a
menu from where they can choose the correct type. Karma
uses the data in the column to re-train its learning algo-
rithms so that they can correctly identify data in the new
format in the future.

The second part of the modeling process is designed to
identify the relationships among the data columns. For ex-
ample, we established that the TELEPHONE column contains
instances of the type Phone and that the ADDRESS column
contains data of type AddressString. However, the model
does not yet specify whether the phone number and the ad-
dress belong to the same entity. They do, but unless explic-
itly represented, the system cannot reason with this infor-
mation. Perhaps the phone number is the contact number
for a Person associated with the business.

Karma uses the semantic type information of each col-
umn to search the ontology graph for links that connect
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the corresponding types in the ontology. Karma selects the
smallest tree that connects these semantic types and shows
it at the top of the data worksheet, as illustrated in Fig-
ure 4. In our yellow pages example, the ontology is simple,
and Karma correctly identified the relationships among the
columns. The smallest tree that connects the semantic types
for the yellow pages data has the class Business as its root, as
shown in the first row of the figure. The second row shows
the properties that connect the Business class to the seman-
tic types. When the ontology or the data are more complex,
the tree will have multiple levels. It is also possible that mul-
tiple minimal trees exist, or that the correct interpretation
of the data is specified by a non-minimal tree. In these cases,
users can click on the pencil icons to select from a menu of
links originating on the element users click on. For example,
if users clicked on the pencil icon above the Phone seman-
tic type, they would get a menu that offers to connect this
type to either Business or Person given that in the ontology
these are the only two classes that can have phone numbers.
We evaluated this modeling approach in a bioinformatics
domain using an ontology containing 21 nodes and using 7
data sources containing a total of 39 columns. In that evalu-
ation, fewer than one menu selection per column was needed
to obtain the correct model of the data [10].

Figure 5 shows the semantic models of the four data sources
used in our scenario (we use the term Bag to represent con-
tainers of data). They are all constructed when users load
the corresponding data source in Karma. In general, each
input source provides only a subset of the data that could be
gathered about each entity. For example, even though the
ontology specifies that Point can have an hasAltitude prop-
erty, our Points source only specified latitude and longitude.
More importantly, the white and yellow pages sources only
provide the AddressString of an Address, but does not break
the address into components (building number, street, city,
postal code, country). In our approach, we use services to
parse AddressString into a structured representation, and to
perform the other computation and reasoning steps needed

to produce the desired output.

Figure 5 also shows the semantic model of the desired
outputs. The task of the next steps in the workflow is to
process the inputs to produce a dataset with the output
semantic model. The job is challenging because the goal is
to connect the Point data in the Points input to the Address
data extracted from the yellow and white pages inputs. The
Streets input will be used to make the connection.

The next steps in the workflow (Figure 1) are prepara-
tion steps to invoke the services. Normalization operations
are often required to unify data formats and/or to convert
them to the data formats expected by the services. Karma
uses the programing-by-example approach illustrated in the
data cleaning scenario, so we will not discuss normalization
further.

3.3 Models of Reasoning Services

Services are an important component of geospatial data
fusion. They can encapsulate relatively simple, but com-
monly used mathematical computations such as our Find
Closest Vector, or can involve sophisticated computations
such as our Map Points to Addresses. It has been long recog-
nized that service models are useful to help with discovery,
to ensure correct invocation and to automate and hide the
technical details of data marshalling and service invocation
[16].

Figures 6, 7 and 8 illustrate how we model services in
Karma. We think of services as unmaterialized data sources
in that specific service invocations with particular inputs
materialize a subset of such an unmaterialized data source.
Consequently, our approach to service modeling is similar to
our approach to data modeling where we model the seman-
tic types of the individual data items, and also model the
relationships among them in terms of the ontology graph.
The main difference is that we need to distinguish inputs
and outputs, and this we do simply by marking elements of
the model as either input or output.

Consider Find Closest Vector (Figure 6), an example of a
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mathematical computation useful in many scenarios. The
input to the service is a Point and a set of polyline Vector.
The output is a mapping that maps each point to the pos-
sibly empty subset of vectors whose distance to the given
point is below a given threshold. The model specifies the
data elements needed as input in terms of the ontology. For
example, this service needs the latitude and longitude infor-
mation about the input Point, but does not need the altitude
information. In the diagram, the service output is shown in
dotted red lines, which in this service is simply the hasClos-
estVector relationship between Point and Vector. If we think
of this service in terms of RDF, the output is a collection of
triples of the form (point hasClosestVector vector).

Parse Address (Figure 7) is an example of a service that
returns structured information. This service parses an input
string into structured Address objects. The model specifies
that this service is able to extract the building number and
street name. Because the other properties of Address are
not present in the service model, Karma knows that this
simple service cannot extract them, and if they were needed,
a different service would have to be used.

Map Points to Addresses (Figure 8) is an example of a com-
plex reasoning component. Its input requirements are more
complex as it requires points and addresses, and the hasClos-
estVector relationship between the points representing build-
ing locations and the vectors that define the streets where
the building could be located. The service formulates the
problem of mapping points to addresses as a constraint sat-
isfaction problem: each point must be assigned to an address
according to the available building numbers while satisfying
assumptions about numbering schemes (e.g., numbers are
assigned monotonically, even and odd numbers on opposite
sides of a street).

While we expect that the models for many such services
would be available in a library, in our work we also want
to help users build such models themselves when they want

Parse Address
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Figure 7: Parses a string into an Address.
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to use a service that has not yet been modeled. For ex-
ample, suppose that the Parse Address service exists as a
REST service, but Karma has no model of it in its library.
As mentioned previously, we think of services as unmate-
rialized data sources. Consequently, our approach to help
users build service models is to materialize a subset of this
unmaterialized data source, and use the same approach we
use to model data sources.
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Figure 9: Modeling the Parse Address service.

For the moment, let us assume that users have access to
data sources containing sample inputs for a service and the
outputs that the service produces for these inputs. In the fu-
ture work section we outline an approach for obtaining such
data sources automatically. Given these data sources, users
would import and model them as described in section 3.1.



Figure 9 illustrates this approach using our Parse Address
service. Our service, implemented as a REST service has
one input, an address, and two outputs, the building num-
ber and the street name. The first column in the table con-
tains the complete address strings, and subsequent columns
contain the parsed information, namely the street name and
the building number. As shown in Figure 9, step 1, Karma’s
semantic typing component correctly assigns the semantic
type AddressString the ADDRESS. Karma initially assigns
the type Integer to the BUILDING NUMBER column as it con-
tains numbers, and assigns the type String to the STREET
column as it contains seemingly arbitrary strings. Based
on this information, Karma automatically infers that the
data source contains Address, infers the relationship to Ad-
dressString, and infers that String is the name of the Street.
Karma cannot relate the BUILDING NUMBER column to the
Address class, so it remains as a top level type. In step 2, the
user corrects the mistake by clicking on Integer and selecting
BuildingNumber from the menu. At this point Karma infers
the correct model in step 3, resulting in precisely the model
shown in Figure 7.

This approach works for services such as Parse Address
and Find Closest Vector where the inputs and outputs can
be represented in a single worksheet. We are investigating
extensions to more complex services such as Map Points to
Addresses where the inputs and outputs cannot be repre-
sented in a single worksheet.

3.4 Data Fusion
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Figure 10: Karma screen showing how users can in-
voke the Find Closest Vector service.

Karma assists users with data fusion by allowing a user to
quickly integrate and invoke services. A significant problem
in invoking services is finding the required data to invoke
the service and getting that data into the correct format.
The capabilities described previously in Karma for extract-
ing data from sources, cleaning and normalizing the data,
and integrating the across sources address the data prepa-
ration problem. Once the data has been prepared and the
service has been defined in Karma, then it is straightforward
to invoke the service on the data. The results are then re-
turned as another source that can then be further refined,
integrated with other sources, visualized, or published.

Continuing with our sample workflow, in Figure 10 we
illustrate how users invoke services in Karma by showing
how they can invoke the Find Closest Vector service. The
service takes as input a Point and a collection of Vector data.
For the Point input, the user provides a source that contains
a collection of points, and Karma will iterate the invocation

of the service, once for each point.

In general, service invocations produce datasets that need
to be joined with other datasets to augment them with
needed information before invoking other services. For ex-
ample, the Find Closest Vector service produces a table that
maps points to vectors. Users need to join this table with
the Streets table to add the street name column so that they
can later be joined with the combined street data from the
yellow and white pages to produce the input needed for Map
Points to Addresses.

3.5 Visualization and Publication

After invoking the Map Points to Addresses service, Karma
produces a worksheet containing the fused output, as de-
fined in Figure 5. At this point, users can visualize the
information on a map, or publish it in a variety of formats
including relational database tables, comma-separated-value
files, KML and RDF. When exporting data in RDF, Karma
will produce RDF triples using the classes and properties
defined in the user’s ontology. Karma’s RDF export capa-
bility is significant as with the click of a button users can
produce semantically meaningful RDF triples according to
the ontology of their choice.

Figure 11 shows the data for our example scenario visual-
ized on a map: Each building is shown as a pin located at the
latitude and longitude given the in the Points input source.
The bubbles that appear when users click show the possi-
ble addresses as computed by the Map Points to Addresses
service. The example in the figure shows two possible ad-
dresses, as the building is on a corner, and the service does
not have enough information to assign it a unique address.

In general, Karma allows users to visualize any worksheet
containing geospatial information on a map. The map shows
layers for all worksheets that users have asked to visualize.
Furthermore, as the data in the worksheet changes, due to
cleaning, normalization, union or join, the map automati-
cally updates to show the latest information.

4. RELATED WORK

A lot of recent work explores different approaches for the
semantic fusion of geospatial data. Much of the work ex-
ploits ontologies to attach semantics to geospatial services
and data, and then use it to build geospatial reasoning mod-
els by chaining the services. Yue et al [20] uses manually gen-
erated OWL-S based semantic descriptions for the geospa-
tial web services in a service-oriented architecture (SOA)
to enable the automatic discovery, access, and chaining of
geospatial Web services. OWL-S semantics addresses the
structural interoperability required by the composition of
geospatial Web services. In later work [21], they introduce
an initial framework for representing, storing and querying
geospatial data provenance using Semantic Web technolo-
gies. The work done by Di et al [3] requires users to build
the service model by manually matching the classes from the
ontology to the inputs and outputs of the reasoning services.
The eMerges approach [17] employs Semantic Web Services
(SWS), allowing it to generate semantically rich geospatial
data and perform integration with it. In this approach each
data source must be converted into a SWS and the user has
to map the sources to integration ontologies manually. All
these approaches rely on users to manually model their ser-
vices and data sources. In our work, Karma offers users a
semi-automatic approach to model their geospatial services
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Figure 11: Outputs of the example geospatial workflow: results table and map.

and data sources.

Norton et al. [14] employ Linked Open Services (LOS)
[11] to model geospatial services. In LOS, service devel-
opers use SPARQL graph patterns to represent inputs and
outputs, and RDF is used for content negotiation between
the service and its clients. The main idea behind LOS is
to define services capable of consuming linked data directly,
without marshalling and unmarshalling, and to contribute
linked data to linked open data cloud. In contrast to Karma,
in which service modeling is semi-automatic, in the LOS
approach, service developers must build the service models
manually. Additionally, both describing and using LOS ser-
vices requires expertise in RDF and SPARQL, which our tar-
get users do not have. Karma uses a spreadsheet metaphor
to show these models to users and to help users build them.

Average Internet users can be assumed to be comfortable
working with spreadsheets and tables. Karma exploits this
fact and presents a spreadsheet-based user interface to inte-
grate data between different sources. Other approaches such
as Google Refine [7] and Google Fusion Tables [5] also use
a similar kind of interface and can be compared to Karma
in various aspects. Google Refine provides capabilities to
import data from various source types such as CSV, XML,
etc. and invoking web services. It allows the user to model
their sources by aligning the columns to Freebase * schema
types automatically. It supports geospatial visualization ca-
pabilities by letting the user publish his data on a map.
Google Fusion Tables also provides similar capabilities, ex-
cept that it has an advanced geospatial visualization compo-
nent and allows directly importing KML data. It allows the
user to upload large geographic data sets containing street
addresses, points, lines, or polygons. It scales large data well
by performing the rendering on the server-side and sending
the client a collection of small images (tiles) that contain
the rendered map. Both the above approaches do provide
capabilities to integrate data from different sources but do
not exploit any kind of semantics in doing so.

Another interesting approach called GeoDec [15] provides
an immersive environment for visualizing the geospatial data
making spatiotemporal queries over it to assist decision mak-
ing. It supports on-the-fly fusion of geospatial data such as
vector data, satellite imagery, and raster maps. To address

“http://www.freebase.com/schema

the problem of alignment, it employs a set of techniques
to automatically align maps and road vector data on or-
thorectified imagery [1]. This approach complements the
geospatial capabilities of Karma by providing some of the
geospatial capabilities that Karma does not support cur-
rently. For example, we are currently working on integrat-
ing techniques [8] in Karma that can extract the vector data
out from raster maps that would then allow the user to use
raster map as an input data source to Karma.

S. DISCUSSION AND FUTURE WORK

This paper described our end-to-end approach to extract-
ing, modeling, and fusing geospatial sources. The key con-
tribution of this work is that it allows end users to quickly
and easily fuse a wide variety of geospatial sources. To sup-
port the fusion process and to ensure meaningful results,
the system builds and maintains a semantic description of
the sources and services used. This allows the system to
propose meaningful ”joins” across the data. In the future
will leverage the semantic models to support the automatic
composition of sources and services to automatically build
fused datasets. Another important advantage of building
and maintaining semantic descriptions of sources is that it
means that we can produce semantic descriptions of the
fused datasets, which in turn can be published and reused.

We are working to apply our modeling approach to the
large number of REST services available. We are mining
the Web for examples of service invocations in documen-
tation pages, blogs and forums to automatically construct
datasets of sample data to invoke services. Using these data
sets we can bootstrap the Karma modeling process that has
proved successful at modeling data sources, and help our
users produce a comprehensive library of service models.
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