
Rapidly Integrating Services

into the Linked Data Cloud

Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and José Luis Ambite

University of Southern California
Information Sciences Institute and Department of Computer Science

{mohsen,knoblock,pszekely,ambite}@isi.edu

Abstract. The amount of data available in the Linked Data cloud con-
tinues to grow. Yet, few services consume and produce linked data. There
is recent work that allows a user to define a linked service from an online
service, which includes the specifications for consuming and producing
linked data, but building such models is time consuming and requires
specialized knowledge of RDF and SPARQL. This paper presents a new
approach that allows domain experts to rapidly create semantic models
of services by demonstration in an interactive web-based interface. First,
the user provides examples of the service request URLs. Then, the system
automatically proposes a service model the user can refine interactively.
Finally, the system saves a service specification using a new expressive
vocabulary that includes lowering and lifting rules. This approach em-
powers end users to rapidly model existing services and immediately use
them to consume and produce linked data.

Keywords: linked data, linked API, service modeling.

1 Introduction

Today’s Linked Open Data (LOD) cloud consists primarily of databases that
have been translated into RDF and linked to other datasets (e.g., DBpedia,
Freebase, Linked GeoData, PubMed). Often, information is not current (e.g.,
Steve Jobs was listed as CEO of Apple Computer in DBpedia for months after
his passing), and timely information is not available at all (e.g., the LOD cloud
has no information about the current weather or events for any city).

Web APIs provide the opportunity to remedy this problem as there are thou-
sands of Web APIs that provide access to a wealth of up-to-date data. For
example, the programmableweb1 lists over 6,000 APIs that provide data on an
immense variety of topics. The problem is that most of these APIs provide data
in JSON and XML and are not in any way connected to the LOD cloud. For
example, in the programmableweb only 65 APIs (about 1%) provide informa-
tion in RDF, and the rest provide information in XML and JSON. Our goal is
to make it easy to connect the remaining thousands of XML and JSON-based

1 http://www.programmableweb.com/apis

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 559–574, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

programmable web
programmable web
http://www.programmableweb.com/apis

560 M. Taheriyan et al.

Web APIs to the LOD cloud. To do so we need to make it easy to represent
the semantics of Web APIs in terms of well known vocabularies, and we need
to wrap these APIs so that they can consume RDF from the LOD cloud and
produce RDF that links back to the LOD cloud.

Several approaches have been developed to integrate Web APIs with the
Linked Data cloud. One approach is to annotate the service attributes using
concepts of known ontologies and publish the service descriptions into the cloud
[10,11]. This allows users to easily discover relevant services. A second approach
is to wrap the APIs to enable them to communicate at the semantic level so that
they can consume and produce linked data [9,5]. A third approach is to create
a uniquely identifiable resource for each instance of an API invocation and then
link that resource to other data sets [13,12]. Using this approach it is possible
to invoke the API by dereferencing the corresponding resource URI.

The main obstacle preventing these approaches from gaining wide acceptance
is that building the required models is difficult and time-consuming. In these
approaches, a developer needs to create a model that defines the mapping from
the information consumed and produced by Web APIs to Semantic Web vo-
cabularies. In addition, the developer must also write the lowering and lifting
specifications that lower data from RDF into the format expected by the Web
APIs and then lift the results of the Web API invocations to RDF. Writing
these models and the required lowering and lifting specifications often requires
in-depth knowledge of RDF, SPARQL, and languages such as XPath or XSLT2.

The key contribution of our work is a method to semi-automatically build se-
mantic models of Web APIs, including the lowering and lifting specifications. In
our approach, users provide sample URLs to invoke a service and the vocabular-
ies they want to use to model the service. The system automatically invokes the
service and builds a model to capture the semantics of the inputs, outputs and
relationships between inputs and outputs. The system also provides an easy-to-
use web-based graphical interface through which users can visualize and adjust
the automatically constructed model. The resulting models, represented in RDF
using standard vocabularies, enable service discovery using SPARQL queries. In
addition, our system can automatically generate the lowering and lifting specifi-
cations from these models so that the Web APIs become immediately executable
and able to consume and produce linked data.

2 Overview

The objective of our approach is to create linked APIs by combining traditional
Web APIs and the Linked Data cloud in two aspects. We want to publish se-
mantic service descriptions into the cloud that can be used by the linked data
community in service discovery and composition. We also want to deploy APIs
that interact at the semantic level, directly consuming Linked Data and gener-
ating RDF data that is linked to the input data. Since most Web APIs use the

2 Extensible Stylesheet Language Transformations.

Rapidly Integrating Services into the Linked Data Cloud 561

lowering

lifting

Karma

Web Server

Karma Modeling

Services
Sources

Linked API

Repository

examples

Linked

Data

User

Service

Integrator

SPARQL

Web APIs

REST Services

Web API

Modeler

RDF
JSON
XML

Fig. 1. The overview of our approach to create linked APIs

HTTP GET method, in this paper, we focus on these APIs and assume that all
inputs for service invocation are embedded in the invocation URL. The approach
presented in this paper builds upon and extends Karma [3,14,15], our modeling
and integration framework.3

Figure 1 shows the three main steps of our approach. The first step [14], the
foundation of the rest of the process, is to semi-automatically build a service
model that represents the semantics of the API functionality (Section 3). Users
first provide examples of service request URLs. Karma then invokes the services
and constructs a worksheet that contains both the inputs and the outputs pro-
duced. In this step we leverage our prior work on modeling sources, using it to
construct a model of the input/output worksheet. The process is fast because
users only need to provide a few examples of service request URLs and then ad-
just the automatically generated model. The process is also easy because users
interact with the system through a graphical user interface and are not required
to know Semantic Web technologies such as RDF, SPARQL, and XSLT.

The second step is to formally represent the semantic models built in the
previous step (Section 4). Once the user models the API, Karma automatically
generates the service descriptions and stores them in a repository. The linked
API repository provides a SPARQL interface that service integrators can use for
service discovery. For example, a service integrator can issue a query to retrieve
all the APIs that return neighborhood information given latitude and longitude.
A service integrator can also employ reasoning algorithms to generate a plan to
achieve a specific goal.

The final part of our method is to deploy linked APIs on a Web server where
they can be directly invoked, consuming and producing RDF (Section 5). The
Web server provides a REST interface that Linked Data users can use to retrieve
RDF data. It uses the service descriptions in the repository to automatically
lower the input RDF, to invoke the actual Web API, and to lift the output to
return linked (RDF) data.

3 This paper is a significantly extended version of a workshop paper [14].

562 M. Taheriyan et al.

3 Semi-automatically Modeling Web APIs

Our approach to model Web APIs using Karma consists of two parts. In the
first part, users provide Karma a collection of sample invocation URLs. Karma
uses these URLs to invoke the APIs and construct a worksheet that contains the
inputs and corresponding outputs for each service invocation. In the second part,
we use our prior Karma work to construct a model of the resulting worksheet.
In this section we describe our prior Karma work, describe the procedure to
construct the inputs/outputs worksheet from the invocation URLs, and illustrate
the whole process using an example.

3.1 Previous Work on Source Modeling

To provide a better understanding of our new work on service modeling, in this
section we briefly review our previous work on source modeling [3]. The process
of modeling sources in Karma is a semi-automatic process that is initiated when
users load a data source. Karma supports importing data from various structured
sources including relational databases, spreadsheets, JSON, and XML. Then,
users specify the vocabularies to which they want to map the source, and Karma
automatically constructs a model that users can adjust. The output is a formal
model that specifies the mapping between the source and the target ontology.
Specifically, Karma generates a GLAV source description [3,7].

The modeling process consists of two steps. The first step is to characterize
the type of data by assigning a semantic type to each column. In our approach, a
semantic type can be either an OWL class or the range of a data property (which
we represent by the pair consisting of a data property and its domain). We use
a conditional random field (CRF) [6] model to learn the assignment of semantic
types to columns of data [2]. Karma uses this model to automatically suggest
semantic types for data columns. If the correct semantic type is not among the
suggested types, users can browse the ontology through a user friendly interface
to find the appropriate type. Karma automatically re-trains the CRF model after
these manual assignments.

The second part of the modeling process is to identify the relationships be-
tween the inferred semantic types in the ontology. Given the domain ontology
and the assigned semantic types, Karma creates a graph that defines the space
of all possible mappings between the source and the ontology [3]. The nodes in
this graph represent classes in the ontology, and the links represent properties.
The mapping is not one to one, because there might be several instances of the
same class present in the source.

Once Karma constructs the graph, it computes the source model as the min-
imal tree that connects all the semantic types. The minimal tree corresponds to
the most concise model that relates all the columns in a source, and this is a
good starting point for refining the model. We use a Steiner tree algorithm to
compute the minimal tree. Given an edge-weighted graph and a subset of the
vertices, called Steiner nodes, the goal is to find the minimum-weight tree in the
graph that spans all the Steiner nodes. The Steiner tree problem is NP-complete,

Rapidly Integrating Services into the Linked Data Cloud 563

but we use a heuristic algorithm [4] with an approximation ratio bounded by
2(1− 1/l), where l is the number of leaves in the optimal Steiner tree.

It is possible that multiple minimal trees exist, or that the correct interpre-
tation of the data is captured by a non-minimal tree. In these cases, Karma
allows the user to interactively impose constraints on the algorithm to build the
correct model. Karma provides an easy-to-use GUI in which the user can adjust
the relationships between the source columns [3].

3.2 Service Invocation

To enable Karma to model services in the same way that it models structured
sources, we need to generate a table of example inputs and outputs. To this end,
Karma asks the user to provide samples of the Web API requests. Karma parses
the URLs and extracts the individual input parameters along with their values.
For each request example, Karma invokes the service and extracts the output
attributes and their values from the XML or JSON response. At the end, Karma
joins the inputs and the outputs and shows them in a table.

Once this table is constructed, we apply our prior Karma work on source
modeling to construct a model of the table. As described above, our source
modeling technique captures the relationships among all columns of a source.
Consequently, when we apply it to the table constructed from the API invocation
URLs, the resulting model will capture the relationships between the inputs and
outputs of the API.

An alternative method to collect examples of the API inputs and outputs
is to extract such information from the documentation pages of the APIs. Ac-
cording to a comprehensive study on Web APIs by Maleshkova et al. [8], 83.8%
of the APIs indexed in programmableweb provide a sample request and 75.2%
of them also provide a sample response. In future work we plan to mine these
documentation pages to extract examples of inputs and outputs.

3.3 Example

We illustrate our service modeling approach with an example from the GeoN-
ames APIs4. We model the neighbourhood API,5 which takes the latitude and
longitude of a geographic feature as input and returns information about the
neighborhood of that feature. To keep the example concise, we only consider
the region name, the nearby city, the country code, and the country name. An
example of the API invocation URL and the API response are shown in Fig-
ure 2(a) and (b). Figure 2(c) shows the table of inputs and outputs that Karma
constructs using the invocation URLs listed in the first column of the table.

In the next step, Karma treats the service table as a data source and maps
it to the ontologies given by the user (in our example GeoNames6 and WGS847

4 http://www.geonames.org/export/ws-overview.html
5 http://www.geonames.org/export/web-services.html#neighbourhood
6 http://www.geonames.org/ontology/ontology_v3.01.rdf
7 www.w3.org/2003/01/geo/wgs84_pos

programmableweb
http://www.geonames.org/export/ws-overview.html
http://www.geonames.org/export/web-services.html#neighbourhood
http://www.geonames.org/ontology/ontology_v3.01.rdf
www.w3.org/2003/01/geo/wgs84_pos

564 M. Taheriyan et al.

http://api.geonames.org/neighbourhood?lat=40.78343&lng=-73.96625&username=karma

(a) Service Invocation URL.

<geonames><neighbourhood>

<countryCode>US</countryCode>

<countryName>United States</countryName>

<city>New York City-Manhattan</city>

<name>Central Park</name>

...

</neighbourhood></geonames>
(b) Service response (XML).

(c) The user provides examples of the service requests. Karma extracts the input pa-
rameters, invokes the API, extracts the output attributes from the invocation response,
and joins the outputs with the input data in one table.

(d) Screenshot showing the service model in Karma.

neighbourhood($lat, $long, @countryCode, @countryName, @city, @name) →
gn:Feature(v1) ∧ wgs84:lat(v1, $lat) ∧ wgs84:long(v1, $long) ∧ gn:neighbourhood(v1, v2) ∧
gn:Feature(v2) ∧ gn:name(v2, @name) ∧ gn:nearby(v2, v3) ∧
gn:Feature(v3) ∧ gn:name(v3, @city) ∧ gn:parentCountry(v3, v4) ∧
gn:Feature(v4) ∧ gn:countryCode(v4, @countryCode) ∧ gn:name(v4, @countryName)

(e) Logical LAV rule representing the semantics of the neighbourhood API. Input and
output attributes are marked with $ and @ respectively. The API is described with
terms from two ontologies: GeoNames (gn:) and WGS84.

Fig. 2. Karma service modeling process: (a) Web API invocation URL, (b) XML re-
sponse, (c) Web API inputs and outputs in Karma’s interface, (d) Semantic model in
Karma’s interface, and (e) formal model as a LAV rule

Rapidly Integrating Services into the Linked Data Cloud 565

ontologies). Karma automatically recommends the top four most likely semantic
types (a class or a data-property/domain pair) for each column and the user as-
signs the semantic type by either selecting one of the suggested types or choosing
another type from the ontology. After each assignment, Karma uses its Steiner
Tree algorithm to recompute the tree that relates the semantic types.

The final model is shown in Figure 2(d). The service inputs (lat and lng)
are mapped to the lat and long properties of a Feature. This feature is related
via the neighbor object property to another Feature, which in turn is related to
other geographical features that describe the remaining outputs (the nearby city
and the parent country). Users can change the semantic types by clicking on the
black circles above the column names. They can also adjust the other elements
of the model by clicking on the property names (labels on the arrows) to select
alternative properties or to choose alternative domains for those properties.

Figure 2(e) shows the LAV rule that captures the formal semantics of the ser-
vice model that was shown in graphical form in Figure 2(d). In this rule, Feature
is a class and neighbourhood, nearby, name, and parentCountry are properties in
the GeoNames ontology, and lat and long are properties in WGS84 ontology.

4 Building a Linked API Repository

To integrate Web APIs to the Linked Data Cloud we publish an RDF representa-
tion of the API models in the Linked API Repository. In this section, we describe
how we represent the linked APIs in the repository and how these declarative
representations provide support for service discovery and composition.

4.1 Representing Linked APIs

Our models of Web APIs represent both the syntax and the semantics of the
API. The syntactic part provides the information needed to invoke the service,
including address URL, HTTPmethod, access credentials, and input parameters.
The semantic part represents the types of the inputs and the outputs and the
relationship among them in terms of a target vocabulary (ontology).

There are several vocabularies to represent linked services. WSMO-Lite8 and
Minimal Service Model9 (MSM) are RDF vocabularies that can represent the
syntax of Web APIs, but can only partially represent the semantics. They can
represent the types of the inputs and outputs using terms in ontologies, but
they cannot represent the relationships among them. Other approaches [5,12]
use SPARQL graph patterns to define the inputs and outputs. They can model
relationships among inputs and outputs, but discovery is difficult as there are
no standard facilities to query graph patterns.

We introduce an expressive ontology that extends and combines the strengths
of the existing vocabularies in one model. It can represent the semantics of

8 http://www.w3.org/Submission/WSMO-Lite/
9 http://cms-wg.sti2.org/minimal-service-model/

http://www.w3.org/Submission/WSMO-Lite/
http://cms-wg.sti2.org/minimal-service-model/

566 M. Taheriyan et al.

 rdfs: http://www.w3.org/2000/01/rdf-schema#
swrl: http://www.w3.org/2003/11/swrl#
 rest: http://purl.org/hRESTS/current#
 km: http://isi.edu/integration/karma/ontologies/model/current#

km:Service swrl:Atom

swrl:Individual
PropertyAtom swrl:ClassAtom

km:Attribute

km:Model

km: Input

km:Output

rdfs:Class rdf:Property

swrl:Variable

km:hasInput

km:hasOutput

swrl:classPredicate swrl:propertyPredicate

km:hasMandatoryAttribute

km:hasOptionalAttribute

argument1

km:hasAttribute

km:hasModel

argument2

km:hasAtom

SubClass
SubProperty

Data Property
Object Property

rest:isGroundedIn

km:hasName

rest:hasAddress

rest:hasMethod

km:hasName

Fig. 3. The ontology that we use to formally describe Web APIs

services including relationships among inputs and outputs, and it uses RDF(S)
so that models can be queried using SPARQL.

Figure 3 shows our ontology for modeling Web APIs. We re-use the SWRL10

vocabulary to define the input and output model. In this ontology, both in-
put and output have a Model which includes one or more Atom instances. A
ClassAtom shows the membership of an instance to a class and an Individual-
PropertyAtom describes an instance of a property.

We map the service semantic model (Figure 2(d)) to the introduced vocab-
ulary by adding a ClassAtom for each class instance (rounded rectangles) and
an IndividualPropertyAtom for each property (arrows). For example, to express
the part of the semantic model where the top Feature box is connected to
the the lat column, we first create a ClassAtom whose classPredicate has the
value gn:Feature and its argument1 is a new Variable. Then, we add an Individ-
ualPropertyAtom in which the propertyPredicate is wgs84:lat, argument1 is the
same variable in the ClassAtom, and argument2 is the URI of the lat input at-
tribute. Figure 4 includes both graphical and N3 notation of a snippet of the
neighbourhood API model. The input and output model is interpreted as a
conjunctive formula, which is the RDF rendering of the LAV rule generated by
Karma that captures the semantics of the Web API (cf. Figure 2(e))

4.2 Querying the Repository

Karma stores the API descriptions in a triple store. This linked API repository
offers a SPARQL interface that can be used to discover desired APIs. Our rich

10 Semantic Web Rule Language: http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/

Rapidly Integrating Services into the Linked Data Cloud 567

km:Service
http://<karma server>/services/
5C5CB6AB-1689-4A96-0B70-
96C6A54F3D70#

lat

p1

.../neighbourhood?lat={p1}&... GET neighbourhood

hasName hasAddress hasMethod

name

km:Attribute
in_lat

km:Input
input

km:Output
output

swrl:Variable
feature1

swrl:Variable
feature2

swrl:CAtom
atom2

swrl:PAtom
atom1

km:Model
inputModel

km:Model
outputModel

km:Attribute
out_name

hasAttribute

hasAttribute

hasModel

hasModel

arg1

arg1

arg2
swrl:CAtom
atom4

swrl:PAtom
atom5

swrl:PAtom
atom3

arg2

arg1

arg2

arg1 wgs84:lat

gn:Feature

gn:name

gn:neighbour

gn:Feature

arg1

hasAtom

class

class
property

property

property

hasAtom

at
om

1

at
om

3
at

om
5

feature1
atom2

feature2
atom4

links the output to the input by
neighbour relationship

@prefix : <http://<karma server>/services/5C5CB6AB-1689-4A96-0B70-96C6A54F3D70#> .

@prefix gn: <http://www.geonames.org/ontology#> .

@prefix wgs84: <http://www.w3.org/2003/01/geo/wgs84 pos#> .

...

: a km:Service;

km:hasName "neighbourhood" ;

hrests:hasAddress "http://api.geonames.org/neighbourhood?

lat={p1}&lng={p2}&username={p3}" ^^

hrests:URITemplate ;

hrests:hasMethod "GET"; km:hasInput :input; km:hasOutput :output.

:input a km:Input; :output a km:Output;

km:hasAttribute :in lat, ... ; km:hasAttribute :out name, ... ;

km:hasModel :inputModel . km:hasModel :outputModel .

:in lat a km:Attribute; :out name a km:Attribute;

km:hasName "lat" ; km:hasName "name" .

hrests:isGroundedIn ...

"p1"^^rdf:PlainLiteral .

...

:feature1 a swrl:Variable . :feature2 a swrl:Variable .

:inputModel a km:Model; :outputModel a km:Model;

km:hasAtom km:hasAtom

[a swrl:ClassAtom ; [a swrl:ClassAtom ;

swrl:classPredicate gn:Feature; swrl:classPredicate gn:Feature;
swrl:argument1 :feature1]; swrl:argument1 :feature2] ;

km:hasAtom km:hasAtom

[a swrl:IndividualPropertyAtom; [a swrl:IndividualPropertyAtom ;

swrl:propertyPredicate wgs84:lat; swrl:propertyPredicate gn:neighbour;
swrl:argument1 :feature1; swrl:argument1 :feature1 ;

swrl:argument2 :in lat]; swrl:argument2 :feature2];

... km:hasAtom

[a swrl:IndividualPropertyAtom ;

swrl:propertyPredicate gn:name ;

swrl:argument1 :feature2 ;

swrl:argument2 :out name];

...

Fig. 4. A snippet of the neighbourhood API model represented both graphically and
formally (N3 notation)

568 M. Taheriyan et al.

models support a variety of interesting queries. The following SPARQL query
finds all services that take latitude and longitude as inputs. It is difficult to
support this type of query in models that use SPARQL graph patterns because
the patterns are represented as strings and it is difficult to reason over them.

SELECT ?service WHERE {
?service km:hasInput [km:hasAttribute ?i1, ?i2].

?service km:hasInput [km:hasModel [km:hasAtom

[swrl:propertyPredicate wgs84:lat; swrl:argument2 ?i1],

[swrl:propertyPredicate wgs84:long; swrl:argument2 ?i2]]]}

In the WSMO-Lite and MSM specifications, which are in RDF, inputs and out-
puts of a service are linked to concepts and properties in ontologies, so they
support the previous example query. However, they do not support answering
more complex questions that take into account the relationships between the
attributes. For example, suppose a user wants to find services that return the
neighborhood regions given a latitude and longitude. These models cannot be
used to answer this question because they cannot represent the relationship
(neighbour) between the inputs (lat, lng) and the output regions. In our
model, we can write the following SPARQL query:

SELECT ?service WHERE {
?service km:hasInput [km:hasAttribute ?i1, ?i2].

?service km:hasOutput [km:hasAttribute ?o1].

?service km:hasInput [km:hasModel [km:hasAtom

[swrl:classPredicate gn:Feature; swrl:argument1 ?f1],

[swrl:propertyPredicate wgs84:lat; swrl:argument1 ?f1; swrl:argument2 ?i1],

[swrl:propertyPredicate wgs84:long; swrl:argument1 ?f1; swrl:argument2 ?i2]]].

?service km:hasOutput [km:hasModel [km:hasAtom

[swrl:classPredicate gn:Feature; swrl:argument1 ?f2],

[swrl:propertyPredicate gn:name; swrl:argument1 ?f2; swrl:argument2 ?o1],

[swrl:propertyPredicate gn:neighbour; swrl:argument1 ?f1; swrl:argument2 ?f2]]]}

5 Deploying Linked APIs

Publishing service descriptions into the Linked Data cloud is the first step in
creating linked APIs. The next step is to deploy APIs that are able to consume
data directly from the cloud and also to produce linked data. One of the benefits
of our service models is that they include lowering and lifting instructions that
our system can directly execute. This allows the user to easily wrap existing Web
APIs without writing separate lowering and lifting specifications. In this section,
we describe how we set up linked APIs and how we enable them to communicate
at the semantic level (RDF).

5.1 Invoking a Linked API

As shown in Figure 1, the KarmaWeb server is the component that enables users
to invoke the linked APIs. Users communicate with this server through a REST

Rapidly Integrating Services into the Linked Data Cloud 569

interface to send the RDF as input and get linked data as output. If the user
sends a GET request to this endpoint,11 he will receive the service specification
in RDF. Calling the linked API with a POST request is the method to feed
linked data to a service. Karma performs the following steps to execute these
POST requests, which include the input RDF in its body:

– The Karma Web server extracts the service identifier from the request and
uses it to retrieve the model from the repository.

– The server verifies that the input RDF satisfies the input semantic model
and rejects requests that are incompatible with the input model. To do this
it creates a SPARQL query according to the API input model and executes
it on the input data.

– The server uses the model to do lowering, creating the appropriate URL for
the original Web API (section 5.2).

– The server invokes the Web API and gets the results.
– The server uses the output model to convert the output from XML/JSON

to RDF and link it to the input (section 5.2).
– The server returns the linked data to the caller in RDF.

To enable callers to determine the appropriate RDF graph that can be used as
the input, the KarmaWeb server offers an interface12 to get the SPARQL pattern
that corresponds to the service input. The caller can execute this SPARQL query
on its RDF store to obtain the appropriate input graph to call the linked API.

5.2 Lowering and Lifting

One of the advantages of our approach is that our models contain all the informa-
tion needed to automatically execute the required lowering and lifting, obviating
the need to manually write their specification. We describe the lowering and lift-
ing processes using an example. Suppose that the server receives a POST request
for the neighborhood API. The body of the request has RDF triples from the
GeoNames data source with the coordinates of geographical features.

Figure 5 illustrates the lowering process. When the Karma Web server re-
ceives the HTTP POST request, it extracts the RDF triples from the body and
retrieves the model from the repository. The swrl:classPredicate of the ClassAtom
and the swrl:propertyPredicate of the IndividualPropertyAtom are URIs of the cor-
responding classes and properties in the input RDF (e.g., wgs84:lat), enabling
the server to retrieve the corresponding values (e.g., 40.74538). Every input at-
tribute (e.g., :in-lat) has a isGroundedIn property which indicates its position in
the service address. This enables the server to build the invocation URL directly
from the service specification without writing an explicit lowering schema. For
the input parameters such as authentication key that are not part of the se-
mantic model, the user would provide separate statements in the input graph.

11 The address of the REST API is http://<karma server>/services/{id} in which
id is the service identifier created automatically by Karma when it generates the
API description.

12 http://<karma server>/services/{id}/input?format=SPARQL

570 M. Taheriyan et al.

Attribute Value
in_lat 40.74538
in_lng -73.90541
in_username demo

API Description (RDF)

1

http://api.geonames.org/neighbourhood?
lat40.74538&lng=-73.90541&username=demo

 Invocation URL

Attribute Value Grounded
in_lat 40.74538 p1
in_lng -73.90541 p2
in_username demo p3

2

3

<http://sws.geonames.org/5145067/>
a gn:Feature ;
wgs84:lat "40.74538" ;
wgs84:long "-73.90541" .

<http://.../services/...D70#in_username>
km:hasValue “demo” .

Input R
D

F

Authentication

:inputModel a km:Model;

km:hasAtom
[a swrl:ClassAtom ;
swrl:argument1 :v1 ;
swrl:classPredicate gn:Feature] ;

km:hasAtom
[a swrl:IndividualPropertyAtom ;
swrl:argument1 :v1 ;
swrl:argument2 :in_lat ;
swrl:propertyPredicate wgs84:lat] ;

...

:in_lat a km:Attribute;
km:hasName "lat" ;
hrests:isGroundedIn "p1“

...

hrests:hasAddress
“http://api.geonames.org/neighbourhood?
lat={p1} &lng={p2}&username={p3}”

Fig. 5. Lowering the RDF data to create the invocation URL of the Web API

For instance, in the example in Figure 5, the user would add a triple, such as
<serviceURI:username km:hasValue "demo">, to the input data.

In the next step, the Karma Web server links the outputs to the input RDF
in order to return additional information about the inputs to the user. The
service returns the outputs in XML or JSON, and these need to be converted
to RDF. Figure 6 illustrates the lifting process. First, for each output attribute
(e.g., :out countryCode), Karma uses km:hasName property to get its name (e.g.,
countryCode). This name is compared to the XML tags to identify the corre-
sponding value (e.g., US). Then, Karma exploits the output model of the API
to create a RDF graph of the output values. If there is a variable in the output
model that is also part of the input model (e.g., :v1), that means Karma already
knows its value from the input RDF. For the other variables in the output model
(e.g., :v2), Karma creates blank nodes according to their type (e.g., gn:Featue),
denoted by swrl:classPredicate property. A video demonstrating how to model
the neighbourhood API in Karma and wrap it as a linked API is available on
the Karma web site13.

6 Related Work

Three recent approaches address the integration of services and the Linked Data
cloud. The first approach, called Linked Services [10,11], focuses on annotating
services and publishing those annotations as Linked Data. The second approach
creates services, called Linked Open Services (LOS) [9,5], that consume and
produce Linked Data. Finally, Linked Data Services (LIDS) [12,13] integrates
data services with Linked Data by assigning a URI to each service invocation.

13 http:/isi.edu/integration/karma

http:/isi.edu/integration/karma

Rapidly Integrating Services into the Linked Data Cloud 571

API Description (RDF)

<geonames>
 <neighbourhood>
 <countryCode>US</countryCode>
 <countryName>United States</countryName>
 <city>New York City-Queens</city>
 <name>Woodside</name>

...
 </neighbourhood>
</geonames>

A
P

I R
esp

o
n

se X
M

L

<http://sws.geonames.org/5145067/>
 gn:neighbour [

 a gn:Feature ; gn:name "Woodside";
 gn:nearby [
 a gn:Feature ; gn:name “…-Queens";
 gn:parentCountry [...

1

Linked Output (RDF)

2

:out_countryCode a km:Attribute;

km:hasName “countryCode" ;
....

:outputModel a km:Model;

km:hasAtom
[a swrl:IndividualPropertyAtom ;
swrl:argument1 :v1 ;
swrl:argument2 :v2;
swrl:propertyPredicate gn:neighbour] ;

km:hasAtom
[a swrl:ClassAtom ;
swrl:argument1 :v2 ;
swrl:classPredicate gn:Feature] ;

km:hasAtom
[a swrl:IndividualPropertyAtom ;
swrl:argument1 :v2 ;
swrl:argument2 :out_name;
swrl:propertyPredicate gn:name] ;

...

Attribute Value URI

countryCode US :out_countryCode

countryName United States :out_countryName

city ...-Queens :out_city

name Woodside :out_name

Fig. 6. Lifting the XML response to create linked data

The service URI is linked to resources in the Linked Data cloud and dereferencing
the URI provides RDF information about the linked resources.

Linked Services uses a simple RDF ontology, called Minimal Service Model
(MSM), to annotate the service and publish it as Linked Data. MSM uses the
modelReference property of the SAWSDL vocabulary [1] to map service inputs
and outputs to the concepts in ontologies. In Karma, rather than just anno-
tating the service attributes, we also model the relationships between them in
order to support more sophisticated service discovery and composition. More-
over, when it comes to consuming and producing RDF for existing Web APIs,
MSM required modelers to provide explicit lowering and lifting schema using the
sawsdl:loweringSchemaand sawsdl:liftingSchema relations. In contrast, our
modeling approach includes enough information to automatically derive the low-
ering and lifting instructions, avoiding the need to use additional languages, such
as XSLT, to express the lowering and lifting scripts.

LOS and LIDS use SPARQL graph patterns to model inputs and outputs,
thus providing a conjunctive logical description similar to our models. Therefore,
all three approaches can model the relationships between inputs and outputs.
However in LOS and LIDS, the graph patterns are represented as strings in the
service description, limiting the power of automatic discovery and composition.
In contrast, Karma uses RDF graphs to model the inputs and outputs, making
it possible to discover services using SPARQL queries.

One clever feature of the LIDS approach is that each service invocation has a
URI that embeds the input values and this URI is linked to the input resource.
Sending a GET request to the invocation URI returns the linked output. This
enables the user to get the RDF output on the fly while traversing the input

572 M. Taheriyan et al.

resource on the Linked Data cloud without the requirement to send the input
data in a separate phase. Although we have not implemented this capability,
generating these kinds of URIs can be done in our approach without difficulty.
We can use our service descriptions to find the appropriate input values in a
triple store, create the invocation URIs, and link them to the input resources.

Verborgh et al. [16] introduce a new approach, called RESTdesc, to capture
the functionality of hypermedia links in order to integrate Web APIs, REST
infrastructure, and the Linked Data. The idea is to enable intelligent agents to
get additional resources at runtime from the functional description of the invoked
API. RESTdesc uses N3 notation to express the service description. Therefore,
like LIDS, LOS, and our RDF vocabulary, it can model the relationships between
the input and output attributes. However, the main point that differentiates our
approach from RESTdesc is that in Karma, the user interactively builds API
models. After modeling, Karma automatically generates API specifications and
the API modeler does not need to write the descriptions manually.

7 Evaluation

To evaluate our approach, we modeled 11 Web APIs from the GeoNames Web
services as linked APIs. The purpose of the evaluation was to measure the effort
required in our approach to create linked APIs. We measured this effort in terms
of the average time to build the linked API model and the number of action that
the user had to perform to build the correct model. We used an extended version
of the GeoNames ontology, with additional classes and properties to enable us
to build richer semantic models.14

Table 1 shows the results of our experiment. The #URLs column indicates the
number of sample invocation requests given to Karma by the user as the input of
the modeling process. The #Cols column counts the number of columns in the
Karma worksheet that were assigned a semantic type. The Choose Type column
shows the number of times that the correct semantic type was not in Karma’s top
four suggestions and we had to browse the ontology to select the correct type. We
started this evaluation with no training data. The Change Link column shows
the number of times we had to select alternative relationships using a menu.
The Time column records the time that it took us to build the model, from the
moment the user enters the examples until the time that Karma publishes the
service description into the repository.

As the results show, using Karma it took us only 42 minutes to build the
models and deploy the linked APIs for the 11 Web APIs. In addition, we did not
have to write any RDF, SPARQL, XPath or any other code. The whole process is
done in a visual user interface, requiring 76 user actions, about 7 per Web API.
Equivalent LIDS or LOS models are about one page of RDF/SPARQL/XSL
code written by hand. We designed Karma to enable users to build these models
quickly and easily enabling them to use the ontologies that make sense for their

14 The datasets are available at: http://isi.edu/integration/karma/data/iswc2012

http://isi.edu/integration/karma/data/iswc2012

Rapidly Integrating Services into the Linked Data Cloud 573

Table 1. Evaluation results for building linked APIs from the GeoNames APIs

GeoNames API #URLs #Cols
#User Actions

Time(min)
Choose Type Change Link Total

neighbourhood 3 10 10 6 16 6

neighbours 2 9 5 5 10 5

children 2 10 0 5 5 3

sibling 1 9 0 5 5 3

ocean 2 3 0 2 2 1

findNearby 3 11 0 5 5 3

findNearbyPostalCodes 3 11 1 5 6 7

findNearbyPOIsOSM 3 7 5 1 6 3

findNearestAddress 3 14 4 6 10 6

findNearestIntersectionOSM 3 8 5 3 8 3

postalCodeCountryInfo 1 5 3 0 3 2

Total 26 97 76 42

scenarios. Karma is available as open source15 and we plan to collect usage
statistics and feedback to improve the system and measure its benefits.

8 Discussion

This paper presented our approach to rapidly integrate the traditional Web APIs
into the Linked Data cloud. An API modeler uses Karma to interactively build
semantic models for the APIs. The system semi-automatically generates these
models from example API invocation URLs and provides an easy-to-use interface
to adjust the generated models. Our models are expressed in an RDF vocabulary
that captures both the syntax and the semantics of the API. They can be stored
in a model repository and accessed through a SPARQL interface. We deploy the
linked APIs on a Web server that enables clients to invoke the APIs with RDF
input and to get back the linked RDF data.

We are working to apply our modeling approach to a large number of available
Web APIs. We plan to reduce the role of the user in modeling by mining the Web
for examples of service invocations in documentation pages, blogs and forums
to automatically construct datasets of sample data to invoke services. We are
also working on extending our approach to model RESTful APIs. Extracting
the input parameters from a RESTful API is not as straightforward as a Web
API because there is not a standard pattern to embed the input values in the
URL. However, collecting more samples of the API requests and analyzing the
variable parts of the URLs will enable us to automatically extract the inputs of
RESTful APIs.

Acknowledgements. This research is based upon work supported in part by
the National Science Foundation under award number IIS-1117913. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of NSF or any person connected with them.

15 https://github.com/InformationIntegrationGroup/Web-Karma-Public

https://github.com/InformationIntegrationGroup/Web-Karma-Public

574 M. Taheriyan et al.

References

1. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema, W3C
Recommendation (2007), http://www.w3.org/TR/sawsdl/

2. Goel, A., Knoblock, C.A., Lerman, K.: Exploiting Structure within Data for Ac-
curate Labeling Using Conditional Random Fields. In: Proceedings of the 14th
International Conference on Artificial Intelligence, ICAI (2012)

3. Knoblock, C.A., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea,
M., Taheriyan, M., Mallick, P.: Semi-automatically Mapping Structured Sources
into the Semantic Web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O.,
Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg
(2012)

4. Kou, L., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Trees. Acta
Informatica 15, 141–145 (1981)

5. Krummenacher, R., Norton, B., Marte, A.: Towards Linked Open Services and
Processes. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) FIS
2010. LNCS, vol. 6369, pp. 68–77. Springer, Heidelberg (2010)

6. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In: Proceedings of the 18th
International Conference on Machine Learning (2001)

7. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of the
21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS (2002)

8. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating Web APIs on the World
Wide Web. In: Proceedings of the 8th IEEE European Conference on Web Services,
ECOWS (2010)

9. Norton, B., Krummenacher, R.: Consuming Dynamic Linked Data. In: First Inter-
national Workshop on Consuming Linked Data (2010)

10. Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services
for the Web of Data. Journal of Universal Computer Science 16(13) (2010)

11. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iServe: A Linked Services Publishing Platform. In: Proceedings of the Ontology
Repositories and Editors for the Semantic Web Workshop, ORES (2010)

12. Speiser, S., Harth, A.: Towards Linked Data Services. In: Proceedings of the 9th
International Semantic Web Conference (ISWC) (2010)

13. Speiser, S., Harth, A.: Integrating Linked Data and Services with Linked Data
Services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184.
Springer, Heidelberg (2011)

14. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Semi-Automatically
Modeling Web APIs to Create Linked APIs. In: Proceedings of the Linked APIs
for the Semantic Web Workshop, LAPIS (2012)

15. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building Mashups by Demonstration.
ACM Transactions on the Web (TWEB) 5(3) (2011)

16. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Gabarró Vallés, J., Van
de Walle, R.: Functional Descriptions as the Bridge between Hypermedia APIs and
the Semantic Web. In: Proceedings of the 3rd International Workshop on RESTful
Design (2012)

http://www.w3.org/TR/sawsdl/

	This is the TOC title
	Introduction
	Overview
	Semi-automatically Modeling Web APIs
	Previous Work on Source Modeling
	Service Invocation
	Example

	Building a Linked API Repository
	Representing Linked APIs
	Querying the Repository

	Deploying Linked APIs
	Invoking a Linked API
	Lowering and Lifting

	Related Work
	Evaluation
	Discussion
	Acknowledgements.

