
Semi-Automatically Modeling Web APIs to
Create Linked APIs?

Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and Jose Luis Ambite

University of Southern California
Information Sciences Institute and Department of Computer Science

{mohsen,knoblock,pszekely,ambite}@isi.edu

Abstract. The objective of new service modeling approaches introduced
by recent work on linked services is to integrate Linked Data and service
APIs. Building these models is time consuming and difficult, which is
an obstacle preventing wide adoption of these modeling approaches. We
introduce an approach to semi-automatically build semantic models of
the Web APIs by using examples of input values. We use these values
to invoke the service and then use the input and output values to learn
a semantic model of an API. These models enable a system to easily
integrate data and services and to export the models as Linked APIs.

1 Introduction

The amount of data available in the Linked Data cloud continues to grow. This
development has motivated studies on the relationship between services and
Linked Data. Linked services [1] are the recent efforts to combine services and
the Web of Data. The studies on linked services include two paths. The first one,
investigated mostly by Pedrinaci et al. [8, 9], focuses on annotating services and
publishing those annotations as Linked Data. The other one focuses on services
that consume and produce Linked Data. Examples of this approach include
Linked Data Services (LIDS) [10] and Linked Open Services (LOS) [7, 5].

Regardless of which approach we adopt to create linked services, modeling
traditional services requires significant effort and time. We believe that this
difficulty in wrapping traditional Web APIs is one of the main obstacles in
moving toward Linked APIs. The main focus in this paper is on modeling Web
APIs so that we can easily integrate them with available data, especially Linked
Data, and compose them with other existing services. More precisely, we are
looking for a semantic model of a service that enables the system to do the
following tasks:

– Discover appropriate services based on user queries.
– Suggest to the user a list of services that can be invoked using the available

(linked) data.

? This research is based upon work supported by the National Science Foundation
under award number IIS-1117913.

2 Taheriyan et al.

– Invoke the service automatically from its descriptions.
– Link the service output with other available data.
– Compose data and services to achieve a specific goal defined by a user.
– Report to the user the additional information that a service can provide to

augment existing data.
– Publish the service description as Linked Data.

We present an approach that enables both API providers and API users to
semi-automatically model Web APIs. In our approach, examples of input values
are used to invoke the API and obtain the output values. We use a machine
learning technique to identify the data types of the input and output parameters
according to given ontologies. Then, we explicitly specify the relationships among
API parameters to expose the true functionality of the service. At the end, we
are able to use the known vocabularies, such as Minimal Service Model (MSM),
to publish the service models into the Linked Data cloud. We can also generate
LOS descriptions from our models.

We use Karma [11] as a general information integration platform to im-
plement our method. Karma already supports modeling structured sources in-
cluding relational databases, spreadsheets, JSON and XML. Modeling services
enables Karma to easily integrate data and services.

2 Semi-Automatically Building Service Models

In this section we describe the different steps of our approach to model a Web
API. The main contribution of our approach is to interactively learn the semantic
models of the Web APIs. Since most of the Web APIs use the HTTP GET
method, in this paper, we focus on these kinds of APIs. In other words, we
assume that all the required inputs for the service invocation will be embedded
in the invocation URL.

The input to the system are examples of service requests provided by a user.
The system uses these examples to extract the input parameters and their values.
Next, input values are used to invoke the service and obtain the API response.
The core part of building the service model is to align the combination of API
inputs and outputs to the ontologies given by a user. The alignment has two
parts. First, we exploit machine learning techniques to annotate the inputs and
outputs with concepts and properties of the ontology. Second, we capture the
functionality of the API by specifying the relationships between the inputs and
outputs.

We use an example API to show the steps of building service models. The
inputs to the API are city and state and the output values are current tem-
perature, current dew point, humidity percent, wind speed, ICAO code of the
weather station, the report date, and a description of the sky condition. An ex-
ample of the API invocation URL and the API response is shown in Figure 1.
The rest of this section explains how we plan to extend Karma’s existing data
modeling capabilities to semi-automatically build a semantic model of the APIs.

Semi-Automatically Modeling Web APIs to Create Linked APIs 3

Invocation URL
http://example.com/weather?city=Los+Angeles&state=CA

JSON Results
"weatherObservations":[{

"date":"1-Mar-2012", "icao":"KLOX", "temperature":"63"

"dewPoint":"55", "humidity":"70", "windSpeed":"09",

"skyCondition":"Partly cloudy"

}]

Fig. 1. An example weather API invocation URL and the JSON response.

Fig. 2. (a) The user provides examples of the service requests. (b) Karma extracts the
input parameters and invokes the API. The results of the invocation will be joined to
the input data in one table.

2.1 Invoking Services

The first step in modeling an API is to collect examples of inputs and out-
puts. To do this, Karma will ask the user to provide some examples of the API
request strings. Karma will parse the URL and automatically extracts the in-
dividual input parameters along with their values. For instance, the user just
enters http://example.com/weather?city=Los+Angeles&state=CA as an ex-
ample of a service invocation URL. Karma understands that city and state

are the input parameters and Los Angeles and CA are the corresponding input
values. For each request example, Karma will invoke the service to obtain the
response data. Figure 2 illustrates the API invocation process in Karma.

Another way to collect examples of API inputs and outputs is to extract
such information from the documentation page of the API. A study on the Web
APIs [6] shows that from the APIs that are indexed by ProgrammableWeb1,
83.8% of them provide an example request and 75.2% of them also provide an
example response. Therefore, even without invoking many of the APIs, we can
use wrappers to mine samples of input and output.

1 http://www.programmableweb.com/

4 Taheriyan et al.

2.2 Annotating Inputs and Outputs

Once we have found examples of the inputs and outputs, the existing Karma
system can model the API just like other data sources. The second step in
modeling the API involves mapping each column to a node in the ontology. We
use a technique based on Conditional Random Fields (CRF) to automatically
assign semantic types to the columns based on the data values in each column
and a set of learned probabilistic models constructed from assignments done
in prior sessions [3]. Semantic types can be data properties or classes in the
ontology. If the semantic type assigned by the system is incorrect, the user can
select the correct one from a menu. The system learns from this assignment and
records the learned assignment in its database.

In our example, we assume that in prior sessions, users trained Karma to
recognize types like city, date, and temperature. For the columns that have
values with the same pattern but with different types, the CRF model may
be unable to distinguish them. For instance, the values in the TEMPERATURE
and DEWPOINT columns are similar and Karma assigns the temperature data
property to both columns. In this situation, the user interacts with the Karma
and chooses the dewPoint data property as the correct type for the DEWPOINT
column. In Figure 3, the gray boxes below the column names represent the
assigned semantic types.

2.3 Specifying the Relationships

Annotating the service input and output by mapping them to the concepts of
the ontology does not fully characterize the functionality of the API. We still
need to know the relations between different columns, especially between the
input and the output columns.

The next step in modeling an API is to represent the relationships between
the semantic types in terms of the properties defined in the ontology. Karma
first constructs a graph where nodes are the classes in the ontology and the
edges correspond to ontology properties that relate them [4]. Karma uses an
approximate Steiner tree algorithm to compute the minimal tree in this graph
that connects the semantic types [12]. The minimal tree corresponds to the
most succinct model that relates all the columns in a source, and this is a good
starting point for refining the model. It is possible that multiple minimal trees
exist or the minimum model is not the right model of the service. To resolve such
cases, Karma provides a user interface to select the desired relationships. Karma
represents the extracted relationships in a tree-based structure at the top of the
service worksheet. Figure 3 shows the visualization of the weather API model in
Karma.

3 Integrating Data and Services

In this part, we discuss how API models help Karma to integrate data and
services. Suppose that the user imports into Karma a table of people profiles.

Semi-Automatically Modeling Web APIs to Create Linked APIs 5

Fig. 3. Karma screen showing the weather API model.

Fig. 4. Karma screenshot after importing the profiles data by the user.

Every profile includes the person name, the place where he or she was born, the
organization where he or she currently works, and the address of the organization
in terms of city and state. Once the data is imported, Karma builds a semantic
model of this data source. Figure 4 shows the model that Karma builds for this
source.

Exploiting both source and service models, Karma provides support to achieve
the goals we described in Section 1 for service modeling. Karma knows that the
source has some columns that are mapped to City and State. Using the service
models, Karma would know that there is an API that takes two inputs with the
City and State types. Thus, it can suggest to the user that the weather API
can be invoked on this source. Karma can also show the user a list of additional
attributes it can join with the source. For example, Karma would be able to
tell users that they can augment the person dataset with the current weather
conditions for the work location.

It is important to note that declaring the relationships among the columns
provides richer semantics than just annotating the columns. For instance, the
profile source has two CITY and two STATE columns. In the weather API
model that Karma has already built, the semantic types that are assigned to the
columns CITY and STATE are related to each other by the in relationship in
the ontology. This knowledge enables Karma to select meaningful combinations
of the data source columns to invoke a service (e.g., the system would never
attempt to invoke the weather service with the city someone is born in and the

6 Taheriyan et al.

...

:WeatherAPI a msm:Service;

msm:hasOperation :getWeather;

hrests:hasAddress "http://isi.edu/integration/services/weather?"^^

hrests:URITemplate.

:getWeather a msm:Operation;

msm:hasInput :getWeatherInput;

hrests:hasMethod "GET";

hrests:hasAddress "city={p1}&state={p2}"^^hrests:URITemplate.
:getWeatherInput a msm:MessageContent;

msm:hasPart :part1, :part2.

:part1 a msm:MessagePart;

sawsdl:modelReference places:City

hrests:isGroundedIn "p1"^^rdf:PlainLiteral

:part2 a msm:MessagePart;

sawsdl:modelReference places:State

hrests:isGroundedIn "p2"^^rdf:PlainLiteral

...

Fig. 5. The weather API described with MSM ontology.

state that they work in). Therefore, specifying the relationships in the service
model helps Karma to identify the appropriate inputs for API invocation.

4 Publishing Service Models as Linked APIs

In section 1 we introduced two known studies related to linked services. The
first one uses a simple RDF ontology, called Minimal Service Model (MSM),
to annotate the service and publish it as Linked Data. The second one, called
Linked Open Services (LOS), describes the API input and output as SPARQL
graph patterns. Here, we show how Karma is able to generate both of these
service descriptions.

An MSM description of an API includes its address, the HTTP method, the
input and output parameters, and their mappings to the concepts of the ontolo-
gies. MSM uses the modelReference property of the SAWSDL vocabulary [2]
to annotate service parameters. Thus, even without specifying the relationships
between API parameters, the Karma models include the information necessary
to generate a MSM description that can be used by clients to invoke the API. If
we are dealing with RDF data as input and output, it is necessary to generate
the lowering and lifting schema as well. Karma already has the ability to im-
port JSON and XML sources, and it can use its models to generate RDF. We
believe that similar techniques will enable Karma to generate such schemas for
API models built in Karma. Figure 5 is the MSM description of our weather
example without lifting and lowering. Due to space limitations, we removed the
namespaces and only the input model is shown.

LOS uses SPARQL graph patterns to represent the inputs and outputs of a
service. Graph patterns provide support for representing the relationships among
service parameters. Figure 6 illustrates the graph patterns generated for the

Semi-Automatically Modeling Web APIs to Create Linked APIs 7

Input Pattern

?city a places:City; places:in ?state. ?state a places:State

Output Pattern

?report a weather:WeatherReport.

?report eg:hasLocation ?city.

?city a places:City; places:in ?state.

?state a places:State.

?report eg:hasDate ?date.

?report weather:hasObservation ?observation.

?observation a weather:WeatherObservation.

?observation weather:hasTemperatureEvent ?tempEvent.

?tempEvent a weather:TemperatureEvent.

?tempEvent weather:temperature ?temp.

?tempEvent weather:dewPoint ?dew.

?observation weather:hasWindEvent ?windEvent.

?windEvent a weather:WindEvent.

?windEvent weather:windSpeed ?windspeed.

?observation weather:humidity ?humidity.

?observation weather:description ?skycondition.

Fig. 6. Input and output graph patterns for the weather API.

weather API. The models that Karma builds also contain the relationships be-
tween inputs and outputs, expressed using known vocabularies from the Linked
Data cloud. Karma can currently export them as a datalog specification and
exporting them as graph patterns would be straightforward. To wrap the APIs
that do not understand RDF, we have to add lowering and lifting schemas. We
are working to add this functionality to Karma. This would enable Karma to
publish LOS descriptions so that other people can invoke them on top of their
RDF data.

5 Discussion

This paper presents our approach to interactively build semantic models of Web
APIs. The key contribution of this work is that rather than manually enriching
the traditional APIs with semantics, we use a semi-automatic approach to model
a service. These models allow the system to help the user in service discovery,
invocation, and composition. We are working to apply our modeling approach to
the large number of Web services available. We are mining the Web for examples
of service invocations in documentation pages, blogs and forums to automatically
construct datasets of sample data to invoke services.

One of the other directions for future work is to extend our approach to model
RESTful APIs. Extracting the input parameters from a RESTful API is not as
straightforward as a Web API. Suppose that the corresponding REST API of
the Web API in Section 2 is http://example.com/state/CA/city/LA. From
just the URL, we do not know the actual input parameters. However, collecting
more samples of this API invocation and analyzing the variable parts of the
URLs will enable us to automatically extract the inputs of RESTful APIs.

8 Taheriyan et al.

References

1. Domingue, J., Pedrinaci, C., Maleshkova, M., Norton, B., Krummenacher, R.: Fos-
tering a relationship between linked data and the internet of services. In: The
Future Internet: Future Internet Assembly 2011: Achievements and Technological
Promises, pp. 351–364. No. 6656 in Lecture Notes in Computer Science, Springer-
Verlag (2011)

2. Farrell, J., Lausen, H.: Semantic annotations for wsdl and xml schema (Aug 2007),
http://www.w3.org/TR/sawsdl/, w3C Recommendation

3. Goel, A., Knoblock, C.A., Lerman, K.: Using conditional random fields to exploit
token structure and labels for accurate semantic annotation. In: Proceedings of
AAAI-11 (2011)

4. Knoblock, C., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea,
M., Taheriyan, M., Mallick, P.: Semi-automatically mapping structured sources
into the semantic web. In: 9th Extended Semantic Web Conference 2012 (ESWC
2012) (2012)

5. Krummenacher, R., Norton, B., Marte, A.: Towards linked open services and pro-
cesses. In: FIS’10. pp. 68–77 (2010)

6. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web apis on the world
wide web. In: The 8th IEEE European Conference on Web Services (ECOWS 2010)
(2010)

7. Norton, B., Krummenacher, R.: Consuming dynamic linked data. In: First Inter-
national Workshop on Consuming Linked Data (COLD2010) (2010)

8. Pedrinaci, C., Domingue, J.: Toward the next wave of services: Linked services for
the web of data. Journal of Universal Computer Science 16(13), 1694–1719 (jul
2010)

9. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iserve: a linked services publishing platform. In: Ontology Repositories and Editors
for the Semantic Web Workshop at The 7th Extended Semantic Web. vol. 596 (June
2010)

10. Speiser, S., Harth, A.: Towards linked data services. In: 9th International Semantic
Web Conference (ISWC2010) (November 2010)

11. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building mashups by demonstration.
ACM Transactions on the Web (TWEB) 5(3) (2011)

12. Winter, P.: Steiner problem in networks - a survey. Networks 17, 129–167 (1987)

