
A Scalable Approach to Learn Semantic Models of
Structured Sources

Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, José Luis Ambite
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292, USA

{mohsen, knoblock, szekely, ambite}@isi.edu

Abstract—Semantic models of data sources describe the mean-
ing of the data in terms of the concepts and relationships defined
by a domain ontology. Building such models is an important step
toward integrating data from different sources, where we need
to provide the user with a unified view of underlying sources.
In this paper, we present a scalable approach to automatically
learn semantic models of a structured data source by exploiting
the knowledge of previously modeled sources. Our evaluation
shows that the approach generates expressive semantic models
with minimal user input, and it is scalable to large ontologies
and data sources with many attributes.

I. INTRODUCTION

A significant amount of information available on the Web is
available in sources such as relational databases, spreadsheets,
XML, JSON, and Web APIs. A common approach to integrate
these sources involves building a domain model and construct-
ing source descriptions that represent the intended meaning of
the data by specifying mappings between the sources and the
domain model [1]. In the Semantic Web, the domain model
is an ontology that defines concepts and relationships within
a domain, and source descriptions are formal specifications of
semantic models. Semantic models can be viewed as graphs
with ontology classes as the nodes and ontology properties as
the links between the nodes.

Manually constructing semantic models is a time-
consuming task that requires significant effort and expertise.
Automatically generating these models involves two steps.
The first step is specifying the semantic types, i.e., labeling
each data field, or source attribute with a class or a data
property of the domain ontology. However, simply annotating
the attributes is not sufficient. A precise semantic model needs
a second step that specifies the relationships between the
source attributes in terms of the properties in the ontology. In
Semantic Web research, there are many studies on mapping
data sources to ontologies [2]–[7], but most focus on the
first step of the modeling process or are very limited in
automatically inferring the relationships.

In our previous work [8], we presented a novel approach to
learn semantic models of data sources from known semantic
models, semantic models of sources that have already been
modeled. The work is inspired by the idea that different
sources in the same domain often provide similar or over-
lapping data and have similar semantic models. Given sample
data from the new source, we use an existing machine learning

technique [9] to label each source attribute with a semantic
type from the ontology. Next, we build a weighted directed
graph with known semantic models as the main components
and expand the graph by adding the paths in the ontology
connecting the nodes across different components. This graph
models the space of plausible semantic models. Then, we
produce mappings from the semantic types to the nodes of the
graph, and for each mapping we generate a candidate model by
computing the minimal tree that connects the mapped nodes.
Finally, we score the candidate models to prefer the ones
formed with more coherent and frequent patterns.

This past work has some limitations. First, we do not take
into account the uncertainty of the machine learning algorithm
when labeling the source attributes. That is, although the
machine learning algorithm learns a set of candidate semantic
types for each source attribute, we assign the one with higher
confidence value to the attributes and ignore the other sug-
gested semantic types. This is a strict assumption, because in
many cases, the learning algorithm cannot distinguish between
the semantic types of similar data values. Second, for data
sources with many attributes, the number of mappings between
the semantic types and the nodes of the graph can be large.
In these cases, processing all the mappings to generate the
candidate models is infeasible.

In this paper, we address the limitations of our past work.
We generalize the previous approach to consider a set of
candidate semantic types for each attribute rather than only
one semantic type per attribute. To overcome the problem of
large number of mappings, we introduce a search algorithm
that explores the space of possible mappings as we map the
semantic types to the nodes of the graph and expands only
the more promising mappings. We evaluated the approach on
a set of museum data sources modeled using relatively large
ontologies (119 classes and 351 properties). The evaluation
shows that the approach generates rich semantic models with
minimal user input, and it also scales well, learning semantic
models of data sources that contain many attributes.

II. EXAMPLE

In this section, we provide an example to demonstrate
the problem of learning semantic models. We will use this
example in the rest of the paper to illustrate different steps
of our approach. In this example, the goal is to model a

set of museum data sources using EDM (www.europeana.
eu/schemas/edm), AAC (www.americanartcollaborative.org/
ontology), SKOS (www.w3.org/2008/05/skos#), Dublin Core
Metadata Terms (purl.org/dc/terms), FOAF (xmlns.com/foaf/0.
1), ORE (www.openarchives.org/ore/terms), and ElementsGr2
(rdvocab.info/ElementsGr2) ontologies and then use the cre-
ated semantic models to publish their data as RDF [10].
Suppose that we want to model a data source contain-
ing data of artworks in the Indianapolis Museum of Art
(www.imamuseum.org). Figure 1 shows examples of the data
values in this source. We formally write this source as
s(title, label, image, type, artist) where s is the name of the
source and title, label, image, type, and artist are names of
the source attributes (columns).

Fig. 1. The source s(title, label, image, type, artist) contains information
about artworks in the Indianapolis Museum of Art.

First, we must determine the semantic type of each source
attribute. For example, the attribute title declares the title of
a cultural heritage object and the attribute artist specifies the
name of a person. Then, we need to identify the relationships
between the classes used to model the attributes. Unless the
relationship between the person and the cultural heritage object
is explicitly specified, we do not know whether the person
is the creator, sitter, or copyrights holder of the object. The
precise semantic model of s is depicted in Figure 2.

A semantic model of the source s, sm(s), is a directed graph
containing two types of nodes. Class nodes (ovals in Figure 2)
correspond to classes in the ontology and are labeled with class
URIs. Data nodes (rectangles in Figure 2) correspond to the
source attributes and are labeled with the attribute names. The
links in the graph correspond to ontology properties and are
labeled with property URIs.

aac:CulturalHeritageObject

aac:Person

dcterms:creator

label

dcterms:description

skos:Concept

dcterms:hasType

title

dcterms:title

artist

ElementsGr2:nameOfThePerson

type

skos:prefLabel

edm:EuropeanaAggregation

edm:aggregatedCHO

edm:WebResource

edm:hasView

image

rdf:type

Fig. 2. Semantic model of the source s. Class nodes and links are labeled
with URIs (prefixed by the ontology namespace).

Automatically building a semantic model for a new source
is difficult. Machine learning methods can help us in assigning
semantic types to the attributes, however, these methods are
error prone when similar data values have different semantic
types. Extracting the relationships between the attributes is

a more complicated problem. There might be multiple paths
connecting two classes in the ontology and we do not know
which one models the intended meaning of the data.

aac:CulturalHeritageObject

creationDate

dcterms:created

aac:Person

dcterms:creator

skos:Concept

dcterms:hasType

title

dcterms:title

name

ElementsGr2:nameOfThePerson

birthDate

ElementsGr2:dateOfBirth

deadDate

ElementsGr2:dateOfDeath

type

skos:prefLabel

aac-ont:CulturalHeritageObject

dimensions

dcterms:extent

materials

dcterms:medium

copyright

dcterms:rights

name

dcterms:title

edm:EuropeanaAggregation

edm:aggregatedCHO

edm:WebResource

edm:hasView

imageUrl

rdf:type

s2(name, copyright, materials, dimensions, imageUrl)

s1(title, creationDate, name, birthDate, deathDate, type)

Fig. 3. Semantic models of s1 (artworks at Dallas Museum) and s2 (artworks
at The Metropolitan Museum of Art).

In general, the ontology defines a large space of pos-
sible semantic models and without additional information,
we do not know which one describes the source more
precisely. In this work, we present a scalable approach
that exploits the knowledge of previously modeled sources
to limit the search space and to hypothesize correct se-
mantic models. The main idea is that data sources in the
same domain usually provide overlapping data. Therefore,
we can leverage attribute relationships in known semantic
models to hypothesize attribute relationships for new sources.
Assume that before modeling the source s, we have al-
ready modeled two other museum sources s1(title, creation-
Date, name, birthDate, deathDate, type), which contain
data of artworks in the Dallas Museum of Art (www.-
dma.org) and s2(name, copyright,materials, dimensions,-
imageUrl), which has data of artworks in The Metropolitan
Museum of Art (www.metmuseum.org). Figure 3 illustrates
the semantic models of these two data sources. In the next
section, we explain how our approach uses these known
models to learn a semantic model for the source s.

III. LEARNING SEMANTIC MODELS

The problem of learning semantic models of data sources
can be stated as follows. Let O be the domain ontology1 and
{sm(s1), sm(s2), · · · , sm(sn)} is a set of known semantic
models corresponding to the data sources {s1, s2, · · · , sn}.
Given sample data from a new source s(a1, a2, · · · , an), our
goal is to automatically compute a semantic model sm(s) that
captures the intended meaning of the source s.

Our approach to learn a semantic model for a new source
has four steps: (1) Using sample data from the new source,

1O can be a set of ontologies. In our example, O consists of the EDM,
AAC, SKOS, Dublin Core, FOAF, ORE, and ElementsGr2 ontologies.

learn the semantic types of the source (2) Construct a graph
with the known source models, augmented with paths connect-
ing the the learned semantic types in the domain ontology. (3)
Compute the candidate mappings from the semantic types to
the nodes of the graph. (4) Finally, build a candidate semantic
model for each mapping, and rank the candidate models.

This work has two major contributions compared to our
previous work on learning semantic models of data sources
[8]. First, we consider uncertainty in learning the semantic
types: we assume that for each source attribute we are given
a set of candidate semantic types along with their confidence
values rather than a single, correct semantic type. The second
and main contribution of this paper is a search algorithm to
find the good candidate mappings between the semantic types
and the nodes of the graph. The algorithm scores the mappings
as we map the semantic types to the nodes of the graph and
eliminates the mappings that are less likely to generate good
semantic models later. This algorithm enables our approach
to handle both the uncertainty of semantic types and sources
with a large number of attributes. Next we describe the overall
approach, focusing on new parts and only providing high level
descriptions of what is common to our previous work.

A. Learning Semantic Types of Source Attributes

The first step to model a source, which follows our previous
work, is to recognize the semantic types of its data. The ob-
jective of this step is mapping the attributes to the concepts of
the domain ontology. We formally define a semantic type to be
either an ontology class 〈class uri〉 or a pair consisting of a
data property and its domain class 〈class uri, property uri〉.
We assign a class to attributes whose values are URIs and
assign a domain/data property pair to attributes containing
literal values. For example, the semantic types of the attributes
image and type in s are respectively 〈edm:WebResource〉
and 〈skos:Concept, skos: prefLabel〉.

To learn semantic types, our algorithm uses a supervised
machine learning technique [9] based on Conditional Random
Fields (CRF) [11] with features extracted from the attribute
names and sample data from the new source. A CRF model
is useful for this problem because it can handle large numbers
of features and learn from a small number of examples.

Once we apply this method, it generates a set of candidate
semantic types for each source attribute, each with a
confidence value. Our algorithm then selects the top k
semantic types for each attribute as an input to the next
step of the process. Thus, the output of the labeling step for
s(a1, a2, · · · , an) is T = {(tp11

11 , · · ·, tp1k

1k), · · ·, (tpn1

n1 , · · ·,
tpnk

nk)}, where in tpij

ij , tij is the jth semantic type learned for
the attribute ai and pij is the associated confidence value
which is a decimal value between 0 and 1. Considering
k = 2, we will have the following output after labeling the
attributes of the source s(title, label, image, type, artist):

title→ (〈aac:CulturalHeritageObject, dcterms: title〉0.19,
〈aac:CulturalHeritageObject, rdfs: label〉0.08)

label→ (〈aac:CulturalHeritageObject, dcterms: description〉0.7,

〈aac:Person,ElementsGr2:note〉0.03)
image→ (〈edm:WebResource〉0.58, 〈foaf :Document〉0.41)
type→ (〈skos:Concept, skos: prefLabel〉0.82,

〈skos:Concept, rdfs: label〉0.15)
artist→ (〈foaf :Person, foaf :name〉0.27,

〈aac:Person,ElementsGr2:nameOfThePerson〉0.19)

As we can see in the output, the machine learning method
prefers 〈foaf :Person, foaf :name〉 for the semantic type of
the attribute artist, while according to the correct model (Fig-
ure 2), 〈aac:Person,ElementsGr2:nameOfThePerson〉
is the correct semantic type. We will show later how our
approach recovers the correct semantic type by considering
coherence of structure in computing the semantic models.

B. Building A Graph from Known Semantic Models, Semantic
Types, and Domain Ontology

So far, we have annotated the attributes of s with semantic
types. To build a complete semantic model we still need to
determine the relationships between the attributes. We leverage
the knowledge of the known semantic models to discover the
most popular and coherent patterns connecting the semantic
types. The central component of our method is a directed
weighted graph G built on top of the known semantic models
and expanded using the semantic types T and the domain
ontology O. The algorithm we use to construct G is described
in detail in our past work [8] and here we only provide a brief
explanation.

Similar to a semantic model, G contains both class nodes
and data nodes and links. The links correspond to properties
in O and there are weights on the links. Constructing the
graph has three parts: adding the known semantic models
(sm(s1) and sm(s2) in our example); adding the semantic
types; and expanding the graph using the domain ontology
O (in our scenario, O is a set of ontologies including EDM,
AAC, SKOS, Dublin Core Metadata Terms, FOAF, ORE, and
ElementsGr2).

Adding Known Semantic Models: We add each known
semantic model as a new component to G if it is not a subgraph
of already added components. In our example, at the end
of this part, G will consist of two disconnected subgraphs
corresponding to sm(s1) and sm(s2). These components are
depicted using a gray background in Figure 4.

Adding Semantic Types: As mentioned before, we
have two kinds of semantic types: 〈class uri〉 and
〈class uri, property uri〉. For each learned semantic type t,
we search the graph to see whether G includes a match for
t. We say (u, v, e) is a match for t = 〈class uri〉 if u is a
data node, v is a class node with the label class uri, and e
is a link from u to v with the label rdf : type. For example,
in Figure 4, (n25, rdf : type, n18) is a match for the semantic
type 〈edm:WebResource〉. We say (u, v, e) is a match for
t = 〈class uri, property uri〉 if u is a class node with the
label class uri, v is a data node, and e is a link from u
to v with the label property uri. For example, in Figure 4,
(n4, skos: prefLabel, n11) is a match for the semantic type

〈skos:Concept, skos: prefLabel〉. We say t = 〈class uri〉
or t = 〈class uri, property uri〉 has a partial match in
G when we cannot find a full match for t but there is a
class node in G whose label matches class uri. For instance,
the semantic type 〈skos:Concept, rdfs: label〉 only has a
partial match in G (n4), because G does not contain the
link rdfs: label after adding the known models (when G only
includes the gray components).

For each semantic type t learned in the labeling step, we
add the necessary nodes and links to G to create a match or
complete existing partial matches. For example, for title →
〈aac:CulturalHeritageObject, dcterms: title〉, we do not
need to change G because the graph contains two matches:
(n1, n5, dcterms: title) and (n17, n24, dcterms: title). For
type → 〈skos:Concept, rdfs: label〉, we have only one
partial match (n4), thus, we add one data node (n13) and
one link (rdfs: label) from n4 to n13 in order to complete
the existing partial match. For image→ 〈foaf :Document〉,
there is neither a match nor a partial match. We add a class
node (n15), a data node (n19), and a link (rdf : type) from n19
to n15 to create a match. The nodes and the links that are
added in this step are shown with the blue color in Figure 4.

Adding Paths from the Ontology: We use the domain
ontology to find all the paths that relate the current class nodes
in G. We do this only for class nodes that do not belong
to the same pattern. The goal is to connect class nodes of
G using the direct paths or the paths inferred through the
subclass hierarchy in O. For instance, in Figure 4, there is the
link edm: aggregatedCHO from n14 to n1. We add this link
because the object property edm: aggregatedCHO is defined
with ore:Aggregation as domain and edm:ProvidedCHO
as range, and edm:EuropeanaAggregation is a subclass
of ore:Aggregation and aac:CulturalHeritageObject is
a subclass of edm:ProvidedCHO.

Assigning weights to the links of the graph is important
in our algorithm. We assign a very low weight ε to all the
links inside a component (black links in Figure 4). We assign
a high weight to all other links (blue and green links in
Figure 4). The intuition behind this decision is to produce
more coherent models later when we are generating candidate
semantic models for s. For the links that are outside a
component, we also take into account the link popularity. We
use a simple counting mechanism to assign lower weights (but
still very high compared to ε) to the links that appear more
frequently in the set of known semantic models. For example,
the link dcterms: creator from n17 to n3 has a lower weight
compared to the link dcterms: sitter from n17 to n3 because
dcterms: creator has appeared in one of the semantic models
(sm(s1)), but dcterms: sitter has not been seen before.

C. Mapping Semantic Types to the Graph

We use the graph built in the previous step to find the
relationships between the source attributes. First, we map the
source attributes to a subset of the nodes of the graph. Then,
we compute the minimal tree that connects those nodes (Sec-
tion III-D). To map the attributes of s to the nodes of G, we

search G to find the matches for the semantic types assigned
to the attributes. For example, the attribute type in s maps
to the nodes n4 and n11 because (n4, n11, skos: prefLabel)
is a match for 〈skos:Concept, skos: prefLabel〉, which is a
semantic type learned for the attribute type.

Since it is possible that a semantic type has more than
one match in G, more than one mapping m might exist
from the source attributes to the nodes. In our past work
[8], we generated all the possible mappings and then selected
the candidate mappings after sorting them based on a metric
called coherence. However, generating all the mappings is not
feasible in cases where we have a data source with many
attributes and learned semantic types have many matches in
the graph. The problem is worse when we have more than one
semantic type for each attribute. Suppose that we are modeling
the source s consisting of n attributes and we have learned k
semantic type for each attribute. If there are r matches for
each semantic type, we will have (k ∗ r)n mappings from
attributes(s) to nodes(G).

In this section, we present an algorithm that scores a
mapping as we map the attributes to the nodes of the graph
and removes the low score mappings after mapping each
attribute. In addition to coherence, we also take into account
the confidence values of the semantic types and the size of the
mappings in the scoring function. The inputs to the algorithm
are the learned semantic types T = {(tp11

11 , · · ·, tp1k

1k), · · ·,
(tpn1

n1 , · · ·, tpnk

nk)} for the attributes {a1, · · · , an} and the graph
G, and the output is a set of candidate mappings m from
attributes(s) to a subset of nodes(G). Algorithm 1 shows
the steps of our approach. The key idea is that instead of
generating all the mappings and then sorting them, we score
the partial mappings after processing each attribute and prune
the mappings with lower scores. In other words, we do not
wait until all the attributes are mapped. Instead, as soon as
we find the matches for the semantic types of an attribute, we
rank the partial mappings and keep the better ones. In this
way, the number of candidate mappings never exceeds a fixed
size after mapping each attribute.

The heart of the algorithm is the scoring function we use to
rank the partial mappings (line 24 in in Algorithm 1). We com-
pute three functions for each mapping m: confidence(m),
coherence(m), and sizeReduction(m). Then, we calculate
score(m) as the arithmetic mean of these three values. We
explain these functions using an example. Suppose that the
maximum number of the mappings we expand in each step
is 8 (max mappings in line 3). After mapping the second
attribute of the source s (label), we will have mappings = {
m1 : {title, label} → {n1, n5, n7},
m2 : {title, label} → {n1, n5, n3, n12},
m3 : {title, label} → {n1, n5, n17, n27}
m4 : {title, label} → {n1, n6, n7},
m5 : {title, label} → {n1, n6, n3, n12},
m6 : {title, label} → {n1, n6, n17, n27},
m7 : {title, label} → {n17, n24, n27},
m8 : {title, label} → {n17, n24, n3, n12},
m9 : {title, label} → {n17, n24, n1, n7},

Component 1

aac:CulturalHeritageObject

creationDate

dcterms:created

aac:Person

dcterms:creator

skos:Concept

dcterms:hasType

title

dcterms:title

title

rdfs:label

label

dcterms:description

name

ElementsGr2:nameOfThePerson

birthDate

ElementsGr2:dateOfBirth

deadDate

ElementsGr2:dateOfDeath

label

ElementsGr2:note

type

skos:prefLabel

type

rdfs:label

Component 2

aac-ont:CulturalHeritageObject

dimensions

dcterms:extent

materials

dcterms:medium

copyright

dcterms:rights

name

dcterms:title

title

rdfs:label

label

dcterms:description

edm:EuropeanaAggregation

edm:aggregatedCHO

edm:WebResource

edm:hasView

imageUrl

rdf:type

foaf:Person

artist

foaf:name

foaf:Document

image

rdf:type

dc
ter

ms:c
rea

tor

dcte
rm

s:s
itte

r foaf:page

foaf:page dcterms:contributer

dcterms:contributer

foaf:homepage

1

2

8 9 10

14

17

21 22 23 24 25

18

11

3 4
5 6

12

15

19

26 27

20

16

13

7edm:aggregatedCHO

Fig. 4. The graph constructed from the known semantic models sm(s1), sm(s2), semantic types, and a set of ontologies including EDM, AAC, SKOS,
Dublin Core Metadata Terms, FOAF, ORE, and ElementsGr2. For legibility, only a few of all the possible paths between the class nodes are shown.

Algorithm 1 GenerateCandidateMappings
Input: G(V,E),

attributes(s) = {a1, · · · , an}
T = {(tp1111 , · · ·, tp1k1k), · · ·, (tpn1

n1 , · · ·, tpnk
nk)}

Output: a set of candidate mappings m from attributes(s) to S ⊂ V

1: mappings ← {}
2: candidates ← {}
3: max mappings ← maximum number of mappings to expand
4: num of candidates ← number of candidate mappings
5: for each ai ∈ attributes(s) do
6: for each t

pij
ij ∈ (t

pi1
i1 , · · ·, tpikik) do

7: matches ← all the (u, v, e) in G matching tij
8: if mappings = {} then
9: for each (u, v, e) ∈ matches do

10: m ← ({ai} → {u, v})
11: mappings ← mappings ∪m
12: end for
13: else
14: for each m : X → Y ∈ mappings do
15: for each (u, v, e) ∈ matches do
16: m′ ← (X ∪ {ai} → Y ∪ {u, v})
17: mappings ← mappings ∪m′
18: end for
19: remove m from mappings
20: end for
21: end if
22: end for
23: if |mappings|> max mappings then
24: compute score(m) for each m ∈ mappings
25: sort items in mappings based on their score
26: keep top max mappings mappings and remove others
27: end if
28: end for
29: candidates ← top num of candidates items from mappings

return candidates

m10 : {title, label} → {n17, n26, n27},
m11 : {title, label} → {n17, n26, n3, n12},
m12 : {title, label} → {n17, n26, n1, n7} }

There are 4 matches for the attribute title: (n1, n5) and
(n17, n24) for the semantic type 〈aac:CulturalHeritage-
Object, dcterms: title〉 and (n1, n6) and (n17, n26) for the
semantic type 〈aac:CulturalHeritageObject, rdfs: label〉;

and 3 matches for the attribute label: (n1, n7) and
(n17, n27) for the semantic type 〈aac:CulturalHeritage-
Object, dcterms: description〉 and (n3, n12) for the semantic
type 〈aac:Person,ElementsGr2:note〉. This yields 4 ∗ 3 =
12 different mappings. Since max mappings = 8, we have
to eliminate four of these mappings. Now, we describe how
the algorithm ranks the mappings.

Confidence(m) is the arithmetic mean of the confidence
values associated with a mapping. For example, m1

is consisting of the matches for the semantic types
〈aac:CulturalHeritageObject, dcterms: title〉0.19 and
〈aac:CulturalHeritageObject, dcterms: description〉0.7.
Thus, confidence(m1) = 0.445.

Coherence(m) measures the largest number of nodes in a
mapping that belong to the same component. For instance,
coherence(m1) = 0.66 because two nodes out of three
nodes in m1 (n1 and n5) are from component 1, and
coherence(m3) = 0.5 because 2 is the largest number of
nodes in m3 that are from the same component. The goal of
defining the coherence is to give more priority to the models
containing larger segments from the known patterns.

Size Reduction: Since we prefer concise models, we seek
mappings with fewer nodes. If a mapping has n attributes, the
smallest possible size is l = n + 1 (when all the attributes
map to the same class node, e.g., m1) and the largest is u =
2∗n (when all the attributes map to different class nodes, e.g.,
m2). Thus, the possible size reduction in a mapping is u −
l. We define sizeReduction(m) = u−size(m)

u−l+1 as how much
the size of a mapping is reduced compared to the possible
size reduction. For example, sizeReduction(m1) = 0.5 and
sizeReduction(m2) = 0.

Score(m) is the arithmetic mean of confidence(m),
coherence(m), and sizeReduction(m). All these func-
tions have a value in [0, 1]. Here are the scores of the
12 mappings we mentioned before: score(m1) = 0.535,
score(m2) = 0.286, score(m3) = 0.315, score(m4) =
0.406, score(m5) = 0.185, score(m6) = 0.213,
score(m7) = 0.535, score(m8) = 0.203, score(m9) =
0.315, score(m10) = 0.380, score(m11) = 0.101,
score(m12) = 0.213. Therefore, m5, m6, m8, and m11 will
be removed from the mappings (line 26), and the algorithm
continues to the next iteration, which is mapping the next
attribute of the source s (image) to the graph. At the end, we
will have maximum max mappings mappings, each of them
will include all the attributes. We sort these mappings based
on their score and consider the top num of candidates
mappings as the candidates (line 29). In the next part of the
approach, we compute a semantic model for each of these
candidate mappings.

D. Generating and Ranking Semantic Models

Once we generated candidate mappings from the source
attributes to the nodes of the graph, we compute a semantic
model for each mapping and then rank the resulting models.
To compute a semantic model for a mapping m, we find a
minimum-cost tree in G that connects the nodes of m. This
problem is known as the Steiner Tree problem [12], [13].
Given an edge-weighted graph and a subset of the vertices,
called Steiner nodes, the goal is to find the minimum-weight
tree that spans all the Steiner nodes. The general Steiner
tree problem is NP-complete, thus, we use an approximation
algorithm [13] to compute the tree for each mapping m.
The inputs to the algorithm are the graph G and the nodes
of m (as Steiner nodes) and the output is a tree that we
consider it as a candidate semantic model for s. For example,
for the mapping m : {title, label, image, type, artist} →
{n1, n5, n7, n18, n25, n4, n11, n3, n10}, the resulting Steiner
tree is the correct semantic model of s shown in Figure 2.
The final step of our approach is ranking the semantic models
generated for the candidate mappings where we rank them
based on their cost (sum of the weights of the links). The
output is a ranked list of plausible semantic models for s.

It is important to note that considering coherence of
patterns in scoring the mappings and also ranking the fi-
nal semantic models enables our approach to compute the
correct semantic model in many cases where the first-
ranked semantic types are not the correct ones. For exam-
ple, the mapping m : {title, label, image, type, artist} →
{n1, n5, n7, n18, n25, n4, n11, n3, n10} that maps the at-
tribute artist to n3 and n10 using the semantic type
〈aac:Person,ElementsGr2:nameOfThePerson〉 will be
scored higher than the mapping m′ : {title, label, image,
type, artist} → {n1, n5, n7, n18, n25, n4, n11, n16, n20} that
maps this attribute to n16 and n20 using the semantic type
〈foaf :Person, foaf :name〉. The mapping m has lower
confidence value than m′, but it will be scored higher because
its coherence value is higher. The model computed from

the mapping m will also be ranked higher than the model
computed from m′, because it includes more links from known
patterns, thus resulting in a lower cost tree.

IV. EVALUATION

We evaluated our approach on a dataset of 29 museum
data sources containing data from different art museums in
the US. The total number of attributes for this dataset was
332 (on average 11 attributes per source). We applied our
approach on this dataset to find the candidate semantic models
for each source and then compared the best suggested models
(the first ranked models) with models created manually by
domain experts. The sources were modeled using the EDM,
AAC, SKOS, Dublin Core Metadata Terms, FOAF, ORE, and
ElementsGr2 ontologies.

We compare semantic models using precision and recall:

precision = rel(sm)∩rel(sm′)
rel(sm′) , recall = rel(sm)∩rel(sm′)

rel(sm)

where for a semantic model sm, rel(sm) is the set of
triples 〈u, e, v〉 in which e is a directed link from u
to v in sm. For example, for the semantic model in
Figure 2, rel(sm) = {〈edm:EuropeanaAggregation,
edm: aggregatedCHO, aac:CulturalHeritageObject〉,
〈edm:EuropeanaAggregation, edm:hasV iew,
edm:WebResource〉, 〈aac:CulturalHeritageObject,
dcterms: creator, aac:Person〉, · · ·}.

Assume that the correct semantic model of the source s is
sm and the semantic model learned by our approach is sm′.
We can prove that if all the nodes in sm have unique labels
and all the nodes in sm′ also have unique labels, rel(sm) =
rel(sm′) ensures that sm and sm′ are equivalent. However,
if the semantic models have more than one instance of an
ontology class, we will have nodes with the same label. In
this case, rel(sm) = rel(sm′) does not guarantee sm = sm′.
Many sources in our dataset have models that include two
instances of an ontology class. Therefore, before measuring
the precision and recall, we number the nodes having the same
label to assign them a unique label. For example, if we have
two nodes labeled with the class URI aac:Person in a model,
we change the labels to aac:Person1 and aac:Person2.

We ran three experiments: (1) We labeled each source
attribute with the correct semantic type. The goal was to
see how well our approach learns the attribute relationships
having the correct semantic types. (2) We applied the CRF
technique to learn the semantic types and then only considered
the semantic type with the highest confidence value (k = 1).
(3) We used CRF for labeling but instead of the top semantic
type, we considered the top four learned semantic types as the
candidate semantic types (k = 4).

In all experiments, we applied our method to learn a
semantic model for the source si, sm(si), assuming that the
semantic models of the other sources are known. To investigate
how the number of the known models influences the results,
we used variable number of known models as input. Suppose
that Mj is the set of known semantic models including j

models. Running the experiment with M0 means that we do
not use any knowledge other than the domain ontology and
running it with M28 means that the semantic models of all
other sources are known. For example, for s1, we ran the
code 29 times using M0 = {},M1 = {sm(s2)},M2 =
{sm(s2), sm(s3)}, · · · ,M28 = {sm(s2), · · · , sm(s29)}. We
used max mappings = 100 in our mapping algorithm and
then only considered the top 10 mappings as the candidate
mappings (num of candidates = 10). Figure 5 shows the
average precision and recall of all the learned semantic models
(sm′(s1), ..., sm′(s29)) for all the three experiments.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 4 8 12 16 20 24 28

Number of known semantic models

precision)(correct)types))

recall)(correct)types))

precision)(k=1))

recall)(k=1))

precision)(k=4))

recall)(k=4))

Fig. 5. Average precision and recall for the learned semantic models when:
the correct semantic type is known; only the top CRF suggested type is
considered (k=1); and the top four suggested types are considered (k=4).

The results show that the precision and recall increase
significantly even with a few known semantic models. When
all the attributes have the correct type, our approach can
learn relationships with high precision and recall. Obviously,
learning the correct semantic type for all the attributes is not
possible. As we can see in the graph, when we use the CRF
technique to learn the semantic types, the results are not as
good as when we know the correct types. In the case where
we only consider the top semantic type (k = 1), the average
precision and recall for most of the sources fall in [0.5, 0.6].
The reason is that for 38% of the attributes, the top learned
semantic type was not the correct semantic type. Nonetheless,
when we consider more than one semantic type (k = 4), we
can learn more accurate models. Given that still the correct
semantic type of 13% of the attributes was not among the top
four suggested semantic types, the results demonstrate that
our algorithm performs fairly well when there is uncertainty
is learning the semantic types.

To evaluate the running time of the approach, we measured
the time of running the algorithm (excluding the labeling step
and starting from building the graph) on a single machine
with a Mac OS X operating system and a 2.3 GHz Intel
Core i7 CPU. Figure 6 shows the average time (in seconds)
of learning the semantic models. We believe that the overall
time of the process can be further reduced by using parallel
programming and some optimizations in the implementation.
For example, the graph can be built incrementally. When a
new known model is added, we do not need to create the
graph from beginning. We just need to add a new component
to the existing graph and update the links.

We compared our new approach with the previous work [8]

0

1

2

3

4

0 4 8 12 16 20 24 28

Ti
m

e
(s

ec
on

ds
)

Number of known semantic models

k=1
k=4

Fig. 6. Average semantic model learning time, for k = 1 and k = 4.

to show that the new approach scales better. In this experiment,
we used k = 1 because the previous work was not able to
take into account more than one semantic type for each source
attribute. For each source, we applied both approaches to learn
a semantic model assuming that the semantic models of all
other sources are known (running both approaches with M28).

The previous approach could only learn a semantic model
for 2 out of 29 sources in the timeout of 1 hour. These two
sources only had 4 attributes. The reason is that the number of
mappings for sources that have more than a few attributes is
very large and it takes a long time to generate all of them. For
example, in modeling s16 with only 5 attributes, the number
of mappings was 16,633,298.

V. RELATED WORK

One of the basic approaches to data integration is building
a global schema and then defining every source as a view over
the global schema [1]. The core of this approach are source
descriptions that model the semantics of data sources as logical
mappings between the sources and the global schema. There
has been much work to automate the task of generating these
mappings. Some work [14], [15] only finds correspondences
between elements of the source and global schemas. This is
analogous to the semantic labeling step in our work, where
we use a machine learning technique [9] to learn candidate
semantic types for a source attribute. Every semantic type
maps an attribute to an element in the domain ontology (a class
or property in the domain ontology). Further work [16]–[19]
generates more complex mappings that express relationships.
However, they do not exploit the knowledge of previously
modeled sources as we do.

In the Semantic Web, the global model is an ontology that
defines the concepts and relationships within a domain. There
are many studies on mapping data sources to ontologies. Most
of this work [2]–[6] focus on semantic annotation, but is
limited in learning relationships. Carman and Knoblock [20]
use known source descriptions to generate a mapping for an
unknown target source. However, their approach was limited
to learning descriptions that were conjunctive combinations of
known source descriptions.

Our previous work on source modeling in Karma [7], [10],
[21] maps a source to an ontology interactively. The system
uses learned semantic types and a Steiner tree algorithm
to propose models to the user, who can correct them as
needed. Although Karma remembers new semantic type labels
assigned by the user, it does not learn from the structure of

previously modeled sources. This prompted our recent work
[8] to exploit the known semantic models to learn a semantic
model for a new unknown source. However, this approach
assumed that each source attribute was labeled with the correct
semantic type and failed to scale to sources with a large
number of attributes. The work we have presented addresses
these limitations. Our algorithm considers multiple possible
semantic types for each attribute and searches the space of
semantic models efficiently.

VI. DISCUSSION

We presented a scalable approach to learn semantic models
of structured data sources as a mapping from the source to a
domain ontology. The core idea is to exploit the knowledge of
previously learned semantic models to hypothesize a plausible
semantic model for a new source. We extend on previous work
[8] by allowing for uncertainty in learning semantic types and
by scaling to sources with many attributes. Our evaluation
shows that the new approach can learn semantic models for
data sources that the previous approach was not able to handle.

The first step in learning semantic models is learning the
semantic types in which we label each source attribute with a
class or property from the ontology. Here, we generalize the
previous work to deal with uncertainty in labeling the source
attributes. The output of the labeling step is a set of candidate
semantic types and their confidence values rather than one
fixed semantic type. This new extension is very important
because machine learning techniques often cannot distinguish
the types of the source attributes that have similar data values,
e.g., birthDate and deathDate.

Once we learned the semantic types, we create a graph
from known semantic models and augment it by adding the
nodes and the links corresponding to the semantic types and
adding the paths inferred from the ontology. The next step
is mapping the source attributes to the nodes of the graph
where we introduce a new algorithm that enables us to do
the mapping even when the source has many attributes. In
the new algorithm, after processing each source attribute, we
prune the existing mappings by scoring them and removing
the ones having lower scores. The proposed scoring function
not only contributes to the scalability of our method, but also
increases the accuracy of the learned models.

The final part of the approach is computing the minimal
tree that connects the nodes of the candidate mappings. This
step might be computationally inefficient if we have a very
large graph (e.g, when we have a large number of known
models) or/and the number of candidate mappings is very
large. Reducing the size of the graph is part of our future work
where we want to investigate the idea of constructing a more
compact graph by consolidating the overlapping segments
of the known semantic models. Regarding the number of
candidate mappings, our empirical evaluation showed that
the algorithm works very well even with a few number of
candidates (10 in our experiment).

Another direction of future work is to leverage the large
amount of data available in the Linked Open Data (LOD)

cloud to improve the quality of the automatically generated
models. LOD contains lots of resources connected to each
other using the relationships defined by different domain
ontologies. Performing record linkage between some of the
source data and the entities in the LOD, allows us to exploit
existing links between those entities to improve the accuracy
of our automatically-generated source models.

ACKNOWLEDGMENT

This research is based upon work supported in part by the
Intelligence Advanced Research Projects Activity (IARPA)
via Air Force Research Laboratory (AFRL) contract num-
ber FA8650-10-C-7058 and in part by the National Science
Foundation under award number IIS-1117913. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of IARPA, AFRL, NSF, or the U.S. Government.

REFERENCES

[1] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration.
Morgan Kauffman, 2012.

[2] V. Mulwad, T. Finin, and A. Joshi, “Semantic Message Passing for
Generating Linked Data from Tables,” in ISWC, 2013.

[3] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao,
and C. Wu, “Recovering Semantics of Tables on the Web,” Proc. VLDB
Endow., vol. 4, no. 9, pp. 528–538, 2011.

[4] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotating and Searching
Web Tables Using Entities, Types and Relationships,” PVLDB, vol. 3,
no. 1, pp. 1338–1347, 2010.

[5] A. P. Sheth, K. Gomadam, and A. Ranabahu, “Semantics Enhanced
Services: METEOR-S, SAWSDL and SA-REST,” IEEE Data Eng.
Bulletin, vol. 31, no. 3, pp. 8–12, 2008.

[6] V. Saquicela, L. M. V. Blázquez, and Ó. Corcho, “Lightweight Semantic
Annotation of Geospatial RESTful Services,” in ESWC, 2011.

[7] C. Knoblock, P. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman,
M. Muslea, M. Taheriyan, and P. Mallick, “Semi-Automatically Mapping
Structured Sources into the Semantic Web,” in ESWC, 2012.

[8] M. Taheriyan, C. A. Knoblock, P. Szekely, and J. L. Ambite, “A Graph-
based Approach to Learn Semantic Descriptions of Data Sources,” in
ISWC, 2013.

[9] A. Goel, C. A. Knoblock, and K. Lerman, “Exploiting Structure within
Data for Accurate Labeling Using Conditional Random Fields,” in Procs.
14th International Conference on Artificial Intelligence (ICAI), 2012.

[10] P. Szekely, C. A. Knoblock, F. Yang, X. Zhu, E. Fink, R. Allen, and
G. Goodlander, “Connecting the Smithsonian American Art Museum to
the Linked Data Cloud,” in ESWC, 2013.

[11] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data,” in
Procs. 18th International Conference on Machine Learning, 2001.

[12] P. Winter, “Steiner Problem in Networks - A survey,” Networks, vol. 17,
pp. 129–167, 1987.

[13] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner
Trees,” Acta Informatica, vol. 15, pp. 141–145, 1981.

[14] E. Rahm and P. Bernstein, “A Survey of Approaches to Automatic
Schema Matching,” VLDB Journal, vol. 10, no. 4, 2001.

[15] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos, “iMAP:
Discovering Complex Semantic Matches between Database Schemas,”
in SIGMOD, 2004.

[16] Z. Bellahsene, A. Bonifati, and E. Rahm, Schema Matching and Map-
ping, 1st ed. Springer, 2011.

[17] R. Fagin, L. M. Haas, M. A. Hernndez, R. J. Miller, L. Popa, and
Y. Velegrakis, “Clio: Schema Mapping Creation and Data Exchange,”
in Conceptual Modeling: Foundations and Applications, 2009.

[18] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan, “Designing and
Refining Schema Mappings via Data Examples,” in SIGMOD, 2011.

[19] Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos, “A Semantic
Approach to Discovering Schema Mapping Expressions,” in Procs. of
the 23rd International Conference on Data Engineering (ICDE), 2007.

[20] M. J. Carman and C. A. Knoblock, “Learning Semantic Definitions of
Online Information Sources,” Journal of Artificial Intelligence Research,
vol. 30, no. 1, pp. 1–50, Sep. 2007.

[21] M. Taheriyan, C. A. Knoblock, P. Szekely, and J. L. Ambite, “Rapidly
Integrating Services into the Linked Data Cloud,” in ISWC, 2012.

