
Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Learning the semantics of structured data sources
Mohsen Taheriyan ∗, Craig A. Knoblock, Pedro Szekely, José Luis Ambite
University of Southern California, Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

a r t i c l e i n f o

Article history:
Received 8 April 2015
Received in revised form
24 September 2015
Accepted 24 December 2015
Available online 11 January 2016

Keywords:
Knowledge graph
Semantic model
Semantic labeling
Semantic web
Ontology
Linked data

a b s t r a c t

Information sources such as relational databases, spreadsheets, XML, JSON, and Web APIs contain a
tremendous amount of structured data that can be leveraged to build and augment knowledge graphs.
However, they rarely provide a semantic model to describe their contents. Semantic models of data
sources represent the implicitmeaning of the data by specifying the concepts and the relationshipswithin
the data. Such models are the key ingredients to automatically publish the data into knowledge graphs.
Manually modeling the semantics of data sources requires significant effort and expertise, and although
desirable, building thesemodels automatically is a challenging problem. Most of the related work focuses
on semantic annotation of the data fields (source attributes). However, constructing a semantic model
that explicitly describes the relationships between the attributes in addition to their semantic types is
critical.

We present a novel approach that exploits the knowledge from a domain ontology and the semantic
models of previously modeled sources to automatically learn a rich semantic model for a new source.
This model represents the semantics of the new source in terms of the concepts and relationships defined
by the domain ontology. Given some sample data from the new source, we leverage the knowledge in
the domain ontology and the known semantic models to construct a weighted graph that represents the
space of plausible semantic models for the new source. Then, we compute the top k candidate semantic
models and suggest to the user a ranked list of the semantic models for the new source. The approach
takes into account user corrections to learn more accurate semantic models on future data sources. Our
evaluation shows that our method generates expressive semantic models for data sources and services
withminimal user input. These precisemodels make it possible to automatically integrate the data across
sources and provide rich support for source discovery and service composition. They alsomake it possible
to automatically publish semantic data into knowledge graphs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge graphs have recently emerged as a rich and
flexible representation of domain knowledge. Nodes in this graph
represent the entities and edges show the relationships between
the entities. Large companies such as Google andMicrosoft employ
knowledge graphs as a complement for their traditional search
methods to enhance the search results with semantic-search
information. Linked Open Data (LOD) is an ongoing effort in the
Semantic Web community to build a massive public knowledge
graph. The goal is to extend the Web by publishing various open
datasets as RDF on the Web and then linking data items to other
useful information from different data sources. With linked data,

∗ Corresponding author.
E-mail addresses: mohsen@isi.edu (M. Taheriyan), knoblock@isi.edu

(C.A. Knoblock), pszekely@isi.edu (P. Szekely), ambite@isi.edu (J.L. Ambite).

http://dx.doi.org/10.1016/j.websem.2015.12.003
1570-8268/© 2015 Elsevier B.V. All rights reserved.
starting from a certain point in the graph, a person or machine can
explore the graph to find other related data. The focus of this work
is the first step of publishing linked data, automatically publishing
datasets as RDF using a common domain ontology.

A large amount of data in LOD comes from structured
sources such as relational databases and spreadsheets. Publishing
these sources into LOD involves constructing source descriptions
that represent the intended meaning of the data by specifying
mappings between the sources and the domain ontology [1]. A
domain ontology is a formal model that represents the concepts
within a domain and the properties and interrelationships of those
concepts. In this context, what is meant by a source description is a
schemamapping from the source to an ontology.We can represent
this mapping as a semantic network with ontology classes as the
nodes and ontology properties as the links between the nodes. This
network, also called a semanticmodel, describes the source in terms
of the concepts and relationships defined by the domain ontology.
Fig. 1 depicts a semantic model for a sample data source including

http://dx.doi.org/10.1016/j.websem.2015.12.003
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2015.12.003&domain=pdf
mailto:mohsen@isi.edu
mailto:knoblock@isi.edu
mailto:pszekely@isi.edu
mailto:ambite@isi.edu
http://dx.doi.org/10.1016/j.websem.2015.12.003

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 153
Fig. 1. The semantic model of a sample data source containing information about
paintings.

information about somepaintings. Thismodel explicitly represents
the meaning of the data by mapping the source to the DBpedia1
and FOAF2 ontologies. Knowing this semantic model enables us to
publish the data in the table into the LOD knowledge graph.

One step in building a semantic model for a data source is
semantic labeling, determining the semantic types of its data fields,
or source attributes. That is, each source attribute is labeled with
a class and/or a data property of the domain ontology. In our
example in Fig. 1, the semantic types of the first, second, and
third columns are title of Artwork, name of Person, and label of
Museum respectively. However, simply annotating the attributes
is not sufficient. Unless the relationships between the columns are
explicitly specified, we will not have a precise model of the data.
In our example, a Person could be the owner, painter, or sculptor
of an Artwork, but in the context of the given source, only painter
correctly interprets the relationship between Artwork and Person.
In the correct semantic model, Museum is connected to Artwork
through the link museum. Other models may connect Museum to
Person instead of Artwork. For instance, Person could be president,
owner, or founder of Museum, or Museum could be employer or
workplace of Person. To build a semantic model that fully recovers
the semantics of the data, we need a second step that determines
the relationships between the source attributes in terms of the
properties in the ontology.

Manually constructing semantic models requires significant
effort and expertise. Although desirable, generating these models
automatically is a challenging problem. In SemanticWeb research,
there is much work on mapping data sources to ontologies
[2–13], but most focus on semantic labeling or are very limited in
automatically inferring the relationships. Our goal is to construct
semantic models that not only include the semantic types of
the source attributes, but also describe the relationships between
them.

In this paper, we present a novel approach that exploits the
knowledge from a domain ontology and known semantic models of
sources in the same domain to automatically learn a rich semantic
model for a new source. The work is inspired by the idea that
different sources in the same domain often provide similar or
overlapping data and have similar semantic models. Given sample
data from the new source, we use a labeling technique [14] to
annotate each source attribute with a set of candidate semantic
types from the ontology. Next, we build a weighted directed graph
from the known semantic models, learned semantic types, and
the domain ontology. This graph models the space of plausible

1 http://dbpedia.org/ontology.
2 http://xmlns.com/foaf/spec.
semantic models. Then, we find the most promising mappings
from the source attributes to the nodes of the graph, and for
each mapping, we generate a candidate model by computing the
minimal tree that connects themappednodes. Finally,we score the
candidate models to prefer the ones formed with more coherent
and frequent patterns.

This work builds on top of our previous work on learning
semantic models of sources [15,16]. The central data structure of
our approach to learn a semantic model for a new source is a
graph built on top of the known semantic models. In the previous
work, we add a new component to the graph for each known
semantic model. If two semantic models are very similar to each
other and they only differ in one link, for example, we will still
have two different components for them in the graph. The graph
grows as the number of known semantic models grows, which
makes computing the semantic models inefficient if we have a
large set of known semantic models. In this paper, we extend our
previous work to make it scale to a large number of semantic
models. We present a new algorithm that constructs a much more
compact graph by merging overlapping segments of the known
semantic models. The new technique significantly reduces the
size of the graph in terms of the number of nodes and links.
Consequently, it considerably decreases the number of possible
mappings from the source attributes to the nodes of the graph. It
also makes computing the minimal tree that connects the nodes
of the candidate mappings in the graph more efficient. The new
method to build the graph changes our algorithms to compute and
rank the candidate semantic models.

The main contribution of this paper is a scalable approach
that exploits the structure of the domain ontology and the
known semantic models to build semantic models of new sources.
We evaluated our approach on a set of museum data sources
modeled using two well-known data models in the cultural
heritage domain: Europeana Data Model (EDM) [17], and CIDOC
Conceptual Reference Model (CIDOC-CRM) [18]. A data model
standardizes how to map the data elements in a domain to a set
of domain ontologies. The evaluation shows that our approach
automatically generates high-quality semantic models that would
have required significant user effort to create manually. It also
shows that the semantic models learned using both the domain
ontology and the known models are approximately 70% more
accurate than the models learned with the domain ontology as the
only background knowledge. The generated semantic models are
the key ingredients to automate tasks such as source discovery,
information integration, and service composition. They can also
be formalized usingmapping languages such as R2RML[19], which
can be used for converting data sources into RDF and publishing
them into the Linked Open Data (LOD) cloud or any other
knowledge graph.

We have implemented our approach in Karma [20], our data
modeling and integration framework.3 Users can import data from
a variety of sources including relational databases, spreadsheet,
XML files and JSON files into Karma. They can also import the
domain ontologies they want to use for modeling the data. The
system then automatically suggests a semantic model for the
loaded source. Karma provides an easy to use graphical user
interface to let users interactively refine the learned semantic
models if needed. Once a semantic model is created for the new
source, users can publish the data as RDF by clicking a single
button. Szekely et al. [21] used Karma to model the data from
Smithsonian American Art Museum4 and then publish it into the

3 http://karma.isi.edu.
4 http://americanart.si.edu.

http://dbpedia.org/ontology
http://xmlns.com/foaf/spec
http://karma.isi.edu
http://americanart.si.edu

154 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
(a) dma(title, creationDate, name, type). (b) npg(name, artist, year, image).

(c) dia(title, credit, classification, name, imageURL).

Fig. 2. Sample data from three museum sources: (a) Dallas Museum of Art, (b) National Portrait Gallery, and (c) Detroit Institute of Art.
Linked Open Data cloud. Karma is also able to build semantic
models for Web services and then exploits the created semantic
models to build APIs that directly communicate at the semantic
level [22–24].

2. Motivating example

We explain the problem of learning semantic models by giving
a concrete example that will be used throughout this paper to
illustrate different steps of our approach. In this example, the
goal is to model a set of museum data sources using EDM,5
AAC,6 SKOS,7 Dublin Core Metadata Terms,8 FRBR,9 FOAF, ORE,10
and ElementsGr211 ontologies and then use the created semantic
models to publish their data as RDF [21]. Suppose that we
have three data sources. The first source is a table containing
information about artworks in the Dallas Museum of Art12 (Fig.
2(a)). We formally write the signature of this source as dma(title,
creationDate, name, type) where dma is the name of the source
and title, creationDate, name, and type are the names of the source
attributes (columns). The second source, npg, is a CSV file including
the data of some of the portraits in the National Portrait Gallery13
(Fig. 2(b)), and the third data source, dia, has the data of the
artworks in the Detroit Institute of Art14 (Fig. 2(c)).

Fig. 3 shows the correct semantic model of the sources dma,
npg, and dia created by experts in themuseum domain. A semantic
model of the source s, called sm(s), is a directed graph containing
two types of nodes. Class nodes (ovals) correspond to classes in
the ontology, and data nodes (rectangles) correspond to the source
attributes (labeled with the attribute names). The links in the
graph are associated with ontology properties. The particular link
karma:uri from a class node, which represents an ontology class, to
a data node, which represents a source attribute, denotes that the
attribute values are the URIs of the class instances. For instance, in
Fig. 3(b), the values of the column image in the source npg are the
URIs of the instances of the class edm:WebResource.

As discussed earlier, automatically building the semantic mod-
els is difficult. Machine learning methods can help us in assigning
semantic types to the attributes by looking into the attributes val-
ues, however, these methods are error prone when similar data

5 http://www.europeana.eu/schemas/edm.
6 http://www.americanartcollaborative.org/ontology.
7 http://www.w3.org/2008/05/skos#.
8 http://purl.org/dc/terms.
9 http://vocab.org/frbr/core.html.

10 http://www.openarchives.org/ore/terms.
11 http://rdvocab.info/ElementsGr2.
12 http://www.dma.org.
13 http://www.nationalportraitgallery.org.
14 http://www.dia.org.
values have different semantic types. For example, from just the
data values of the attribute creationDate in the source dma, it is hard
to say whether it is the creation date of aac:CulturalHeritageObject
or it is the birthdate of a aac:Person. Extracting the relationships be-
tween the attributes is a more complicated problem. There might
bemultiple paths connecting two classes in the ontology andwedo
not knowwhich one captures the intendedmeaning of the data. For
instance, there are several paths in the domain ontology connect-
ing aac:CulturalHeritageObject to aac:Person, but in the context of
the source dma, only the link dcterms:creator represents the correct
meaning of the source. As another example, the attributes artist
and name in the source npg are both labeled with name of Person,
nevertheless, how can we decide whether these two attributes are
different names of one person or they belong to two distinct indi-
viduals? In general, the ontology defines a large space of possible
semantic models and without additional context, we do not know
which one describes the source more precisely.

Now, assume that the correct semantic models of the sources
dma and npg are given. Can we leverage these known semantic
models to build a semantic model for a new source such as dia?
In the next section, we present a scalable and automated approach
that exploits the known semantic models sm(dma) and sm(npg) to
limit the search space and learn a semantic model sm(dia) for the
new source dia.

3. Learning semantic models

We now formally state the problem of learning semantic
models of data sources. Let O be the domain ontology15 and
{sm(s1), sm(s2), . . . , sm(sn)} is a set of known semantic models
corresponding to the data sources {s1, s2, . . . , sn}. Given sample
data from a new source s(a1, a2, . . . , am) called the target source,
in which {a1, a2, . . . , am} are the source attributes, our goal is to
automatically compute a semantic model sm(s) that captures the
intended meaning of the source s. In our example, sm(dma) and
sm(npg) are the known semantic models, and the source dia is the
new source for which we want to automatically learn a semantic
model.

The main idea is that data sources in the same domain usually
provide overlapping data. Therefore, we can leverage attribute
relationships in known semantic models to hypothesize attribute
relationships for new sources. One of the metrics helping us to
infer relationships between the attributes of a new source is the
popularity of the links between the semantic types in the set
of known models. Nevertheless, simply using link popularity to
connect a set of nodes would lead to myopic decisions that select
links that appear frequently in other models without taking into
account how these nodes are connected to other nodes in the given

15 O can be a set of ontologies.

http://www.europeana.eu/schemas/edm
http://www.americanartcollaborative.org/ontology
http://www.w3.org/2008/05/skos%23
http://purl.org/dc/terms
http://vocab.org/frbr/core.html
http://www.openarchives.org/ore/terms
http://rdvocab.info/ElementsGr2
http://www.dma.org
http://www.nationalportraitgallery.org
http://www.dia.org

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 155
(a) sm(dma): semantic model of the source dma. (b) sm(npg): semantic model of the source npg.

(c) sm(dia): semantic model of the source dia.

Fig. 3. Semantic models of the example data sources created by experts in the museum domain. Class nodes (ovals) and links correspond to classes and properties in the
ontology (prefixed by the ontology namespace). The particular link karma:uri in (b) simply means that the values of the attribute image in the source npg are the URIs of the
instances of the class edm:WebResource.
models. Suppose that we have a set of 5 known semantic models.
One of thesemodels contains the link painter between Artwork and
Person and the linkmuseum between Artwork andMuseum (similar
to the example in Fig. 1). The other 4models donot contain the type
Artwork, but they include the link founder from Museum to Person.
If a given new source contains the types Artwork, Museum, and
Person, just using the link popularity yields to an incorrect model.
Our approach takes into account the coherence of the patterns in
addition to their popularity, and this is more complicated to do.

Our approach to learn a semantic model for a new source has
four steps: (1) Using sample data from the new source, learn the
semantic types of the source attributes. (2) Construct a graph
from the known semantic models, augmented with nodes and
links corresponding to the learned semantic types and ontology
paths connecting nodes of the graph. (3) Compute the candidate
mappings from the source attributes to the nodes of the graph.
(4) Finally, build candidate semantic models for the candidate
mappings, and rank the generated models.

3.1. Learning semantic types of source attributes

The first step to model the semantics of a new source is
to recognize the semantic types of its data. We call this step
semantic labeling, which involves annotating the source columns
with classes or properties in an ontology. The objective of this
step is to assign semantic types to source attributes. We formally
define a semantic type to be either an ontology class ⟨class_uri⟩
or a pair consisting of a domain class and one of its data
properties ⟨class_uri,property_uri⟩. We use a class as a semantic
type for attributes whose values are URIs for instances of a class
and for attributes containing automatically-generated database
keys that can also be modeled as instances of a class. We use
a domain/data property pair as a semantic type for attributes
containing literal values. For example, the semantic types of
the attributes imageURL and classification in the source dia are
respectively ⟨edm:WebResource⟩ and ⟨skos:Concept ,skos:prefLabel⟩.

While syntactic information about data sources such as
attribute names or attribute types (string, int, date, . . .) may give
the system some hints to discover semantic types, they are often
not sufficient, e.g., name of the first field in the source dia is title
and we do not know whether this is a title of a book, song, or
an artwork. Moreover, in many cases, attribute names are used in
abbreviated forms, e.g., dob rather than birthdate.

We employ the technique proposed by Krishnamurthy et al.
[14] to learn semantic types of source attributes. Their approach
focuses on learning the semantic types from the data rather than
the attribute names. It learns a semantic labeling function from a
set of sources that have been manually labeled. When presented
with a new source, the learned semantic labeling function can
automatically assign semantic types to each attribute of the new
source. The training data consists of a set of semantic types and
each semantic type has a set of data values and attribute names
associated with it. Given a new set of data values from a new
source, the goal is to predict the top k candidate semantic types
along with confidence scores using the training data.

If the data values associated with a source attribute ai are
textual data, the labeling algorithm uses the cosine similarity
between TF/IDF vectors of the labeled documents and the input
document to predict candidate semantic types. The set of data
values associated with each textual semantic type in the training
data is treated as a document, and the input document consists of
the data values associatedwith ai. For attributeswith numeric data,
the algorithm uses statistical hypothesis testing [25] to analyze the
distribution of numeric values. The intuition is that the distribution

156 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
Table 1
Top two learned semantic types for the attributes of the source dia.

Attribute Candidate semantic types

title ⟨aac:CulturalHeritageObject, dcterms:title⟩0.49

⟨aac:CulturalHeritageObject, rdfs:label⟩0.28

credit ⟨aac:CulturalHeritageObject, dcterms:provenance⟩0.83

⟨aac:Person, ElementsGr2:note⟩0.06

classification ⟨skos:Concept, skos:prefLabel⟩0.58

⟨skos:Concept, rdfs:label⟩0.41

name ⟨aac:Person, foaf :name⟩0.65

⟨foaf :Person, foaf :name⟩0.32

imageURL ⟨foaf :Document⟩0.47

⟨edm:WebResource⟩0.40

of values in each semantic type is different. For example, the
distribution of temperatures is likely to be different from the
distribution of weights. The training data here consists of a set of
numeric semantic types and each semantic type has a sample of
numeric data values. At prediction time, given a new set of numeric
data values (query sample), the algorithm performs statistical
hypothesis tests between the query sample and each sample in the
training data.

Once we apply this labeling method, it generates a set of
candidate semantic types for each source attribute, each with a
confidence value. Our algorithm then selects the top k semantic
types for each attribute as an input to the next step of the process.
Thus, the output of the labeling step for s(a1, a2, . . . , am) is T =
{(tp1111 , . . . , tp1k1k), . . . , (tpm1

m1 , . . . , tpmk
mk)}, where in t

pij
ij , tij is the jth

semantic type learned for the attribute ai and pij is the associated
confidence valuewhich is a decimal value between 0 and 1. Table 1
lists the candidate semantic types for the source dia considering
k = 2.

As we can see in Table 1, the semantic labeling method
prefers ⟨foaf :Document⟩ for the semantic type of the attribute
imageURL, while according to the correct model (Fig. 3(c)),
⟨edm:WebResource⟩ is the correct semantic type. We will show
later how our approach recovers the correct semantic type by
considering coherence of structure in computing the semantic
models.

3.2. Building a graph from known semantic models, semantic types,
and domain ontology

So far, we have tagged the attributes of dia with a set of
candidate semantic types. To build a complete semantic model we
still need to determine the relationships between the attributes.
We leverage the knowledge of the known semantic models to
discover the most popular and coherent patterns connecting the
candidate semantic types.

The central component of our method is a directed weighted
graph G built on top of the known semantic models and expanded
using the semantic types T and the domain ontology O. Similar to
a semantic model, G contains both class nodes and data nodes and
links. The links correspond to properties inO and there areweights
on the links. Algorithm 1 shows the steps to build the graph. Our
algorithm has three parts: (1) adding the known semantic models,
sm(dma) and sm(npg) (Algorithm2); (2) adding the semantic types
learned for the target source (Algorithm 3); and (3) expanding the
graph using the domain ontology O (Algorithm 4).
Adding known semantic models: Suppose that we want to add
sm(si) to the graph. If the graph is empty, we simply add all the
nodes and links in sm(si) to G, otherwise we merge the nodes
and links of sm(si) into G by adding the nodes and links that do
Algorithm 1 Construct Graph G = (V , E)

Input:
- Known Semantic Models M = {sm1, . . . , smn},
- Attributes(s) A = {a1, . . . , am}
- Semantic Types T = {(tp1111 , . . ., tp1k1k), . . ., (tpm1

m1 , . . ., tpmk
mk)}

- Ontology O
Output: Graph G = (V , E)

1: AddKnownModels(G,M)
2: AddSemanticTypes(G,T)
3: AddOntologyPaths(G,O)

return G

not exist in G. When adding a new node or link, we tag it with
a unique identifier (e.g., si, name of the source) indicating that
the node/link exist in sm(si). If a node or link already exists in
the graph, we just add the identifier si to its tags. The nodes and
the links that are added in this step are shown with the black
color in Fig. 4. In order to easily refer to the nodes of the figure
in the text, we assign a unique name to each node. The name
of a node is written with small font at the left side of the node.
For example, the node with the label edm:EuropeanaAggregartion
is named n1. The orange and green tags below the labels of the
black links are the identifiers indicating the semantic model(s)
supporting the links. For instance, the link dcterms:creator from n2
(aac:CulturalHeritageObject) to n7 (aac:Person) is tagged with both
dma and npg, because it exists in both sm(dma) and sm(npg). For
readability, we have not put the tags of the nodes in Fig. 4.

Although merging a semantic model into G looks straightfor-
ward, there are difficulties when the semantic model or the graph
include multiple class nodes with the same label. Suppose that G
already includes two class nodes v1 and v2 both labeledwith Person
connected by the link isFriendOf. Now, we want to add a semantic
model including the linkworksFor from Person to Organization. As-
suming G does not have a class node with the label Organization,
we add a new class node v3 to G. Now, the question is where to
put the link worksFor, between v1 and v3, or v2 and v3. One op-
tion is to duplicate the link by adding a link between each pair and
then assign different tags to the added links. This approach slows
down the process of building the graph, and because it can yield a
graph with a large number of links, our algorithm to compute the
candidate semantic models would be inefficient too. Therefore, we
adopt a different strategy; if there is more than one node in the
graph matching a node in the semantic model, we select the one
havingmore tags. This heuristic creates amore compact graph and
makes the whole algorithm faster, while not having much impact
on the results.

Algorithm 2 illustrates the details of our method to add a
semantic model sm(si) to G:
1. [line 2]: Let H be a HashMap keeping the mappings from the

nodes in sm(si) to the nodes in G. The key of each entry in H is
a node in sm(i) and its value is a node in G.

2. [lines 3–13]: For each class node v in sm(si), we search the graph
to see if G includes a class node with the same label. If no such
node exists in the graph,we simply add anewnode to the graph.
It is possible that sm(si) contains multiple class nodes with the
same label, for instance, a model including the link isFriendOf
from one Person to another Person. In this case, we make sure
thatG also has at least the same number of class nodeswith that
label. For example, ifG only has one Person, we add another class
node with the label Person. Once we added the required class
nodes to the graph, we map the class nodes in the model to the
class nodes in the graph. If G has multiple class nodes with the
same label, we select the one that is tagged by larger number
of known semantic models. We add an entry to H with v as the
key and the mapped node (v′) as the value.

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 157
Fig. 4. The graph G after adding the known semantic models sm(dma) and sm(npg). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Algorithm 2 Add Known Semantic Models to G
1: function AddKnownModels(G,M)

2: H = HashMap⟨node, node⟩
◃ H keys: nodes in smi
◃ H values: matched nodes in G

3: for each smi ∈ M do
4: for each class node v in smi do
5: lv← label of v
6: c1← number of class nodes in smi with label lv
7: c2← number of class nodes in Gwith label lv
8: add (c1 − c2) class nodes with label lv to G
9: matched_nodes← class nodes with label lv in G

10: unmapped_nodes←matched_nodes− values(H)
11: v′ ← the node with largest tag set in

unmapped_nodes
12: add ⟨v, v′⟩ to H
13: end for

14: for each link e from a class node u to a data node v in smi
do

15: le← label of e
16: u′← H(u)
17: if u′ has an outgoing link with label le then
18: v′← target of the link with label le
19: else
20: add a new data node v′ to G
21: end if
22: add ⟨v, v′⟩ to H
23: end for

24: wl← 1
25: for each link e from u to v in smi do
26: u′← H(u)
27: v′← H(v)
28: if there is e′ from u′ to v′ with le′ = le in G then
29: tagse′← tagse′ ∪ smi
30: weight(e′)←wl − |tagse′ |/(i+ 1)
31: else
32: add the link e′ from u′ to v′ with le′ = le to G
33: tagse′← smi
34: weight(e′)←wl
35: end if
36: end for
37: end for

38: end function

3. [lines 14–23]: For each link e = (u, v) in sm(si) where v is a
data node, we search the graph to see if there is a match for this
pattern.We first useH to find the node u′ inG towhich the node
u is mapped. If u′ does not have any outgoing link with a label
equal to the label of e, we add a new data node v′ to G. We add
v and its mapped data node v′ to H .

4. [lines 24–37]: For each link e = (u, v) in sm(si), we find the
nodes in G to which u and v are mapped (say u′ and v′). If G
includes a link with the same label as the label of e between
u′ and v′, we only add si to the tags associated with the link.
Otherwise, we add a new link to the graph and tag it with si.

Adding semantic types: Once the known semantic models are
added to G, we add the semantic types learned for the attributes
of the target source. As mentioned before, we have two kinds of
semantic types: ⟨class_uri⟩ for attributes whose data values are
URIs and ⟨class_uri,property_uri⟩ for attributes that have literal
data. For each learned semantic type t , we search the graph to see
whether G includes amatch for t .

• t = ⟨class_uri⟩: We say (u, v, e) is a match for t if u is a
class node with the label class_uri, v is a data node, and e
is a link from u to v with the label karma:uri. For example,
in Fig. 4, (n3,n9,karma:uri) is a match for the semantic type
⟨edm:WebResource⟩.
• t = ⟨class_uri,property_uri⟩: We say (u, v, e) is a match

for t if u is a class node labeled with class_uri, v is a data
node, and e is a link from u to v labeled with property_uri. In
Fig. 4, (n6,n10,skos:prefLabel) is a match for the semantic type
⟨skos:Concept ,skos:prefLabel⟩.

We say t = ⟨class_uri⟩ or t = ⟨class_uri,property_uri⟩ has a
partial match in Gwhen we cannot find a full match for t but there
is a class node in Gwhose label matches class_uri. For instance, the
semantic type ⟨skos:Concept ,rdfs:label⟩ only has a partial match in
G, because G contains a class node labeled with skos:Concept (n6),
but this class node does not have an outgoing link with the label
rdfs:label.

Algorithm 3 shows the function that adds the learned semantic
types to the graph G. For each semantic type t learned in the
labeling step, we add the necessary nodes and links to G to
create a match or complete existing partial matches. Consider
the semantic types learned for the source dia (Table 1). Fig. 5
illustrates the graph G after adding the semantic types. The nodes
and the links that are added in this step are depicted with the
blue color. For ⟨aac:CulturalHeritageObject ,dcterms:title⟩, we do not
need to change G, because the graph already contained onematch:
(n2,n5,dcterms:title). The semantic type ⟨skos:Concept ,rdfs:label⟩
only had one partial match (n6), thus, we add one data node (n18
with a label equal to the name of the corresponding attribute) and
one link (rdfs:label from n6 to n18) in order to complete the existing

158 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
Fig. 5. The graph G after adding the nodes and the links corresponding to the semantic types (shown in blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Algorithm 3 Add Semantic Types to G
1: function AddSemanticTypes(G,T)

2: for each ai ∈ attributes(s) do
3: for each t

pij
ij ∈ (tpi1i1 , . . ., tpikik) do

4: if tij = ⟨class_uri⟩ then
5: lv← class_uri
6: le← ‘‘karma: uri’’
7: else if tij = ⟨class_uri, property_uri⟩ then
8: lv← class_uri
9: le← property_uri

10: end if
11: if no node in G has the label lv then
12: add a new node v with the label lv in G
13: end if
14: Vmatch← all the class nodes with the label lv
15: wh← |E|
16: for each v ∈ Vmatch do
17: if v does not have an outgoing link labeled le then
18: add a data node w with the label ai to G
19: add a link e = (v, w) with the label le
20: weight(e)←wh
21: end if
22: end for
23: end for
24: end for

25: end function

partial match. The semantic type ⟨foaf :Document⟩ had neither a
match nor a partial match. We add a class node (n15), a data node
(n17), and a link between them (karma:uri from n15 to n17) to create
a match.
Adding paths from the ontology: We use the domain ontology to
find all the paths that relate the current class nodes inG (Algorithm
4). The goal is to connect class nodes of G using the direct paths
or the paths inferred through the subclass hierarchy in O. The
final graph is shown in Fig. 6. We connect two class nodes in the
graph if there is an object property or subClassOf relationship that
connects their corresponding classes in the ontology. For instance,
in Fig. 6, there is the link ore:aggregates from n1 to n2. This link
is added because the object property ore:aggregates is defined
with ore:Aggregation as domain and ore:AggregatedResource as
range, and edm:EuropeanaAggregation is a subclass of the class
ore:Aggregation and aac:CulturalHeritageObject is a subclass of
edm:ProvidedCHO, which is in turn a subclass of the class
ore:AggregatedResource. As another example, the reason why n1
is connected to n15 is that the property foaf:page is defined from
owl:Thing to foaf:Document in the FOAF ontology. Thus, a link with
Algorithm 4 Add Ontology Paths to G
1: function AddOntologyPaths(G,O)

2: for each pair of class nodes u and v in G do
3: c1← ontology class with uri = lu
4: c2← ontology class with uri = lv
5: P(c1,c2)← all the direct and inferred properties (includ-

ing rdfs:subClassOf) from c1 to c2 in O
6: wh← |E|
7: for each property p ∈ P do
8: le← uri of the property p
9: if there is no link with label le from u to v then

10: add a link e = (u, v) with label le to G
11: weight(e)←wh
12: end if
13: end for
14: end for

15: end function

the label foaf:pagewould exist fromeach class node inG ton15 since
all classes are subclasses of the class owl:Thing. Depending on the
size of the ontology, many nodes and links may be added to the
graph in this step. To make the figure readable, only a few of the
added nodes and links are illustrated in Fig. 6 (the ones with the
red color).

In cases where G consists of disconnected components, we add
a class node with the label owl:Thing to the graph and connect the
class nodes that do not have any parent to this root node using
a rdfs:subClassOf link. This converts the original graph to a graph
with only one connected component.

The links in the graph G are weighted. Assigning weights to
the links of the graph is very important in our algorithm. We can
divide the links in G into two categories. The first category includes
the links that are associated with the known semantic models
(black links in Fig. 6). The other group consists of the links added
from the learned semantic types or the ontology (blue and red
links) which are not tagged with any identifier. The basis of our
weighting function is to assign a much lower weight to the links
in the former group compared to the links in the latter group. If
wl is the default weigh of a link in the first group and wh is the
default weight of a link in the second group, wewill havewl ≪ wh.
The intuition behind this decision is to produce more coherent
models in the next step when we are generating minimum-cost
semantic models (Section 3.4). Our goal is to give more priority to
the models containing larger segments from the known patterns.
One reasonable value for wh is wl ∗ |E| in which |E| is the number
of links in G. This formula ensures that even a long pattern from a

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 159
Fig. 6. The final graph G after adding the paths from the domain ontologies. For legibility, only a few of all the possible paths between the class nodes are shown (drawn
with the red color). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
known semantic model will cost less than a single link that does
not exist in any known semantic model.

One factor that we consider in weighting the links coming from
the known semantic models (black links) is the popularity of the
links, i.e., the number of known semantic models supporting that
link. We assign (wl − x/(n + 1)) to each black link where n is
the number of known semantic models and x is the number of
identifiers the link is tagged with. Suppose that we use wl = 1
in our example. Since our graph in Fig. 6 has a total of 26 links, we
will have wh = wl ∗ |E| = 26. In Fig. 6, the link edm:hasView from
n1 to n3 will be weighted with 0.66 because it is only supported
by sm(npg) (n = 2, x = 1). The weight of the link dcterms:creator
from n2 to n7 will be 0.33 since both sm(dma) and sm(npg) contain
that link (the link has two tags).

We assign wh to the links that are not associated with the
knownmodels (blue and red links, which do not have a tag). There
is only a small adjustment for the links coming from the ontology
(red links). We prioritize direct properties over inherited prop-
erties by assigning a slightly higher weight (wh + ϵ) to the in-
herited ones. The rationale behind this decision comes from this
observation that the direct properties (more specific) are more
likely to be used in the semantic models than the inherited prop-
erties (more general). For instance, the red link aac:sitter from
n2 to n7 will be weighted with wh = 26, because its definition
in the ontology AAC has aac:CulturalHeritageObject as domain
and aac:Person as range. In other hand, the weight of the link
ore:aggregates from n1 to n2 will be 26.01 (assume ϵ = 0.01)
since the domain of ore:aggregates in the ontology ORE is the
class ore:Aggregation (which is a superclass of edm:Europeana
Aggregation) and its range is the class ore:AggregatedResource
(which is a superclass of aac:CulturalHeritageObject).

3.3. Mapping source attributes to the graph

Weuse the graph built in the previous step to infer the relation-
ships between the source attributes. First, we find mappings from
the source attributes to a subset of the nodes of the graph. Then,
we use these mappings to generate and rank candidate semantic
models. In this section, we describe the mapping process, and in
Section 3.4, we talk about computing candidate semantic models.

To map the attributes of a source to the nodes of G (Fig. 6), we
search G to find the nodes matching the semantic types associated
with the attributes. For example, the attribute classification in dia
maps to {n6, n10} and {n6, n18}, corresponding to the semantic
types ⟨skos:Concept ,skos:prefLabel⟩ and ⟨skos:Concept ,rdfs:label⟩,
respectively.
Since each attribute has been annotated with k semantic types
and also each semantic type may have more than one match in
G (e.g., ⟨aac:Person,foaf :name⟩ maps to {n7, n11} and {n8, n12}),
more than one mapping m might exist from the source attributes
to the nodes of G. Generating all the mappings is not feasible
in cases where we have a data source with many attributes and
the learned semantic types have many matches in the graph.
The problem becomes worse when we generate more than one
candidate semantic type for each attribute. Suppose that we are
modeling the source s consisting of n attributes and we have
generated k semantic types for each attribute. If there are r matches
for each semantic type, we will have (k ∗ r)n mappings from the
source attributes to the nodes of G.

We present a heuristic search algorithm that explores the space
of possible mappings as we map the semantic types to the nodes
of the graph and expands only the most promising mappings.
The algorithm scores the mappings after processing each attribute
and removes the low score ones. Our scoring function takes
into account the confidence values of the semantic types, the
coherence of the nodes in the mappings, and the size of the
mappings. The inputs to the algorithm are the learned semantic
types T = {(tp1111 , . . . , tp1k1k), . . . , (tpm1

m1 , . . . , tpmk
mk)} for the attributes

of the source s(a1, a2, . . . , am) and the graph G, and the output
is a set of candidate mappings m from the source attributes
to a subset of the nodes in G. The key idea is that instead of
generating all the mappings (which is not feasible), we score the
partial mappings after processing each attribute and prune the
mappings with lower scores. In other words, as soon as we find
the matches for the semantic types of an attribute, we rank the
partial mappings and keep the better ones. In this way, the number
of candidatemappings never exceeds a fixed size (branching factor)
after mapping each attribute.

Algorithm 5 shows our mapping process. The heart of
the algorithm is the scoring function we use to rank the
partial mappings (line 22 in Algorithm 5). We compute three
functions for each mapping m: confidence(m), coherence(m), and
sizeReduction(m). Then, we calculate the final score score(m) by
combining the values of these three functions. We explain these
functions using an example. Suppose that themaximumnumber of
the mappings we expand in each step is 2 (branching_factor = 2).
After mapping the second attribute of the source dia (credit), we
will have:mappings = {

m1: {title, credit} → {(n2, n5), (n2, n13)},
m2: {title, credit} → {(n2, n5), (n7, n19)},
m3: {title, credit} → {(n2, n5), (n8, n20)},
m4: {title, credit} → {(n2, n14), (n2, n13)},

160 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
Algorithm 5 Generate Candidate Mappings
Input:

- G(V , E),
- attributes(s) = {a1, . . . , am}
- T = {(tp1111 , . . ., tp1k1k), . . ., (tpm1

m1 , . . ., tpmk
mk)}

- branching_factor: max number of mappings to expand
- num_of _candidates: number of candidate mappings

Output: a set of candidate mappings m from attributes(s) to
S ⊂ V

1: mappings←{}
2: candidates←{}
3: for each ai ∈ attributes(s) do
4: for each t

pij
ij ∈ (tpi1i1 , . . ., tpikik) do

5: matches← all the (u, v, e) in Gmatching tij
6: ifmappings = {} then
7: for each (u, v, e) ∈ matches do
8: m← ({ai} → {u, v})
9: mappings←mappings ∪m

10: end for
11: else
12: for eachm : X → Y ∈ mappings do
13: for each (u, v, e) ∈ matches do
14: m′← (X ∪ {ai} → Y ∪ {u, v})
15: mappings←mappings ∪m′
16: end for
17: removem frommappings
18: end for
19: end if
20: end for
21: if |mappings| > branching_factor then
22: compute score(m) for eachm ∈ mappings
23: sort items inmappings descending based on their score
24: keep top branching_factor mappings and remove others
25: end if
26: end for
27: candidates← top num_of _candidates items frommappings

return candidates

m5: {title, credit} → {(n2, n14), (n7, n19)},
m6: {title, credit} → {(n2, n14), (n8, n20)}

}.
There are two matches for the attribute title: (n2, n5) for

the semantic type ⟨aac:CulturalHeritageObject ,dcterms:title⟩ and
(n2, n14) for the semantic type ⟨aac:CulturalHeritageObject ,rdfs:
label⟩; and three matches for the attribute credit: (n2, n13) for the
semantic type ⟨aac:CulturalHeritageObject ,dcterms:provenance⟩
and (n7, n19) and (n8, n20) for the semantic type ⟨aac:Person,
ElementsGr2:note⟩. This yields 2 ∗ 3 = 6 different mappings. Since
branching_factor = 2, we have to eliminate four of these map-
pings. Now, we describe how the algorithm ranks the mappings.

Confidence: We define confidence as the arithmetic mean
of the confidence values associated with a mapping. For ex-
ample, m1 is consisting of the matches for the semantic types
⟨aac:CulturalHeritageObject ,dcterms:title⟩0.49 and ⟨aac:Cultural
HeritageObject ,dcterms:provenance⟩0.83. Thus, confidence(m1) =
0.66.

Coherence: This function measures the largest number of
nodes in a mapping that belong to the same known semantic
model. Like the links, the nodes inG are also taggedwith themodel
identifiers althoughwehavenot shown them in Fig. 6.We calculate
coherence as themaximumnumber of the nodes in amapping that
have at least one common tag. For instance, coherence(m1) = 0.66
because twonodes out of the three nodes inm1 (n2 and n5) are from
sm(dma), and coherence(m2) = 1.0 because all the nodes ofm2 are
from the same semantic model sm(dma). The goal of defining the
coherence is to give more priority to the models containing larger
segments from the known patterns.

Size reduction: We define the size of a mapping size(m) as
the number of the nodes in the mapping. Since we prefer concise
models, we seek mappings with fewer nodes. If a mapping has k
attributes, the smallest possible size for this mapping is l = k + 1
(when all the attributes map to the same class node, e.g., m1) and
the largest is u = 2 ∗ k (when all the attributes map to different
class nodes, e.g.,m2). Thus, the possible size reduction in amapping
is u − l. We define sizeReduction(m) = (u − size(m))/(u − l + 1)
as how much the size of a mapping is reduced compared to the
possible size reduction. For example, sizeReduction(m1) = 0.5 and
sizeReduction(m2) = 0.

Score(m): The final score is the combination the values
confidence(m), coherence(m), and sizeReduction(m), which are
all in the range [0, 1]. We assign a weight to each of these
values and then compute the final score as the weighted sum
of them: score(m) = w1 confidence(m) + w2 coherence(m) +
w3 sizeReduction(m), where w1, w2, and w3 are the weights,
decimal values in the range [0, 1] summing up to 1. The proper
values of the weights can be tuned by experiments. In our
evaluation (Section 4), we obtained better results when all the
three functions contributed equally to the final score. That is,
score(m) is calculated as the arithmetic mean of confidence(m),
coherence(m), and sizeReduction(m) (w1 = w2 = w3 = 1/3).

In our example, if we use arithmetic mean to compute the
final score, the scores of the 6 mappings we mentioned before are
as follows: score(m1) = 0.60, score(m2) = 0.42, score(m3) =
0.42, score(m4) = 0.46, score(m5) = 0.39, score(m6) =
0.39. Therefore, m2, m3, m5, and m6 will be removed from the
mappings (line 24), and the algorithm continues to the next
iteration, which is mapping the next attribute of the source dia
(classification) to the graph. At the end, we will have maximum
branching_factor mappings, each of them will include all the
attributes. We sort these mappings based on their score and
consider the top num_of_candidates mappings as the candidates
(Algorithm 5 line 27).

3.4. Generating and ranking semantic models

Once we generated candidate mappings from the source
attributes to the nodes of the graph, we compute and rank
candidate semantic models. To compute a semantic model for a
mapping m, we find the minimum-cost tree in G that connects
the nodes of m. The cost of a tree is the sum of the weights on
its links. This problem is known as the Steiner Tree problem [26].
Given an edge-weighted graph and a subset of the vertices, called
Steiner nodes, the goal is to find the minimum-weight tree that
spans all the Steiner nodes. The general Steiner tree problem is NP-
complete, however, there are several approximation algorithms
[26–29] that can be used to gain a polynomial runtime complexity.

The inputs to the algorithm are the graph G and the nodes of
m (as Steiner nodes) and the output is a tree that we consider as
a candidate semantic model for the source. For example, for the
source dia and the mapping m: {title, credit, classification, name,
imageURL} → {(n2, n5), (n2, n13), (n6, n10), (n7, n11), (n3, n9)},
the resulting Steiner tree will be exactly as what is shown in
Fig. 3(c), which is the correct semantic model of the source dia.
The algorithm to compute the minimal tree prefers the links
that appear in the known semantic models (links with tags)
because they have a much lower weight than the other links in
G. Additionally, since the weight of a link with tags has inverse
relation with its number of tags (number of known semantic
models containing the link), the semantic model obtained by
computing the minimal tree will contain the links that are more
popular in the known semantic models.

Selecting more popular links does not always yield the
correct semantic model. Suppose that we have three known
semantic models {sm(s1), sm(s2), sm(s3)}. One of them connects
aac:CulturalHeritageObject to two instances of aac:Person using

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 161
Fig. 7. A small part of an example graph constructed using three known models.

the links dcterms:creator and aac:sitter (similar to sm(npg)).
The other two semantic models do not contain the class
node aac:CulturalHeritageObject, but they have two class nodes
aac:Person connected using the link foaf:knows. Fig. 7 shows a small
part of the graph constructed using these knownmodels. The black
labels on the links represent the weights of the links. For instance,
the link dcterms:creator from n1 to n2 has a weight equal to 0.75
because it is only supported by sm(s1) (wl − x/(n + 1) = 1 −
1/(1+ 3) = 0.75).

Now, assume thatwe have a new source s4 with three attributes
{a1, a2, a3} annotated with aac:CulturalHeritageObject, aac:Person,
and aac:Person. Computing the minimal tree for the mapping m:
{a1, a2, a3} → {n1, n2, n3} will result a tree that consists of the
link foaf:knows between n2 to n3 and either dcterms:creator from
n1 to n2 or aac:sitter between n1 and n3. Nonetheless, this is
not the correct semantic model for the source. When s4 includes
aac:CulturalHeritageObject in addition to those two aac:Person, it
is more likely that the source is describing the relations between
the cultural heritage objects and the people and not the relations
between the people.

We solve this problem by taking into account the coherence of
the patterns. Instead of just the minimal Steiner tree, we compute
the top-k Steiner trees and rank them first based on the coherence
of their links and then their cost. In the example shown in Fig. 7,
the top-3 results assuming n1, n2, and n3 as the Steiner nodes are:

T1 = {(n1, n3, aac:sitter), (n2, n3, foaf :knows)}
T2 = {(n1, n2, dcterms:creator), (n2, n3, foaf :knows)}
T3 = {(n1, n2, dcterms:creator), (n1, n3, aac:sitter)}

where cost(T 1) = cost(T 2) = 1.25 and cost(T 3) = 1.5. Once
we computed the top-k trees, we sort them according to their
coherence. The coherence here means the percentage of the links
in the Steiner tree that are supported by the same semantic model.
It is computed similar to the coherence of the nodes with the
difference that we use the tags on the links instead of the tags
on the nodes. In our example, the coherence of T1 and T2 will be
0.5 because their links do not belong to the same known semantic
model, and the coherence of T3 will be 1.0 since both of its links are
tagged with s1. Therefore, T3 will be ranked higher than T1 and T2,
although it has higher cost than T1 and T2.

We use a customized version of the BANKS algorithms [30] to
compute the top-k Steiner trees. The original BANKS algorithm
is developed for the problem of the keyword-based search in
relational databases, and because it makes specific assumptions
about the topology of the graph, applying it directly to our problem
eliminates some of the trees from the results. For instance, if two
nodes are connected using two links with different weights, it only
considers the one with the lower weight and it never generates a
tree including the link with the higher weight. We customized the
original algorithm to support more general cases.

The BANKS algorithm creates one iterator for each of the nodes
corresponding to the semantic types, and then the iterators follow
the incoming links to reach a common ancestor. The algorithm
uses the iterator’s distance to its starting point to decide which
link should be followed next. Because our weights have an inverse
relationwith their popularity, the algorithm prefersmore frequent
links. To make the algorithm converge to more coherent models
first, we use a heuristic that prefers the links that are parts of the
same pattern (known semantic model) even if they have higher
weights. Suppose that sm1: v1

e1
−→ v2 and sm2: v1

e2
−→ v2

e3
−→ v3

are the only known models used to build the graph G, and the
weight of the link e2 is higher than e1. Assume that v1 and v3 are the
semantic labels. The algorithm creates two iterators, one starting
from v1 and one from v3. The iterator that starts from v3 reaches v2

by following the incoming link v2
e3
−→ v3. At this point, it analyzes

the incoming links of v2 and although e1 has lower weight than e2,
it first chooses e2 to traverse next. This is because e2 is part of the
knownmodel sm2 which includes the previously traversed link e3.

It is important to note that considering coherence of pat-
terns in scoring the mappings and also ranking the final se-
mantic models enables our approach to compute the correct
semantic model in many cases where the top semantic types
are not the correct ones. For example, for the source dia,
the mapping m:{title, credit, classification, name, imageURL} →
{(n2, n5), (n2, n13), (n6, n10), (n7, n11), (n3, n9)}, which maps the
attribute imageURL to (n3, n9) using the type ⟨edm:WebResource⟩,
will be scored higher than the mapping m′:{title, credit,
classification, name, imageURL} → {(n2, n5), (n2, n13), (n6, n10),
(n7, n11), (n15, n17)}, which maps imageURL to (n15, n17) using the
type ⟨foaf :Document⟩. The mappingm has lower confidence value
thanm′, but is scored higher because its coherence value is higher.
The model computed from the mapping m will also be ranked
higher than themodel computed fromm′, because it includesmore
links from known patterns, thus resulting in a lower cost tree.

4. Evaluation

We evaluated our approach on two datasets, each including
a set of data sources and a set of domain ontologies that will
be used to model the sources. Both of these datasets have the
same set of data sources, 29 museum sources in CSV, XML, or
JSON format containing data from different art museums in the US,
however, they include different domain ontologies. The goal is to
learn the semantic models of the data sources with respect to two
well-known data models in the museum domain: Europeana Data
Model (EDM),16 and CIDOC Conceptual Reference Model (CIDOC-
CRM).17 These data models use different domain ontologies to
represent knowledge in the museum domain.

The first dataset, dsedm, contains the EDM, AAC, SKOS, Dublin
Core Metadata Terms, FRBR, FOAF, ORE, and ElementsGr2 ontolo-
gies, and the second dataset, dscrm, includes the CIDOC-CRM and
SKOS ontologies. The reason why we used two data models is
to evaluate how our approach performs with respect to different
representations of knowledge in a domain. We applied our ap-
proach on both datasets to find the candidate semantic models for
each source and then compared the best suggested models (the
first ranked models) with models created manually by domain ex-
perts. Table 2 shows more details of the evaluation datasets. The
datasets including the sources, the domain ontologies, and the gold
standard models are available on GitHub.18 The source code of
our approach is integrated into Karma which is available as open
source.19

Manually constructing semantic models, in addition to being
time-consuming and error-prone, requires a thoroughunderstand-
ing of the domain ontologies. Karma [20] provides a user friendly

16 http://pro.europeana.eu/page/edm-documentation.
17 http://www.cidoc-crm.org.
18 https://github.com/taheriyan/jws-knowledge-graphs-2015.
19 https://github.com/usc-isi-i2/Web-Karma.

http://pro.europeana.eu/page/edm-documentation
http://www.cidoc-crm.org
https://github.com/taheriyan/jws-knowledge-graphs-2015
https://github.com/usc-isi-i2/Web-Karma

162 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
Table 2
The evaluation datasets dsedm and dscrm .

dsedm dscrm

#data source 29 29
#classes in the domain ontologies 119 147
#properties in the domain ontologies 351 409
#nodes in the gold-standard models 473 812
#data nodes in the gold-standard models 331 418
#class nodes in the gold-standard models 142 394
#links in the gold-standard models 444 785

graphical interface enabling users to interactively build the seman-
ticmodels. Yet, building themodels in Karmawithout any automa-
tion requires significant user effort. Our automatic approach learns
accurate semanticmodels that can be transformed to the gold stan-
dard models by only a few user actions.

In each dataset, we applied our method to learn a semantic
model for a target source si, sm(si), assuming that the semantic
models of the other sources are known. To investigate how the
number of the known models influences the results, we used
variable number of known models as input. Suppose that Mj is a
set of known semantic models including j models. Running the
experiment with M0 means that we do not use any knowledge
other than the domain ontology and running it with M28 means
that the semantic models of all the other sources are known
(M28 is leave-one-out cross validation). For example, for s1, we
ran the code 29 times using M0 = {},M1 = {sm(s2)}, M2 =

{sm(s2), sm(s3)}, . . . ,M28 = {sm(s2), . . . , sm(s29)}.
In learning the semantic types of a source si, we use the data of

the sources whose semantic models are known as training data.
More precisely, when we are running our labeling algorithm on
source si with Mj setting, the training data is the data of all the
sources {sk|k = 1, . . . , j and k! = i} and the test data is the data
of the target source si. Using M0 means that there is no training
data and thus the labeling function will not be able to suggest any
semantic type for the source attributes. To evaluate the labeling
algorithm, we usemean reciprocal rank (MRR) [31], which is useful
when we consider top k semantic types. MRR helps to analyze the
ranking of predictions made by any semantic labeling approach
using a single measure rather than having to analyze top-1 to top-
k prediction accuracies separately, which is a cumbersome task. In
learning the semantic types of a source si with n attributes, MRR is
computed as:

MRR =
1
n

n
i=1

1
ranki

where ranki is the rank of the correct semantic type in the top k
predictions made for the attribute ai. It is obvious that if we only
consider the top semantic type predictions, the value of MRR is
equal to the accuracy. In our example in Table 1,MRR = 1/5(1/1+
1/1+ 1/1+ 1/1+ 1/2) = 0.9 (the correct semantic type for the
attribute imageURL is ranked second).

We compute the accuracy of the learned semantic models
by comparing them with the gold standard models in terms of
precision and recall. Assuming that the correct semantic model of
the source s is sm and the semantic model learned by our approach
is sm′, we define precision and recall as:

precision =
|rel(sm) ∩ rel(sm′)|
|rel(sm′)|

recall =
|rel(sm) ∩ rel(sm′)|
|rel(sm)|

where rel(sm) is the set of triples (u, v, e) in which e is a link
from the node u to the node v in the semantic model sm.
For example, for the semantic model in Fig. 3(c), rel(sm) =
Fig. 8. These two semantic models are not equivalent.

{(edm:EuropeanaAggregation, aac:CulturalHeritageObject, edm:
aggregatedCHO), (edm:EuropeanaAggregation, edm:WebResource,
edm:hasView), (aac:CulturalHeritageObject, aac:Person,
dcterms:creator), · · ·}.

If all the nodes in sm have unique labels and all the nodes in sm′
also have unique labels, rel(sm) = rel(sm′) ensures that sm and
sm′ are equivalent. However, if the semantic models have more
than one instance of an ontology class, we will have nodes with
the same label. In this case, rel(sm) = rel(sm′) does not guarantee
sm = sm′. For example, the two semantic models exemplified in
Fig. 8 have the same set of triples although they do not convey
the same semantics. In Fig. 8(a), the creator of the artwork knows
another personwhile the semanticmodel in Fig. 8(b) states that the
creator of the artwork is known by another person. Many sources
in our datasets have models that include two or more instances of
an ontology class.

To have a more accurate evaluation, we number the nodes
and then use the numbered labels in measuring the precision
and recall. Assume that the model in Fig. 8(a) is the correct se-
mantic model (sm) and the one in 8(b) is the model learned
by our approach (sm′). We change the labels of the nodes
n1, n2 and n3 in sm to aac:CulturalHeritageObject1, aac:Person1
and aac:Person2. After this change, we will have rel(sm) =
{(aac:CulturalHeritageObject1, aac:Person1, dcterms:creator),
(aac:Person1, aac:Person2, foaf :knows)}. Then, we try all the per-
mutations of the numbering in the learned model sm′ and re-
port the precision and recall of the one that generates the best
F1-measure.20 For instance, if we number the nodes n2 and n3 in
sm′ with aac:Person1 and aac:Person2, we will have rel(sm′) =
{(aac:CulturalHeritageObject1, aac:Person1, dcterms:creator),
(aac:Person2, aac:Person1, foaf :knows)}, which yields precision =
recall = 0.5. If we label n2 with aac:Person2 and n3 with aac:
Person1, we will have rel(sm′) = {(aac:CulturalHeritageObject1,
aac:Person2, dcterms:creator), (aac:Person1, aac:Person2,
foaf :knows)}, which still has precision = recall = 0.5.

One of the factors influencing the results of our method is the
overlap between the known semantic models and the semantic
model of the target source. To see howmuch two semantic models
overlap each other, we define the overlap metric as the Jaccard
similarity between their relationships:

overlap =
|rel(sm) ∩ rel(sm′)|
|rel(sm) ∪ rel(sm′)|

.

Table 3 reports the minimum, maximum, median, and average
overlap between the semantic models of each dataset. Overall, the
higher the overlap between the known semantic models and the
semanticmodel of the target source, themore accuratemodels can
be learned.

20 F1−measure = 2 ∗ (precision× recall)/(precision+ recall).

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 163
(a) dsedm . (b) dscrm .

Fig. 9. Average precision and recall for the learned semantic models when the attributes are labeled with their correct semantic types.
(a) dsedm . (b) dscrm .

Fig. 10. Average semantic model learning time when the attributes are labeled with their correct semantic types.
Table 3
The overlap between the pairs of the semantic models in
the datasets dsedm and dscrm .

dsedm dscrm

Minimum overlap 0.04 0.03
Maximum overlap 1 1
Median overlap 0.45 0.46
Average overlap 0.43 0.46

In our mapping algorithm (Algorithm 5), we used 50 as cut-off
(branching_factor = 50) and then considered all the generated
mappings as the candidate mappings (num_of _candidates = 50).
We justify this choice in Section 4.2 by analyzing the impact
of the branching factor on the accuracy of the results and the
running time of the algorithm. To score a mappingm, we assigned
equal weights to the functions confidence(m), coherence(m), and
sizeReduction(m). We tried different combinations of weights, and
although our algorithm generated more precise models for a few
sources in some of these weight systems, the average results were
betterwhen each of these functions contributed equally to the final
score. Once we found the candidate mappings, we generated the
top 10 Steiner trees for each of them (k = 10 in top-k Steiner tree
algorithm). Finally, we ranked the candidate semantic models (at
most 500) and compared the best one with the correct model of
the source. We ran two experiments with different scenarios that
will be explained next.

4.1. Scenario 1

In the first scenario, we assumed that each source attribute
is annotated with its correct semantic type. The goal was to see
howwell our approach learns the attribute relationships using the
correct semantic types. Fig. 9 illustrates the average precision and
recall of all the learned semantic models (sm′(s1), . . . , sm′(s29))
for each Mj (j ∈ [0..28]) for each dataset. Since the correct
semantic types are given, we excluded their corresponding triples
in computing the precision and recall. That is, we compared only
the links between the class nodes in the gold standardmodels with
the links between the class nodes in the learned models. We call
such links internal links, the links that are established between the
class nodes in semantic models. The total number of the links in
the dataset dsedm is 444, and 331 of these links corresponds to the
source attributes (there are 331 data nodes). Thus, dsedm has 113
internal links (444 − 331 = 113). Following the same rationale,
dscrm has 367 internal links.

The results show that the precision and recall increase
significantly even with a few known semantic models. An
interesting observation is that when there is no known semantic
model and the only background knowledge is the domain ontology
(baseline, M0), the precision and recall are close to 0. This low
accuracy comes from the fact that there aremultiple links between
each pair of class nodes in the graph G, and without additional
information, we cannot resolve the ambiguity. Although we assign
lowerweights to direct properties to prioritize themover inherited
ones, it cannot help much because for many of the class nodes in
the correct models, there is no object property in the ontology that
is explicitly defined with the corresponding classes as domain and
range. In fact, most of the properties that have been used in the
correct models are either inherited properties or defined without
a domain or/and range in the ontology.

To evaluate the running time of the approach, we measured
the running time of the algorithm starting from building the
graph until ranking the results on a single machine with a Mac
OS X operating system and a 2.3 GHz Intel Core i7 CPU. Fig. 10
shows the average time (in seconds) of learning the semantic
models. The reason why there is some fluctuations in the timing
diagram of dscrm (Fig. 10(b)) is related to the topology of the graph
built on top of the known models and also the details of our
implementation. While one expects to see linear increase in time
when the number of known semantic models grows, sometimes
adding a new semanticmodel changes the structure of the graph in
a way that the Steiner tree algorithm finds k candidate trees faster.

We believe that the overall time of the process can be further
reduced by using parallel programming and some optimizations
in the implementation. For example, the graph can be built
incrementally.When a newknownmodel is added,we do not need
to create the graph from scratch. We just need to merge the new
known model to the existing graph and update the links.

164 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
(a) dsedm . (b) dscrm .

Fig. 11. MRR value of the learned semantic types when only the top learned semantic types are considered (k = 1); and the top four suggested types are considered (k = 4).
(a) dsedm . (b) dscrm .

Fig. 12. Average precision and recall for the learned semantic models for k = 1 and k = 4. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
4.2. Scenario 2

In the second scenario,we used our semantic labeling algorithm
to learn the semantic types. We trained the labeling classifier
on the data of the sources whose semantic models are already
known and then applied the learned labeling function to the target
source to assign a set of candidate semantic types to each source
attribute. Fig. 11 shows theMRR diagram for dsedm and dscrm in two
cases: (1) only the top semantic type (the type with the highest
confidence value) is considered (k = 1), (2) the top four learned
semantic types are taken into account as the candidate semantic
types (k = 4). Note that, when k = 1, the MRR value is equal to
the accuracy, i.e., howmany of the attributes are labeled with their
correct semantic types.

Once the labeling is done, we feed the learned semantic types to
the rest of algorithm to learn a semanticmodel for each source. The
average precision and recall of the learned models are illustrated
in Fig. 12. The black color shows the precision and recall for k = 1,
and the blue color illustrates the precision and recall for k = 4.
In this experiment, we computed precision and recall for all the
links including the links from the class nodes to the data nodes
(these links are associated with the learned semantic types). The
results show that using the known semanticmodels as background
knowledge yields in a remarkable improvement in both precision
and recall compared to the case in which we only consider the
domain ontology (M0).

Weprovide an example to help in understanding the correlation
between the MRR and the precision values, i.e., how the accuracy
of the learned semantic types affects the accuracy of the learned
semantic models. The average MRR value for dscrm when we use
k = 1 and M28 (leave-one-out setting) is 0.75 (Fig. 11(b)). This
means that our labeling algorithm can learn the correct semantic
types for only 75% of the attributes. From Table 2, we know that
the gold standard models for dscrm have totally 418 data nodes,
and thus, 418 links in the gold standard models correspond to the
source attributes. Since 75% of the attributes are labeled correctly,
313 links out of 418 links corresponding to the source attributes
will be correct in the learned semantic models. Even if we predict
all the internal links correct (785−418 = 367 links), themaximum
precision would be 86% ((367+ 313)/785). However, the input to
the Steiner tree algorithm are the nodes coming from the learned
semantic types (leaves of the tree), and incorrect semantic types
may prompt the Steiner tree algorithm to select incorrect links
in the higher levels (internal links). As we see in Fig. 12(b), in
the k = 1 and M28 setting, the average precision of the learned
semantic models is 65%.

When considering the top four semantic types (k = 4) instead
of only the top one semantic type (k = 1), our algorithm recovers
some of the correct semantic types even if they are not the top
predictions of the labeling function. For example, in the dataset
dscrm, using k = 4 rather than k = 1 when we have 28 known
models (M28), improves the precision by 6% and the recall by 7%
(Fig. 12(b)). This improvement is mainly because of the coherence
factor we take into account in scoring the mappings and also
ranking the candidate semantic models.

The running time of the algorithm in the second scenario is
displayed in Fig. 13. This time does not include the labeling step.
The work done by Krishnamurthy et al. [14] contains a detailed
analysis of the performance of the labeling algorithm. As we can
see in Fig. 13(b), the running time of the algorithm is higher at
M8, M9, M10, and M11 when k = 1. This is because computing
top 10 Steiner trees takes longer once we add semantic models
of s8, s9, s10, and s11 to the graph. When adding more semantic
models, the algorithm runs faster. For example, the average time
at M11 is 7.29 s while it is 1.21 s at M12. This is the result of a
combination of several reasons. First, there is more training data
in learning the semantic types of a source si at M12, and this affects
the output of the mapping algorithm (Algorithm 5). Second, the
structure of the graph is different atM12 and this results in different
mappings between the source attributes and the graph. Finally, the
new semanticmodel sm(s12) adds new paths to the graph allowing
the Steiner tree algorithm to find the top 10 trees faster.

We mentioned earlier that we used 50 as the value of the
branching factor in mapping the source attributes to the graph

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 165
(a) dsedm . (b) dscrm .

Fig. 13. Average semantic model learning time when the attributes are labeled with their correct semantic types.
(a) dsedm . (b) dscrm .

Fig. 14. Impact of branching factor on precision, recall, and running time for k = 4 and M28 .
(line 21 of Algorithm 5). The branching factor is essential to
the scalability of our mapping algorithm. This value can be
configured by trying some sample values and then choosing a
value yielding good accuracywhile keeping the running time of the
algorithm reasonably low. This can be different for each dataset.
In our evaluation, using branching_factor = 50 worked well for
both datasets. Fig. 14 illustrates how changing the value of the
branching factor affects the precision, recall, and running time
of the algorithm in a setting where we considered 4 candidate
semantic types (k = 4) and the semantic models of all the other
sources were known (M28). In this experiment, we fixed the value
of num_of_candidates (line 27 of Algorithm 5) equal to the value of
branching_factor. This means that all the generated mappings will
be given to the Steiner tree algorithm as the candidate mappings.
As we can see in Fig. 14(b), increasing the value of the branching
factor from 50 to 200 for dscrm provides 1% improvement in the
precision, however, it increases the average running time by 2.14 s.
We chose to ignore this insignificant increase in the precision and
used 50 as the branching factor to gain a better running time.

5. Related work

The problem of describing semantics of data sources is at the
core of data integration [1] and exchange [32]. The main approach
to reconcile the semantic heterogeneity among sources consists
of defining logical mappings between the source schemas and a
common target schema. Oneway to define thesemappings is local-
as-view (LAV) descriptions where every source is defined as a view
over the domain schema [1]. The semanticmodels thatwegenerate
are graphical representation of LAV rules, where the domain
schema is the domain ontology. Although the logical mappings are
declarative, defining them requires significant technical expertise,
so there has been much interest in techniques that facilitate their
generation.

In traditional data integration, the mapping generation prob-
lem is usually decomposed in a schema matching phase followed
by schema mapping phase [33]. Schema matching [34] finds corre-
spondences between elements of the source and target schemas.
For example, iMAP [35] discovers complex correspondences by us-
ing a set of special-purpose searchers, ranging fromdata overlap, to
machine learning and equation discovery techniques. This is analo-
gous to the semantic labeling step in ourwork [14], wherewe learn
a labeling function to learn candidate semantic types for a source
attribute. Every semantic type maps an attribute to an element in
the domain ontology (a class or property in the domain ontology).

Schema mapping defines an appropriate transformation that
populates the target schemawith data from the sources. Mappings
may be arbitrary procedures, but of greater interest are declarative
mappings expressible as queries in SQL, XQuery, or Datalog.
These mapping formulas are generated by taking into account the
schema matches and schema constraints. There has been much
research in schema mapping, from the seminal work on Clio [36],
which provided a practical system and furthered the theoretical
foundations of data exchange [37] to more recent systems that
support additional schema constraints [38]. Alexe et al. [39]
generate schema mappings from examples of source data tuples
and the corresponding tuples over the target schema. An et al.
[40] generate declarativemapping expressions between two tables
with different schemas starting from element correspondences.
They create a graph from the conceptual model (CM) of each
schema and then suggest plausible mappings by exploring low-
cost Steiner trees that connect those nodes in the CM graph that
have attributes participating in element correspondences. Their
work is similar to our previous semi-automatic approach to build
the semantic models [20], where we derive a graph from the
domain ontology and the learned semantic types. We exploited
the knowledge from the ontology to assign weights to the links
based on their types, e.g., direct properties get lower weight than
inherited properties, because we wanted to give more priority
to more specific relations. We also allow the user to correct
the mappings interactively. In the current paper, in addition to
the ontology, we consider previous known semantic models to
improve the modeling of an unknown source.

Our work on learning semantic models of structured sources
is complementary to these schema mapping techniques. Instead
of focusing on satisfying schema constraints, we analyze known

166 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
source models to propose mappings that capture more closely the
semantics of the target source in ways that schema constraints
could not disambiguate. For example, by suggesting that a
dcterms:creator relationship is more likely than dbpedia:owner in
a given domain. Moreover, our algorithm can incrementally refine
themappings based on user feedback and learn from this feedback
to improve future predictions.

In the Semantic Web, what is meant by a source description is
a semantic model describing the source in terms of the concepts
and relationships defined by a domain ontology. There are many
studies onmapping data sources to ontologies. Several approaches
have been proposed to generate semanticweb data fromdatabases
and spreadsheets [5].

D2R [41,42] and D2RQ [43] are mapping languages that enable
the user to define mapping rules between tables of relational
databases and target ontologies in order to publish semantic data
in RDF format. R2RML [19] is a anothermapping language, which is
aW3C recommendation for expressing customizedmappings from
relational databases to RDF datasets. Writing the mapping rules
by hand is a tedious task. The users need to understand how the
source table maps to the target ontology. They also need to learn
the syntax of writing the mapping rules. RDOTE [8] is a tool that
provides a graphical user interface to facilitate mapping relational
databases into ontologies. The developers of RDOTE have said they
will incorporate an export/import mechanism for D2RQ compliant
mapping files, as well as a query builder graphical user interface
to hasten the mapping creation process. RDF123 [2] and XLWrap
[4] are other tools to define mappings from spreadsheets to RDF
graphs. Although these tools can facilitate the mapping process,
the users still need to manually define the mappings between the
source and target ontologies.

In recent years, there are some efforts to automatically infer
the implicit semantics of tables. Polfliet and Ichise [6] use string
similarity between the column names and the names of the
properties in the ontology to find a mapping between the table
columns and the ontology. Wang et al. [12] detect the header of
Web tables and use them along with the values of the rows to map
the columns to the attributes of the corresponding entity in a rich
and general purpose taxonomy of worldly facts built from a corpus
of over one million Web pages and other data. This approach can
only deal with the tables containing information of a single entity
type.

Limaye et al. [7] used YAGO21 to annotate web tables and
generate binary relationships using machine learning approaches.
However, this approach is limited to the labels and relations
defined in the YAGO ontology (less than 100 binary relationships).
Venetis et al. [11] presented a scalable approach to describe the
semantics of tables on the Web. To recover the semantics of
tables, they leverage a database of class labels and relationships
automatically extracted from the Web. They attach a class label
to a column if a sufficient number of the values in the column
are identified with that label in the database of class labels, and
analogously for binary relationships. Although these approaches
are very useful in publishing semantic data from tables, they
are limited in learning the semantics relations. Both of these
approaches only infer individual binary relationships between
pair of columns. They are not able to find the relation between
two columns if there is no direct relationship between the
values of those columns. Our approach can connect one column
to another one through a path in the ontology. For example,
suppose that we have a table including two columns person and
city, where the city is the location of the company the person
is working for. Our approach can learn a semantic model that

21 http://www.mpi-inf.mpg.de/yago-naga/yago.
connects the class Person to the class City through the chain
Person

worksFor
−→ Organization

location
−→ City.

There is also work that exploits the data available in the
Linked Open Data (LOD) cloud to capture the semantics of the
tables and publish their data as RDF. Munoz et al. [44] mine
RDF triples from the Wikipedia tables by linking the cell values
to the resources available in DBPedia [45]. This approach is
limited toWikipedia tables because of its simple linking algorithm.
If a cell value contains a hyperlink to a Wikipedia page, the
Wikipedia URL maps to a DBpedia entity URI by replacing
the namespace http://en.wikipedia.org/wiki/ of the URL with
http://dbpedia.org/resource/.

In other work, Mulwad et al. [13] used Wikitology [46], an
ontologywhich combines some existingmanually built knowledge
systems such as DBPedia and Freebase [47], to link cells in a
table to Wikipedia entities. They query the background LOD to
generate initial lists of candidate classes for column headers
and cell values and candidate properties for relations between
columns. Then, they use a probabilistic graphical model to find
the correlation between the columns headers, cell values, and
relation assignments. The quality of the semantic data generated
by this category of work is highly dependent to how well the
data can be linked to the entities in LOD. While for most popular
named entities there are goodmatches in LOD,many tables contain
domain-specific information or numeric values (e.g., temperature
and age) that cannot be linked to LOD.Moreover, these approaches
are only able to identify individual binary relationships between
the columns of a table. However, an integrated semantic model is
more than fragments of binary relationships between the columns.
In a complete semantic model, the columns may be connected
through a path including the nodes that do not correspond to any
column in the table.

Parundekar et al. [48] previously developed an approach to
automatically generate conjunctive and disjunctive mappings
between the ontologies of linked data sources by exploiting
existing linked data instances. However, the system does not
model arbitrary sources such as we present in this paper. Carman
and Knoblock [49] use known source descriptions to learn a
semantic description that precisely describes the relationship
between the inputs and outputs of a source, expressed as a Datalog
rule. However, their approach is limited in that it can only learn
sources whose models are subsumed by the models of known
sources. That is, the description of a new source is a conjunctive
combination of known source descriptions. By exploring paths in
the domain ontology, in addition to patterns in the known sources,
we can hypothesize target mappings that are more general than
previous source descriptions or their combinations.

In our earlier Karma work [20], we build a graph from learned
semantic types and a domain ontology and use this graph to map a
source to the ontology interactively. In that work, the system uses
the knowledge from the domain ontology to propose models to
the user, who can correct them as needed. The system remembers
semantic type labels assigned by the user, however, it does not
learn from the structure of previously modeled sources.

The most closely related work [16,15] on exploiting known
semantic models to learn a model for a new unknown source.
However, our previous approach was less scalable. When there
are many source attributes, there will be a large number of
mappings from the source attributes to the nodes of the graph.
Even though we used a beam search algorithm in the mapping
step to ameliorate this problem, the graph grows as the number
of known semantic models grows, which makes computing the
semantic models inefficient. In this paper, we have presented a
compact graph structure that merges overlapping segments of the
known semantic models. We also use a new algorithm to generate
and rank the candidate semantic models. We generate candidate

http://www.mpi-inf.mpg.de/yago-naga/yago
http://en.wikipedia.org/wiki/
http://dbpedia.org/resource/

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 167
models by computing top-k Steiner trees and then rank thembased
on the coherence of the links. This new approach, in addition to
generatingmore accurate semantic models, significantly improves
the running time of the learning process. Integrating our algorithm
into Karma, enables the user to refine the automatically learned
models resulting in more accurate predictions for future data
sources.

In recent years, ontologymatching has receivedmuch attention
in the Semantic Web community [50,51]. Ontology matching
(or ontology alignment) finds the correspondence between
semantically related entities of different ontologies. This problem
is analogous to schema matching in databases. Both schemas
and ontologies provide a vocabulary of terms that describe a
domain of interest. However, schemas often do not provide
explicit semantics for their data. Our work benefits from some
of the techniques developed for ontology matching. For example,
instance-based ontology matching exploits similarities between
instances of ontologies in the matching process. Our semantic
labeling algorithm adopts the same idea to map the data of a
new source to the classes and properties of a target ontology.
The algorithm computes the similarity (cosine similarity between
TF/IDF vectors) between the data of the new source and the data of
the sources whose semantic models are known.

Ontology matching is different than the problem we addressed
in this paper in the sense that in our work the data that
is being mapped to a target ontology is not bound to any
source ontology. This makes our problem more complicated since
no explicit semantics is necessarily attached to data sources.
Moreover, most of the work on ontology matching only finds
simple correspondences such as equivalence and subsumption
between ontology classes and properties. Therefore, the explicit
relationshipswithin the data elements are oftenmissed in aligning
the source data to the target ontology. Suppose thatwewant to find
the correspondences between a source ontology Os and a target
ontology Ot . Using ontology matching, we find that the class As in
Os maps to the class At in Ot and the class Bs in Os maps to the
class Bt in Ot . Assume that there is only one property connecting
As to Bs in Os, but there are multiple paths connecting At to Bt
in Ot . If we align the source data to the target ontology Ot using
the correspondences found by ontology matching, the instances of
As will be mapped to the class At and the instances of Bs will be
mapped to the class Bt . However, this alignment does not tell us
which path in Ot captures the correct meaning of the source data.

6. Discussion

In this paper, we presented a scalable approach to learn
semantic models of structured data sources as mappings from the
sources to a domain ontology. Suchmodels are the key ingredients
in the process of publishing data into the LOD knowledge graph.
The core idea is to exploit the domain ontology and previously
learned semantic models to hypothesize a plausible semantic
model for a new source. The evaluation shows that our approach
learns rich semantic models with minimal user input.

The first step in learning semantic models is learning the
semantic types in which the system labels each source attribute
with a class or property from the ontology. The output of the
labeling step is a set of candidate semantic types and their
confidence values rather than one fixed semantic type. Taking into
account the uncertainty of the labeling algorithm is very important
because machine learning techniques often cannot distinguish
the types of the source attributes that have similar data values,
e.g., birthDate and deathDate.

Once the system produces candidate semantic types for each
attribute, it creates a graph from known semantic models and
augments it by adding the nodes and the links corresponding to the
semantic types and adding the paths inferred from the ontology.
The next step is mapping the source attributes to the nodes of the
graph where we use a search algorithm that enables the system
to do the mapping even when the source has many attributes.
The algorithm, after processing each source attribute, prunes the
existing mappings by scoring them and removing the ones having
lower scores. The proposed scoring function not only contributes
to the scalability of our method, but also increases the accuracy of
the learned models.

The final part of the approach is computing the minimal tree
that connects the nodes of the candidate mappings. This step
might be computationally inefficient if we have a very large graph.
However, our algorithm to construct the graph consolidates the
overlapping segments of the known semantic models, making it
scalable to a huge number of known semantic models.

Our learning algorithms play an important role in making
the Karma interactive user interface easy to use, a key design
goal given that many of our users are domain experts, but are
not Semantic Web experts. Our experience observing users is
that they can understand and critique models when displayed in
our interactive user interface. They can easily verify that models
accurately capture the semantics of a source, and can easily spot
errors or controversial modeling decisions. Users can click on the
corresponding elements on the screen and do local modifications
such as replacing the property of a link or changing the source or
destination of a link.

We also observe that it is much harder for users to model a
source from scratch, as is necessary in tools such as Open Refine.22
Even though the user interface is easy to use, the task of filling
a blank page with a model is daunting for many users. Karma
helps these users because it gives them an almost-correct model
as a starting point. Users can easily find the elements they do not
agree with, and can easily change them. A possible direction for
future work is to perform user evaluations to measure the quality
of the models produced using learning algorithms. Although time
to create models is important, we hypothesize that most users,
such as ourmuseumusers, are primarily concernedwith producing
correctmodels, and time tomodel is a secondary concern for them.
By using previous models, users are more likely to model sources
in a correct way.

Our work also plays a role in helping communities to produce
consistent Linked Data so that sources containing the same type
of data use the same classes and properties when published in
RDF. Often, there are multiple correct ways to model the same
type of data. For example, users can use Dublin Core and FOAF
to model the creator relationship between a person and an object
(dcterms:creator and foaf:maker). A community is better served
when all the data with the same semantics is modeled using the
same classes and properties. Our work encourages consistency
because our learning algorithms bias the selection of classes and
properties towards those usedmore frequently in existingmodels.

A future direction of our work is to improve the quality of
the automatically generated models by leveraging the significant
amount of data available in the Linked Open Data (LOD) cloud,
which is a vast and growing collection of semantic data that has
been published by various data providers. The current estimate is
that the LOD cloud contains over 30 billion RDF triples. Even the
New York Times is now publishing all of their metadata as Linked
Open Data.23 It should be noted that a nontrivial portion of LOD
is just data with limited semantic descriptions, but much of that
data has been linked to other sources that does have some form
of semantic description. Given the growing availability of this type

22 http://openrefine.org/.
23 See http://data.nytimes.com.

http://openrefine.org/
http://data.nytimes.com

168 M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169
of data, LOD will provide an invaluable source of semantic content
that we can exploit as background knowledge.

Given the huge repository of data available in LOD, for any
given set of values provided by a new source, we can search for
classes that provide or even subsume all of the data for a given
property of a source. For example, if we have a set of values for
people names or temperature, we are likely to find some classes
in LOD that provides that same set of values. We will not require
a perfect overlap between the set of values from the source and a
class in the Linked Open Data, but rather a statistically significant
overlap, similar to what is done by Parundekar et al. [48]. An
important challenge here is how to efficiently find the classes that
most closely match the set of attribute values and how to handle
the problem that the classes that match the best may come form
different ontologies.

We can also exploit LOD to disambiguate the relationships
between the attributes [52]. Once we have identified the se-
mantic types of the source attributes, we can search for cor-
responding classes in LOD and analyze which properties are
connecting them. Those properties can be candidates for the
relationships between the attributes of the new source. Con-
sider the semantic model of the source dia in Fig. 3(c). Once
we identify that ⟨aac:CulturalHeritageObject ,dcterms:title⟩ and
⟨aac:Person,foaf :name⟩ are the semantic types of the first and
fourth attributes, we can search LOD for possible properties
between instances of the classes aac:CulturalHeritageObject and
aac:Person and find that the properties dcterms:creator and
acc:sitter are better candidates than other properties that ontol-
ogy suggests, e.g., dbpedia:owner. By combining the informationwe
extract for each pair of classes, we can narrow the search to those
classes and properties that commonly occur together.

Acknowledgments

This research was supported in part by the National Science
Foundation under Grant No. 1117913 and in part by Defense
Advanced Research Projects Agency (DARPA) via AFRL contract
numbers FA8750-14-C-0240 and FA8750-16-C-0045. TheU.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of NSF, DARPA, AFRL, or the U.S. Government. We would
like to thank the anonymous reviewers for their valuable com-
ments and suggestions to improve the paper. We are also grateful
to Yinyi Chen for her help in creating the gold standard models for
our evaluation.

References

[1] A. Doan, A. Halevy, Z. Ives, Principles of Data Integration, Morgan Kauffman,
2012.

[2] L. Han, T. Finin, C. Parr, J. Sachs, A. Joshi, RDF123: From Spreadsheets to RDF,
2008, pp. 451–466.

[3] A.P. Sheth, K. Gomadam, A. Ranabahu, Semantics enhanced services:METEOR-
S, SAWSDL and SA-REST, IEEE Data Eng. Bull. 31 (3) (2008) 8–12.

[4] A. Langegger, W. Wöß, XLWrap—querying and integrating arbitrary spread-
sheets with SPARQL, in: A. Bernstein, D.R. Karger, T. Heath, L. Feigenbaum,
D.Maynard, E.Motta, K. Thirunarayan (Eds.), International SemanticWeb Con-
ference, in: Lecture Notes in Computer Science, vol. 5823, Springer, 2009,
pp. 359–374.

[5] S.S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T.T. Jr., S. Auer, J. Sequeda, A. Ezzat,
A survey of current approaches for mapping of relational catabases to RDF (01
2009).

[6] S. Polfliet, R. Ichise, Automated mapping generation for converting databases
into linked data, in: A. Polleres, H. Chen (Eds.), ISWC Posters&Demos, in: CEUR
Workshop Proceedings, vol. 658, CEUR-WS.org, 2010.

[7] G. Limaye, S. Sarawagi, S. Chakrabarti, Annotating and searching web tables
using entities, types and relationships, PVLDB 3 (1) (2010) 1338–1347.
[8] K.N. Vavliakis, T.K. Grollios, P.A. Mitkas, RDOTE—transforming relational
databases into semantic web data, in: A. Polleres, H. Chen (Eds.), ISWC Posters
& Demos, in: CEUR Workshop Proceedings, vol. 658, CEUR-WS.org, 2010.

[9] L. Ding, D. DiFranzo, A. Graves, J. Michaelis, X. Li, D.L. McGuinness, J.A. Hendler,
TWC data-gov corpus: Incrementally generating linked government data from
data.gov, in: M. Rappa, P. Jones, J. Freire, S. Chakrabarti (Eds.), WWW, ACM,
2010, pp. 1383–1386.

[10] V. Saquicela, L.M.V. Blázquez, Óscar Corcho, Lightweight semantic annotation
of geospatial RESTful services, in: Proceedings of the 8th Extended Semantic
Web Conference, ESWC, 2011, pp. 330–344.

[11] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao, C. Wu,
Recovering semantics of tables on the web, Proc. VLDB Endow. 4 (9) (2011)
528–538.

[12] J. Wang, H. Wang, Z. Wang, K.Q. Zhu, Understanding tables on the web,
in: P. Atzeni, D.W. Cheung, S. Ram (Eds.), ER, in: Lecture Notes in Computer
Science, vol. 7532, Springer, 2012, pp. 141–155.

[13] V. Mulwad, T. Finin, A. Joshi, Semantic message passing for generating
linked data from tables, in: The Semantic Web—ISWC 2013, Springer, 2013,
pp. 363–378.

[14] R. Krishnamurthy, A. Mittal, C.A. Knoblock, P. Szekely, Assigning semantic
labels to data sources, in: Proceedings of the 12th Extended Semantic Web
Conference, ESWC, 2015.

[15] M. Taheriyan, C.A. Knoblock, P. Szekely, J.L. Ambite, A scalable approach to
learn semantic models of structured sources, in: Semantic Computing, ICSC,
2014 IEEE International Conference on, 2014, pp. 183–190.

[16] M. Taheriyan, C.A. Knoblock, P. Szekely, J.L. Ambite, A graph-based approach
to learn semantic descriptions of data sources, in: Procs. 12th International
Semantic Web Conference, ISWC, 2013.

[17] S. Hennicke, M. Olensky, V.D. Boer, A. Isaac, J. Wielemaker, A data model for
cross-domain data representation. The Europeana data model in the case of
archival andmuseumdata, in: Schriften zur Informationswissenschaft 58, Pro-
ceedings des 12. Internationalen Symposiums der Informationswissenschaft,
ISI 2011, 2011, pp. 136–147.

[18] M. Doerr, The CIDOC conceptual reference module: An Ontological approach
to semantic interoperability of metadata, AI Mag. 24 (3) (2003) 75–92.

[19] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, W3C
Recommendation 27 September 2012, http://www.w3.org/TR/r2rml/, 2012.

[20] C. Knoblock, P. Szekely, J.L. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea,
M. Taheriyan, P. Mallick, Semi-automatically mapping structured sources into
the semantic web, in: Proc. 9th Extended Semantic Web Conference, 2012.

[21] P. Szekely, C.A. Knoblock, F. Yang, X. Zhu, E. Fink, R. Allen, G. Goodlander,
Connecting the Smithsonian American art museum to the linked data cloud,
in: Proceedings of the 10th Extended Semantic Web Conference, ESWC,
Montpellier, 2013, pp. 593–607.

[22] P. Szekely, C.A. Knoblock, S. Gupta, M. Taheriyan, B. Wu, Exploiting semantics
of web services for geospatial data fusion, in: Proceedings of the SIGSPATIAL
International Workshop on Spatial Semantics and Ontologies, SSO 2011,
Chicago, IL, 2011.

[23] M. Taheriyan, C.A. Knoblock, P. Szekely, J.L. Ambite, Semi-Automatically
modeling web APIs to create linked APIs, in: Proceedings of the Linked APIs
for the Semantic Web Workshop, LAPIS, 2012.

[24] M. Taheriyan, C.A. Knoblock, P. Szekely, J.L. Ambite, Rapidly integrating
services into the linked data cloud, in: ISWC, Boston, MA, 2012, pp. 559–574.

[25] E.L. Lehmann, J.P. Romano, Testing Statistical Hypotheses, third ed.,
in: Springer Texts in Statistics, Springer, New York, 2005.

[26] P. Winter, Steiner problem in networks—a survey, Networks 17 (1987)
129–167.

[27] H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem
in graphs, Math. Japonica 24 (1980) 573–577.

[28] L.T. Kou, G. Markowsky, L. Berman, A Fast Algorithm for Steiner trees, Acta
Inform. 15 (1981) 141–145.

[29] K. Mehlhorn, A faster approximation algorithm for the Steiner problem in
graphs, Inform. Process. Lett. 27 (3) (1988) 125–128.

[30] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Sudarshan, Keyword
searching and browsing in databases using BANKS, in: Proceedings of the 18th
International Conference on Data Engineering, 2002, pp. 431–440.

[31] N. Craswell,Mean reciprocal rank, in: Encyclopedia of Database Systems, 2009,
p. 1703.

[32] M. Arenas, P. Barcelo, L. Libkin, F. Murlak, Relational and XML Data Exchange,
Morgan & Claypool, San Rafael, CA, 2010.

[33] Z. Bellahsene, A. Bonifati, E. Rahm, Schema Matching and Mapping, first ed.,
Springer, 2011.

[34] E. Rahm, P.A. Bernstein, A survey of approaches to automatic schemamatching,
VLDB J. 10 (4) (2001) 334–350.

[35] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, P. Domingos, iMAP: Discovering
complex semantic matches between database schemas, in: International
Conference on Management of Data, SIGMOD, New York, NY, 2004,
pp. 383–394.

[36] R. Fagin, L.M. Haas, M. Hernández, R.J. Miller, L. Popa, Y. Velegrakis, Clio:
Schema mapping creation and data exchange, in: Conceptual Modeling:
Foundations and Applications, 2009.

http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref1
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref2
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref3
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref4
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref6
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref7
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref8
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref9
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref11
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref12
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref13
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref18
http://www.w3.org/TR/r2rml/
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref25
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref26
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref27
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref28
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref29
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref31
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref32
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref33
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref34
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref36

M. Taheriyan et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 152–169 169
[37] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data Exchange: Semantics and query
answering, Theoret. Comput. Sci. 336 (1) (2005) 89–124.

[38] B. Marnette, G. Mecca, P. Papotti, S. Raunich, D. Santoro, ++Spicy: an
opensource tool for second-generation schema mapping and data exchange,
in: Procs. VLDB, Seattle, WA, 2011, pp. 1438–1441.

[39] B. Alexe, B. ten Cate, P.G. Kolaitis, W.-C. Tan, Designing and refining schema
mappings via data examples, in: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD’11, ACM, New
York, NY, USA, 2011, pp. 133–144.

[40] Y. An, A. Borgida, R.J. Miller, J. Mylopoulos, A semantic approach to discovering
schema mapping expressions, in: Proceedings of the 23rd International
Conference on Data Engineering, ICDE, Istanbul, Turkey, 2007, pp. 206–215.

[41] C. Bizer, D2R MAP—a database to RDF mapping language, in: WWW (Posters),
2003.

[42] C. Bizer, R. Cyganiak, D2R server—publishing relational databases on the
semantic web, in: Poster at the 5th International Semantic Web Conference,
2006.

[43] C. Bizer, A. Seaborne, D2RQ—treating non-RDF databases as virtual RDF graphs,
in: ISWC2004 (posters), 2004.

[44] E. Muñoz, A. Hogan, A. Mileo, Triplifying wikipedia’s tables, in: A.L. Gentile,
Z. Zhang, C. d’Amato, H. Paulheim (Eds.), LD4IE@ISWC, in: CEUR Workshop
Proceedings, vol. 1057, CEUR-WS.org, 2013.
[45] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: A
nucleus for a web of open data, in: Proceedings of the 6th International The
SemanticWeb and 2Nd Asian Conference on Asian SemanticWeb Conference,
ISWC’07/ASWC’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 722–735.

[46] Z. Syed, T. Finin, Creating and exploiting a hybrid knowledge base for linked
data, in: Agents and Artificial Intelligence, Springer, 2011, pp. 3–21.

[47] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: A collabora-
tively created graph database for structuring human knowledge, in: Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of
Data, SIGMOD’08, ACM, New York, NY, USA, 2008, pp. 1247–1250.

[48] R. Parundekar, C.A. Knoblock, J.L. Ambite, Discovering concept coverings in
ontologies of linked data sources, in: Proceedings of the 11th International
Semantic Web Conference, ISWC, Boston, MA, 2012.

[49] M.J. Carman, C.A. Knoblock, Learning semantic definitions of online informa-
tion sources, J. Artificial Intelligence Res. 30 (1) (2007) 1–50.

[50] Y. Kalfoglou, M. Schorlemmer, Ontology mapping: The state of the art, Knowl.
Eng. Rev. 18 (1).

[51] S. Pavel, J. Euzenat, Ontology matching: State of the art and future challenges,
IEEE Trans. Knowl. Data Eng. 25 (1) (2013) 158–176.

[52] M. Taheriyan, C. Knoblock, P. Szekely, J.L. Ambite, Y. Chen, Leveraging linked
data to infer semantic relations within structured sources, in: Proceedings of
the 6th International Workshop on Consuming Linked Data, COLD, 2015.

http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref37
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref39
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref44
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref45
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref46
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref47
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref49
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref51
http://refhub.elsevier.com/S1570-8268(15)00144-4/sbref52

	Learning the semantics of structured data sources
	Introduction
	Motivating example
	Learning semantic models
	Learning semantic types of source attributes
	Building a graph from known semantic models, semantic types, and domain ontology
	Mapping source attributes to the graph
	Generating and ranking semantic models

	Evaluation
	Scenario 1
	Scenario 2

	Related work
	Discussion
	Acknowledgments
	References

