
Pergamon
Information Systems Vol. 26, No. 8, pp. 607–633, 2001

Copyright c© 2001 Elsevier Science Ltd
All rights reserved

0306-4379/01

0306-4379(01)00042-4

LEARNING OBJECT IDENTIFICATION RULES
FOR INFORMATION INTEGRATION

Sheila Tejada
1
, Craig A. Knoblock

1
, and Steven Minton

2

1University of Southern California/Information Sciences Institute, 4676 Admiralty Way, Marina del Rey CA 90292
2Fetch Technologies 4676 Admiralty Way, Marina del Rey CA 90292

(December 2001)

Abstract — When integrating information from multiple websites, the same data objects can exist
in inconsistent text formats across sites, making it difficult to identify matching objects using exact
text match. We have developed an object identification system called Active Atlas, which compares
the objects’ shared attributes in order to identify matching objects. Certain attributes are more
important for deciding if a mapping should exist between two objects. Previous methods of object
identification have required manual construction of object identification rules or mapping rules for
determining the mappings between objects. This manual process is time consuming and error-prone.
In our approach, Active Atlas learns to tailor mapping rules, through limited user input, to a specific
application domain. The experimental results demonstrate that we achieve higher accuracy and require
less user involvement than previous methods across various application domains.

1. INTRODUCTION

Many problems arise when integrating information from multiple information sources on the
web [79]. One of these problems is that data objects can exist in inconsistent text formats across
several sources. An example application of information integration involves integrating all the
reviews of restaurants from the Zagat’s Restaurants webpage with the current restaurant health
ratings from the Department of Health’s website. To integrate these sources requires comparing
the objects from both sources and identifying which restaurants are the same.

Examples of the object identification problem are shown in Figure 1. In the first example the
restaurant referred to as “Art’s Deli” on the Zagat’s webpage may appear as “Art’s Delicatessen” on
the Health Department’s site. Because of this problem, the objects’ instances cannot be compared
using equality, they must be judged according to text similarity in order to determine if the objects
are the same. When two objects are determined to be the same, a mapping is created between
them.

The examples in Figure 1 are each representative of a type of example found in the restaurant
domain. Together, these types of examples demonstrate the importance of certain attributes or
combinations of attributes for deciding mappings between objects. Both sources list a restaurant
named “Teresa’s,” and even though they match exactly on the Name attribute, we would not
consider them the same restaurant. These restaurants belong to the same restaurant chain, but
they may not share the same health rating. In this restaurant application the Name attribute
alone does not provide enough information to determine the mappings.

The “Steakhouse The” and “Binion’s Coffee Shop” restaurants are located in the same food
court of a shopping mall. Although they match on the Street and Phone attributes, they may not
have the same health rating and should not be considered the same restaurant. In the last example,
due to errors and unreliability of the data values of the Street attribute, the restaurant objects
match only on the Name and Phone attributes. Therefore, in order for objects to be correctly
mapped together in this application, the objects must match highly on both the Name and the
Street attributes (“Art’s Deli”) or on both the Name and Phone attributes (“Les Celebrites”).
This type of attribute information is captured in the form of object identification rules (mapping
rules), which are used to determine the mappings between the objects.

This paper presents an object identification system called Active Atlas that learns to tailor
mapping rules to a specific application domain in order to determine with high accuracy the set
of mappings between the objects of two sources. The main goal of this research is to achieve

607

608 Sheila Tejada et. al

Name Street Phone

Art’s Deli12224 Ventura Boulevard 818-756-4124

Teresa's 80 Montague St. 718-520-2910

Steakhouse The 128 Fremont St. 702-382-1600

Les Celebrites 155 W. 58th St. 212-484-5113

Zagat’s Restaurants Department of Health

Name Street Phone

Art’s Delicatessen12224 Ventura Blvd. 818/755-4100

Teresa's103 1st Ave. between 6th and 7th Sts. 212/228-0604

Binion’s Coffee Shop 128 Fremont St. 702/382-1600

Les Celebrites 160 Central Park S 212/484-5113

Fig. 1: Matching Restaurant Objects

the highest possible accuracy in object identification with minimal user interaction in order to
properly integrate data from multiple information sources. Active Atlas is a tool that can be used
in conjunction with information mediators, such as SIMS [4] and Ariadne [47], to properly handle
the object identification problem for information integration.

1.1. Ariadne Information Mediator

The Ariadne information mediator [48] is a system for extracting and integrating information
from sources on the web. Ariadne provides a single interface to multiple information sources for
human users or applications programs. Queries to Ariadne are in a uniform language, independent
of the distribution of information over sources, the source query languages, and the location of
sources. Ariadne determines which data sources to use and how to efficiently retrieve the data
from the sources.

Ariadne has a set of modeling tools that allow the user to rapidly construct and maintain
information integration applications for specific information sources, such as the restaurant appli-
cation shown in Figure 2. This application integrates information about restaurants from Zagat’s
Restaurants with information from the Department of Health. In order to retrieve data objects
from these web sources, wrappers are created for each source.

A wrapper is software that extracts information from a website and provides a database-like
interface. In this restaurant application two wrappers are created. Application building tools are
provided with the Ariadne system, including a wrapper building tool, which generates a wrapper
to properly extract information from a website. When the application has been constructed, the
Ariadne information mediator can answer queries from the user by breaking them into individual
queries to the appropriate wrapper.

Data objects extracted from websites by these wrappers can be stored in the form of records in a
relational table or database (Figure 3). These objects (records) represent entities in the real world,
like restaurants. Each object has a set of attributes (e.g., Name, Street, Phone). A specific
restaurant object, for example, may have the following set of values for its attributes: the value
“Art’s Deli” for the Name attribute, the value “12224 Ventura Boulevard” for the Street attribute,
and the value “818-756-4124” for the Phone attribute. As shown in Figure 3 the attribute values
of objects can have different text formats and values across websites or information sources.

To allow the user to properly query the information mediator about these objects, there is a
unifying domain model created for each Ariadne application, which provides a single ontology. The
domain model (Figure 4) is used to describe the contents of the individual sources. Given a query

Learning Object Identification Rules for Information Integration 609

Zagat’s Wrapper Dept. of Health WrapperAriadne
Information Mediator

User Query

Fig. 2: Restaurant Application

Art’s Deli 12224 Ventura Boulevard 818-756-4124

Teresa’s 80 Montague St. 718-520-2910

Steakhouse The 128 Fremont St. 702-382-1600

Les Celebrites 155 W. 58th St. 212-484-5113

Zagat’s Restaurant Table

Name Street Phone

Name Street Phone

Art’s Delicatessen 12224 Ventura Blvd. 818/755-4100

Teresa’s 103 1st Ave. between 6th and 7th Sts. 212/228-0604

Binion’s Coffee Shop 128 Fremont St. 702/382-1600

Les Celebrites 5432 Sunset Blvd 212/484-5113

Department of Health’s Restaurant Table

Fig. 3: Restaurant data objects stored as records

in terms of the concepts (e.g. Restaurant) and attributes (e.g. Name and Phone) described in the
model, the system dynamically selects an appropriate set of sources and then generates a plan to
efficiently produce the requested data.

610 Sheila Tejada et. al

Restaurant

Zagat’s
Restaurants

Dept of Health
Restaurants

Name
Phone

Street

Menu Rating

Fig. 4: Restaurant Domain Model

Unfortunately, due to the object identification problem described in Figure 1, the given domain
model (Figure 4) does not provide enough information for the mediator to properly integrate the
information from the sources. To address this problem, Active Atlas can be applied to determine
with high accuracy the mappings between the objects of the sources and add new information
sources to the domain model that include the necessary information for integrating the sources
(Figure 5).

After Active Atlas determines the total mapping assignment for an application, it builds two
tables for storing the mapping information in order to properly access and integrate these sources
in the future. The mapping information is stored as a global object table and individual source
mapping tables. The global object table contains a unique identifier for each object in the appli-
cation. The global object table represents the union of the objects in the sources, capturing the
exact relationship between the sources. In the restaurant application, this table may contain, for
examples, the restaurant names as the unique identifiers for the union of the Zagat’s and Health
Dept’s restaurants. Because there is only one entry in the table for each unique restaurant, only
one of the duplicate instances, such as “Art’s Deli” and “Art’s Delicatessen,” can be chosen to
represent the restaurant in the global object table. The sources are ranked by user preference, so
that the instances from the most preferred source are chosen to be included in the global object
table. In this example, the Dept. of Health source has been chosen as the preferred source. Its
instances (e.g. “Art’s Delicatessen”) will be entered into the table over the Zagat’s instances (e.g.
“Art’s Deli”) when there are duplicate instances.

Ariadne will now be able to query the sources for restaurant information using the information
given in the global object table. Because these queries will refer to restaurants shared by the
sources using only preferred source (Dept. of Health) instances, these instances must be translated
when querying the other sources (Zagat’s). This type of mapping information is stored as a source
mapping table, or as a source mapping function if a compact translation scheme can be found to
accurately convert data instances from one source into another.

For the restaurant domain, the source mapping table would relate every object from the Zagat’s
Restaurant source to its counterpart in the global object table. This mapping table would contain
two attributes Restaurants Name and Zagat’s Name. If the Zagat’s restaurant did not have a
duplicate in the Dept. of Health source, then Restaurants Name and Zagat’s Name would be the

Learning Object Identification Rules for Information Integration 611

Restaurant

Zagat’s
Restaurants

Dept of Health
Restaurants

Name
Phone

Street

Menu Rating

Source
Mapping

Table

Zagat’s Name

Global
Object
Table

Fig. 5: Restaurant Domain Model with Mapping Table

same. Once these mapping constructs, i.e. mapping tables or functions, are have been automatically
generated, they can be considered new information sources (Figure 5). Active Atlas creates these
mapping information sources, so that mediators, like Ariadne, can use them to accurately integrate
data from inconsistent sources in an intelligent and efficient manner.

1.2. Approach

Identifying mappings between objects may be dependent on the application. The information
necessary for deciding a mapping may not be evident by solely evaluating the data itself because
there might be knowledge about the task that is not represented in the data. For example, the same
Government Census data can be grouped by household or by each individual (Figure 6) depending
on the task. In the figure below the objects corresponding to Mrs. Smith and Mr. Smith would
not be mapped together if the application is to retrieve information about an individual, such as
their personal income, from the Government Census data. But, if the application is to determine
the household mailing addresses in order to mail the new Census 2000 form to each household,
then the objects Mrs. Smith and Mr. Smith would be mapped together, so that the Smith
household would only receive a single Census 2000 form.

Mr. Smith, 345 Main Street, 678-9034

Matched?
Mrs. Smith, 345 Main St., 333-678-9034

Fig. 6: Example Census Data

In the restaurant domain (Figure 1), because we are retrieving information about health ratings,
we are interested in finding the same physical restaurant between the sources. In other words we
would not map together restaurants belonging to the same chain, like the “Teresa’s” restaurants
in Figure 1, or the restaurants in the same food court of a shopping mall, like “Steakhouse The” &

612 Sheila Tejada et. al

“Binion’s Coffee Shop.” Because of these types of examples, a combination of the Name attribute
and either the Street or Phone attributes is necessary to determine whether the objects should
be mapped together. But, for example, telemarketers trying to sell long distance phone service to
these restaurants, would only be interested in the restaurant phone number matching - the other
attributes would be irrelevant. Because the mapping assignment can depend on the application, the
data itself is not enough to decide the mappings between the sets of objects. The user’s knowledge
is needed to increase the accuracy of the total mapping assignment. We have adopted a general
domain-independent approach for incorporating the user’s knowledge into the object identification
system.

There are two types of knowledge necessary for handling object identification: (1) the impor-
tance of the different attributes for deciding a mapping, and (2) the text formatting differences or
transformations that may be relevant to the application domain. It is very expensive, in terms of
the user’s time, to manually encode these types of knowledge for an object identification system.
Also, due to errors that can occur in the data, a user may not be able to provide comprehensive
information without thoroughly reviewing the data in all sources. Our approach is to learn a set
of mapping rules for a specific application domain, through limited user input. We accomplish
this by first determining the text formatting transformations, and then learning domain-specific
mapping rules.

The focus of this paper is to present a general method of learning mapping rules for object
identification. This paper consists of five sections. Section 2 provides a detailed description of
our object identification system Active Atlas. Section 3 presents the experimental results of the
system. Section 4 discusses related work, and Section 5 concludes with a description of future
work.

2. LEARNING OBJECT IDENTIFICATION RULES

We have developed an object identification method that learns the mapping information nec-
essary to properly integrate web sources with high accuracy. As shown in Figure 7, there are two
stages in our method, computing the similarity scores and mapping-rule learning. In the first stage
the candidate generator is used to propose the set of possible mappings between the two sets of
objects by comparing the attribute values and computing the similarity scores for the proposed
mappings. In the next stage the mapping rule learner determines which of the proposed mappings
are correct by learning the appropriate mapping rules for the application domain.

The objects from the sources are given as input in the first stage of processing. The candidate
generator compares all of the shared attributes of the given objects by applying a set of domain-
independent functions to resolve text transformations, e.g., Substring, Acronym, Abbreviation,
etc., to determine which objects are possibly mapped together. It then computes the similarity
scores for each of attributes of the proposed mapped pairs of objects or candidate mappings. The
output of the candidate generator is the set of candidate mappings, each with their corresponding
set of attribute similarity scores and combined total score.

The second stage (Figure 7) is learning the mapping rules. This component determines which
attribute or combinations of attributes (Name, Street, Phone) are most important for mapping
objects by learning the thresholds on the attribute similarity scores computed in the first stage.
The purpose of learning the mapping rules is to achieve the highest possible accuracy for object
mapping across various application domains. The user’s input is necessary for learning these
mapping rules. The main idea behind our approach is for the mapping rule learner to actively
choose the most informative candidate mappings, or training examples, for the user to classify
as mapped or not mapped. The learner constructs high accuracy mapping rules based on these
examples, while at the same time limiting the amount of user involvement. Once the rules have
been learned, they are applied to the set of candidate mappings to determine the set of mapped
objects.

Learning Object Identification Rules for Information Integration 613

Set of Mappings
between the Objects

((A3 B2 mapped)
(A45 B12 not mapped)
(A5 B2 mapped)
(A98 B23 mapped)

((A3 B2, (s1 s2 sk), W3 2)
(A45 B12 , (s1 s2 sk), W45 12)...)

Computing Similarity Scores

Candidate Generator
Attribute Similarity Formula:

Sn(an, bn) = ∑ (ant• bnt) / (||a||•||b||)
t∈T

Source 1
Input: A1: (a1 a2 …ak)

A2: (a1 a2 …ak)
A3: (a1 a2 …ak)
A4: …

Mapping Rule Learning

Mapping Rule Learner
Mapping Rules:

Attribute 1 > s1 => mapped
Attribute n < sn ∧ Attribute 3 > s3 => mapped

Attribute 2 < s2 => not mapped

(Object pairs, Similarity Scores, Total Weight)

Source 2
Input: B1: (b1 b2 …bk)

B2: (b1 b2 …bk)
B3: (b1 b2 …bk)
B4: …

Fig. 7: General System Architecture

2.1. Computing Similarity Scores

When comparing objects, the alignment of the attributes is determined by the domain model
(Figure 4). The values for each attribute are compared individually (Figure 8 – Name with
Name, Street with Street, and Phone with Phone). Comparing the attributes individually
is important in reducing the confusion that can arise when comparing the objects as a whole.
Words can overlap between the attribute values. For example, some words in the Name of the
restaurant “The Boulevard Cafe” can appear in the Street attribute value of another restaurant.
Comparing the attributes individually saves computation and decreases mapping error by reducing
the number of candidate mappings considered.

614 Sheila Tejada et. al

Zagat’s

Art’s Delicatessen 12224 Ventura Blvd. 818/755-4100Dept of Health

Name Street Phone

Art’s Deli 12224 Ventura Boulevard. 818-756-4124

Fig. 8: Comparing Objects by Attributes

Given the two sets of objects, the candidate generator is responsible for generating the set
of candidate mappings by comparing the attribute values of the objects. The output of this
component is a set of attribute similarity scores for each candidate mapping. A candidate mapping
has a computed similarity score for each attribute pair. The process for computing these scores is
described in detail later in this section.

Example attribute similarity scores for the candidate mapping of the “Art’s Deli” and “Art’s
Delicatessen” objects are displayed in Figure 9. The similarity scores for the Name and Street
attribute values are relatively high. This is because the text values are similar and the text
formatting differences between them can be resolved. The Phone attribute score is low because
the two phone numbers only have the same area code in common, and since the dataset contains
many restaurants in the same city as “Art’s Deli,” the area code occurs frequently.

Candidate
Mapping Scores .967 .953 .3

Name Street Phone

Fig. 9: Set of Computed Similarity Scores

2.1.1. General Transformation Functions

Included in our framework is a set of general domain-independent transformation functions to
resolve the different text formats used by the objects (Figure 10). These transformation functions
(e.g. Abbreviation, Acronym, Substring, etc.) are domain-independent and are applied to all of
the attribute values in every application domain. These functions determine if text transformations
exist between words (tokens) in the attribute values, e.g., (Abbreviation - “Deli”, “Delicatessen”)
or between phrases, e.g. (Acronym - “California Pizza Kitchen”, “CPK”). If transformations exist
between the tokens, then a candidate mapping is proposed between the corresponding objects.

There are two basic types of the transformation functions. Type I transformations require only
a single token as input in order to compute its transformation. Type II transformations compare
tokens from two objects.

Type I transformations

• Stemming converts a token into its stem or root.

• Soundex converts a token into a Soundex code. Tokens that sound similar have the same
code.

• Abbreviation replaces token with corresponding abbreviation (e.g., 3rd or third).

Learning Object Identification Rules for Information Integration 615

Art’s Deli
California Pizza Kitchen
Philippe The Original

Zagat’s Dept of Health

Art’s Delicatessen
CPK
Philippe’s The Original

Abbreviation
Acronym
Stemming

Transformations

Fig. 10: Transformations

Type II transformations

• Equality compares two tokens to determine if each token contains the same characters in
the same order.

• Initial computes if one token is equal to the first character of the other.

• Prefix computes if one token is equal to a continuous subset of the other starting at the first
character.

• Suffix computes if one token is equal to a continuous subset of the other starting at the last
character.

• Substring computes if one token is equal to a continuous subset of the other, but does not
include the first or last character.

• Abbreviation computes if one token is equal to a subset of the other (e.g., Blvd, Boulevard).

• Acronym computes if all characters of one token are initial letters of all tokens from the
other object, (e.g., CPK, California Pizza Kitchen).

2.1.2. Information Retrieval Engine

The candidate generator is a modified information retrieval engine [8] that can apply a variety
of transformation functions to resolve text formatting inconsistencies and generate the candidate
mappings. The information retrieval engine is used to apply the transformation functions between
sets of attribute values individually, i.e. Name with Name, Street with Street and Phone and
Phone in the restaurant application (Figure 8).

Most information retrieval systems, such as the Whirl system [19], apply only the stemming
transformation function to compare the words of the attribute values. The stemming transforma-
tion function compares the stem or root of the words to determine similarity. In our approach
we have included a set of general transformation functions, so that the system is able to resolve a
variety of text formatting differences.

For the candidate generator, the attribute values are considered short documents. These doc-
uments are divided into tokens. These tokens are compared using the transformation functions. If
a transformation exists between the tokens or if the tokens match exactly, then a candidate map-
ping is generated for the corresponding objects. For the example below, a candidate mapping is
generated for the objects “Art’s Deli” and “Art’s Delicatessen.,” because there are transformations
between their tokens: (Equality – “Art’s”, “Art’s”), i.e. exact text match, and (Abbreviation –
“Deli”, “Delicatessen”) (Figure 11).

The information retrieval (IR) engine has been modified in order to apply the transformations
in a three step process. The first step is to apply all of the Type I transformations to the data.
The second step after applying the Type I transformations is to determine the set of object pairs

616 Sheila Tejada et. al

Zagat’s Name Dept of Health

Art’s Deli Art’s Delicatessen

Equality

Abbreviation

2

1

Fig. 11: Applying Transformation Functions

that are related. And the third step is to apply the Type II transformations in order to further
strengthen the relationship between the two data objects.

In step 1, the Type I transformations are applied to one attribute dataset, such as the De-
partment of Health’s restaurant names. Like a traditional IR engine the data is first tokenized,
the transformations are applied to each token (Stemming, Soundex, etc.) and then stored in a
hash-table. Therefore, each token can have more than one entry in the hash-table. In this modi-
fied IR engine, information about which transformation was applied is stored, as well as the token
frequency and tuple (object) number.

Now the other dataset for this attribute (Zagat’s restaurant names) is used as a query set against
this hash-table. Each object in the the Zagat’s dataset is tokenized and the transformations are
applied to each of the tokens. The object’s tokens and the new transformation tokens are both
used to query the hash-table. The hash-table entries returned contain the tuple numbers of the
related objects from the other dataset (Department of Health). This process is completed for every
attribute (Name, Street, and Phone).

At the end of the first step, the set of related objects and the transformations used to relate
them are known for each attribute. The second step is to determine the total set of related objects
by combining the sets computed for each of the attributes. Once this is done, then the more
computationally expensive transformations (Type II) are applied to the remaining unmatched
tokens of the attribute values for the related object pairs in order to improve the match. When
this step is finished, it will output the set of related object pairs with their corresponding set
of transformations used to relate them, along with the token frequency information needed for
computing the similarity scores.

2.1.3. Computing Attribute Similarity Scores

Each transformation function has an initial probability score or transformation weight that is
used in the calculation of the attribute similarity scores. For the example in Figure 11 the total
similarity score for the Name attribute values “Art’s Deli” and “Art’s Delicatessen,” is calculated
with the weights for the two transformations (Equality – “Art’s” “Art’s”), and (Abbreviation –
“Deli”, “Delicatessen”). In this section we discuss in detail how the transformation weights are
used to calculate the attribute similarity scores.

Figure 12 shows how attribute values, (Z1, Z2, Z3) and (D1, D2, D3), are compared in
order to generate the set of attribute similarity scores (Sname, Sstreet, Sphone). In Figure 12,
Z1 and D1 represent Name attribute values, e.g. “Art’s Deli” and “Art’s Delicatessen.” These
values are compared using general transformation functions and then their transformation weights
are used to calculate the similarity score Sname.

To calculate the similarity scores for the attribute values of the candidate mappings, we have
employed the cosine measure commonly used in information retrieval engines with an altered form
of the TFIDF (Term Frequency x Inverse Document Frequency) weighting scheme [28]. Because
the attribute values of the object are very short, the term frequency weighting is not relevant.

Learning Object Identification Rules for Information Integration 617

Zagat’s Objects Dept of Health Objects

Z1, Z2, Z3 D1, D2, D3

Name Street Phone Name Street Phone

Sname Sstreet Sphone

Fig. 12: Computing Similarity Scores

In place of the term frequency, we have substituted the initial probability score of the applied
transformation function, which represents the transformation weight (TWIDF). The similarity
score for a pair of attribute values is computed using the following attribute similarity formula:

Similarity(A,B) =
∑t

i=1(wia • wib)√∑t
i=1 w2

ia •
∑t

i=1 w2
ib

• wia= (0.5 + 0.5 tweightia/max tweighta) x IDF

• wib= freqib x IDFi

• tweightia = transformation function weight i for attribute value a

• max tweighta = maximum transformation function weight

• IDFi= IDF (Inverse Document Frequency) of token i in the entire collection

• freqib = frequency of token i in attribute value b

In this formula a and b represent the two documents (attribute values) being compared and
t represents the number of tokens in the documents. The terms wia and wib correspond to the
weights computed by the TWIDF weighting function. This formula measures the similarity by
computing the distance between two attribute values.

2.1.4. Calculating the Total Object Similarity Scores

When the candidate generator is finished, it outputs all of the candidate mappings it has
generated along with each of their corresponding set of attribute similarity scores. Example sets of
attribute similarity scores from the candidate generator are shown in Figure 13. For each candidate
mapping, the total object similarity score is calculated as a weighted sum of the attribute similarity
scores.

Each attribute has a uniqueness weight that is a heuristic measure of the importance of that
attribute. This is to reflect the idea that we are more likely to believe mappings between unique
attributes because the values are rarer. The uniqueness weight of an attribute is measured by the
total number of unique attribute values contained in the attribute set divided by the total number
of values for that attribute set. There are two uniqueness weights for each attribute similarity
score, because we are comparing pairs of attribute values – one from each of the two sources
being integrated. To calculate the total object similarity score, each attribute similarity score is

618 Sheila Tejada et. al

multiplied by its associated uniqueness weights, and then summed together. Once the total object
scores are computed, the candidate mapping information is then given as input to the mapping-rule
learner (Figure 13).

(.9 .79 .4) 2.03449
(.17 .3 .74) 1.1825913
(.8 .5 .49) 1.7495083
(.95 .97 .67) 2.520882
(.89 .95 .58) 2.3537147
(.37 .57 .24) 1.1432254
(.89 .99 .03) 1.8490307
(.92 .5 .78) 2.154467

Name Street Phone Total Score

Fig. 13: Output of the Candidate Generator

2.2. Mapping-Rule Learning

The mapping-rule learner determines which attribute, or combinations of attributes (Name,
Street, Phone), are most important for mapping objects. The purpose of learning the mapping
rules is to achieve the highest possible accuracy for object mapping across various application
domains. In our approach, the system actively chooses the most informative candidate mappings
(training examples) for the user to classify as mapped or not mapped in order to minimize the
number of user-labeled examples required to learn high accuracy mapping rules.

2.2.1. Decision Tree Learning

Mapping rules contain information about which combination of attributes are important for
determining the mapping between two objects, as well as, the thresholds on the similarity scores
for each attribute. Several mapping rules may be necessary to properly classify the objects for a
specific domain application. Examples of mapping rules for the restaurant domain are:

• Rule 1: Name > .859 and Street > .912 =⇒ mapped

• Rule 2: Name > .859 and Phone > .95 =⇒ mapped

These rules are obtained through decision tree learning [72]. Decision tree learning is an induc-
tive learning technique, where a learner constructs a decision tree (Figure 14) to correctly classify
given positive and negative labeled examples. Decision trees classify an example by starting at the
top node and traversing the tree down to a leaf, which is the classification for the given example.
Each node of the tree contains a test to perform on an attribute, and each branch is labeled with
a possible outcome of the test.

To classify for the candidate mapping of the objects “Art’s Deli” and “Art’s Delicatessen,”
which has the attribute similarity scores (.967 .953 .3), we can use the decision tree shown in
Figure 14. First, the Name attribute is tested. Its result is positive, so the Street attribute is
tested next. Its result is also positive, and we follow the positive branch to reach a leaf node with
a mapped classification; therefore, this example is classified as mapped.

Decision trees are created by determining which are the most useful attributes to classify the
examples. A metric called information gain measures how well an attribute divides the given set

Learning Object Identification Rules for Information Integration 619

of training examples by their classification (mapped/not mapped). Creating the decision tree is
an iterative process, where the attribute with the greatest information gain is chosen at each level.
Once a decision tree is created, it can be converted into mapping rules, like those described above.

Name > .859

Phone > .95

Street > .912not mapped

mapped

mappednot mapped

+

+

+

-

-

-

Fig. 14: Example decision tree for restaurant domain

2.2.2. Active Learning

A single decision tree learner on its own can learn the necessary mapping rules to properly
classify the data with high accuracy, but may require a large number of user-labeled examples, as
shown in the Experimental Results section. To efficiently learn the mapping rules for a particular
task or domain, we are currently applying a supervised learning technique, which uses a combi-
nation of several decision tree learners, called query by bagging [1]. This technique generates a
committee of decision tree learners that vote on the most informative example or candidate map-
ping for the user to classify next. The query by bagging technique is considered an active learning
technique [5] because the system actively chooses examples for the user to label. We have adopted
this committee-based approach in order to reduce the number of user-labeled examples.

Figure 15 graphically shows the learning algorithm for the query by bagging technique. The first
step is selecting the small initial set of training examples. The set of candidate mappings (Figure 13)
serve as the set of examples from which the training examples are chosen. In order to choose the
training examples for this initial training set, the candidate mappings are grouped according to
their total similarity scores (Figure 13) – roughly corresponding to dividing up the examples by the
number of attributes they highly match on, e.g. if there are three attributes being compared then
there are three groups of examples. The group that matches on the most attributes tends to have
the fewest examples and the majority of positive examples for the application domains. An equal
number of examples are chosen randomly from each group to compose the initial training set. This
selection process was developed to insure that a variety of examples would be included because
there is a sparse number of positive examples (true mappings) among the candidate mappings.
Having a variety of examples is important for creating a diverse set of decision tree learners.

Once the initial training set has been created, the next step is to use the bagging [12] technique
to initialize the learners. Bagging randomly samples the initial training set, choosing subsets of
examples to initialize each learner in the committee. Each decision tree learner is initialized with
a different subset of the initial training set. From these training examples the decision tree learner
efficiently constructs a decision tree that determines the important attributes and thresholds for
deciding a mapping. This decision tree is then converted into a set of mapping rules. These
mapping rules are used to classify the remaining examples (candidate mappings) (Figure 13). If
the similarity scores of a candidate mapping fulfill the conditions of a rule then the candidate

620 Sheila Tejada et. al

Set of Mapped
Objects

Choose initial examples

Generate committee of learners

Learn
Rules

Classify
Examples

Votes Votes Votes

Choose Example

USER
Learn
Rules

Classify
Examples

Learn
Rules

Classify
Examples

Label

Label

Fig. 15: Mapping-Rule Learner

mapping is classified as mapped.
With a committee of decision tree learners, the classification of an example or candidate map-

ping by one decision tree learner is considered its vote on the example. The votes of the committee
of learners determine which examples are to be labeled by the user. The choice of an example is
based on the disagreement of the query committee on its classification (Figure 16). The maximal
disagreement occurs when there is an equal number of mapped (yes) and not mapped (no) votes
on the classification of an example. This example has the highest guaranteed information gain, be-
cause regardless of the example’s label, half of the committee will need to update their hypothesis.
As shown in Figure 16 the example CPK, California Pizza Kitchen is the most informative
example for the committee (L1, L2, L3, L4, L5, L6, L7, L8, L9, and L10).

Art’s Deli, Art’s Delicatessen

CPK, California Pizza Kitchen

Ca’Brea, La Brea Bakery

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Yes No Yes No Yes Yes Yes No No No

No No No No No No No No No No

Examples L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Fig. 16: Choosing the next example

Learning Object Identification Rules for Information Integration 621

There are cases where the committee disagrees the most on several examples. In order to
break a tie and choose an example, the total object similarity score, associated with each example
(Figure 13), is used as the deciding factor. Since there is a sparse number of positive examples in
the set of candidate mappings, we would like to increase the chances of choosing a positive example
for the committee to learn from. Therefore, the example with the greatest total object similarity
score is chosen from the proposed set.

Once an example is chosen, the user is asked to label the example, and the system updates the
committee. This learning process is repeated until either all learners in the committee converge to
the same decision tree or the user threshold for labeling examples has been reached. When learning
has ended, the mapping-rule learner outputs a majority-vote classifier that can be used to classify
the remaining pairs as mapped or not mapped. After the total mapping assignment is complete,
new information sources (mapping tables) can be created for use by an information mediator.

3. EXPERIMENTAL RESULTS

In this section we present the experimental results that we have obtained from running Active
Atlas across three different application domains: Restaurants, Companies and Airports. For each
domain, we also ran experiments for a system called Passive Atlas. The Passive Atlas system
includes the candidate generator for proposing candidate mappings and a single C4.5 decision tree
learner for learning the mapping rules.

We also include results from two baseline experiments as well. The first baseline experiment
runs the candidate generator to compare all of the shared attributes of the objects separately, while
the second baseline experiment compares the objects as a whole, with all of the shared attributes
concatenated into one attribute. Both baseline experiments require choosing an optimal mapping
threshold from a ranked list of candidate mappings, and they use only the stemming transformation
function.

3.1. Restaurant Domain

For the restaurant domain, the shared object attributes are Name, Street, and Phone. Many
of the data objects in this domain match almost exactly on all attributes, but there are types of
examples that do not, as shown in Figure 1. Because of these four types of examples, the system
learns two mapping rules: if the restaurants match highly on the Name & Street or on the Name
& Phone attributes then the objects should be mapped together. The example “Art’s Deli” is an
example of the first type of mapping rule because its Name and Street attribute values match
highly. The “Les Celebrites” example is an example of the second type of mapping rule, because
its Name and Phone attribute values match highly. These two mapping rules are used to classify
all of the candidate mappings. Any candidate mapping that fulfills the conditions of these rules,
will be mapped. Because in our application we are looking for the correct health rating of a specific
restaurant, examples matching only on the Name attribute, like the “Teresa’s” example, or only
on the Street or Phone attribute, like “Steakhouse The” are not considered mapped.

3.1.1. Experimental Results

In this domain the Zagat’s website has 331 objects and the Dept of Health has 533 objects.
There are 112 correct mappings between the two sites. When running the baseline experiments,
the system returns a ranked set of all the candidate mappings. The user must scan the mappings
and decide on the mapping threshold or cutoff point in the returned ranked list. Every candidate
mapping above the threshold is classified as mapped and every candidate mapping below the
threshold is not mapped. The optimal mapping threshold has the highest accuracy. Accuracy is
measured as the total number of correct classifications divided by the total number of mappings
plus the number of correct candidate mappings not proposed. This is comparable to the Whirl
system [19].

Listed in the following table is the accuracy information at specific thresholds for the baseline
experiment that compared the attributes separately (Figure 17). The mapping threshold with

622 Sheila Tejada et. al

the highest accuracy is highlighted. In Figure 17 the optimal mapping threshold is at rank 111
in the list, and therefore, the top 111 examples in the list are considered mapped together. The
table shows that at this optimal threshold, only 109 examples of the 111 are correct mappings, 3
true examples have been missed and 2 false examples have been included; therefore, 5 examples in
total are incorrectly classified. In this domain application, a threshold cannot be chosen to achieve
perfect accuracy. This is true as well for the second baseline experiment which compares the object
as a whole. For that experiment, at the optimal threshold there are also 109 correct mappings, 3
true mappings and 10 false mappings. In general, selecting the optimal threshold to obtain the
highest possible accuracy is an unsolved problem.

111

of Ranked
Examples

of Correct
Mappings

of Missed
Mappings

of False
Mappings

Accuracy

70 70 42 0 0.9871

92 91 21 1 0.9931

109 3 2 0.9980

116 110 2 6 0.9977

119 111 1 8 0.9972

128 112 0 16 0.9951

Fig. 17: Baseline Results (separate attributes using stemming)

We compared the accuracy for the best cases of the baseline results against the accuracy of the
two systems for mapping-rule learning. The purpose of the Passive Atlas experiments are to show
that learning the mapping rules can achieve higher accuracy than the baseline experiments, while
also demonstrating that Active Atlas can achieve the higher accuracy with fewer labeled examples.
The goal of both learning systems is to deduce more information about how the objects match in
order to increase the accuracy of the total mapping assignment. The results of these experiments
are shown in Figure 18.

The accuracy results from the four types of experiments are shown in relation to the number of
examples that were labeled. For the results of the baseline experiments, only the optimal accuracy
is displayed, because the user chooses a threshold and does not label examples. In this domain
the baseline experiments demonstrate that comparing the attributes individually does improve the
accuracy of the mappings. When comparing the objects as a whole, words can overlap between
the attribute values. This increases mapping error by increasing the number of false candidate
mappings considered.

For the two learning systems the results have been averaged over 10 runs, and the learners
classified 3259 candidate mappings proposed by the candidate generator. In these experiments,
the initial probability scores for all of the general transformation functions are assigned by the user,
based on background knowledge of the transformation functions. The initial probability scores for
the transformation functions are only set once. They remain constant for all the experiments across
all three domains.

Figure 18 shows that learning the mapping rules increases the accuracy of the mapping assign-
ment. Active Atlas exceeds the highest possible accuracy for the baseline case comparing separate
attributes at 60 examples (at 900 examples for Passive Atlas). In the Active Atlas experiments,
the system achieved 100% accuracy at 80 examples, while Passive Atlas reached 100% accuracy
at 1900 examples. The graph also shows that Active Atlas requires fewer labeled examples than
Passive Atlas.

The active learner is able to outperform the passive learner because it is able to choose ex-
amples that give it the most information about the domain and guide the learning process. The
passive learner chooses examples in random manner, independent of the actual data. Because
these domains have a sparse number of positive (mapped) examples (Restaurant 3%, Companies

Learning Object Identification Rules for Information Integration 623

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300 350

Number of Examples

A
cc

ur
ac

y

Active Atlas
Passive Atlas
Baseline (separate attributes)
Baseline (one attribute)

Fig. 18: Restaurant domain experimental results

3%, and Airports 9%), it is harder for the passive learner to randomly choose positive examples
that lead to high accuracy mapping rules; and therefore, it requires more examples.

We also conducted two experiments (Figure 19) in order to examine the effect of the set of
transformations on the accuracy of Active Atlas across the three domains. In the first experiment
we ran Active Atlas with all of the transformation functions assigned to the same probability score
of .5. We did this to test the sensitivity of the system to the setting of the initial probability scores.
In the second experiment we ran a variation of Active Atlas where it applies only the stemming
transformation function.

The results for the sensitivity analysis show that the initial probability scores do effect the
performance of the system. This variation of Active Atlas achieves 100% accuracy at 250 examples
for the Restaurant domain. The system’s performance for the Company and Airport domains
decreased but not as significantly. The sensitivity analysis also demonstrates that all transforma-
tion functions should not have the same weight. For example, in the sensitivity experiment the
transformation (Abbreviation - “Deli”, “Delicatessen”) has the same weight as the transformation
(Substring - “cat”, “Delicatessen”). The transformation (Abbreviation - “Deli”, “Delicatessen”)
accurately reflects a relationship that exists in this domain, and should have a greater weight than
the other transformation. Our future work (Section 5) is concerned with learning to optimize the
transformation function settings to achieve high accuracy using fewer labeled examples.

In the Active Atlas experiments shown in Figure 19, the system with the transformations
achieved 100% accuracy at 80 examples, and the system with stemming achieved 100% accuracy
at 140 examples. In this domain the transformations increase the similarity scores of a majority
of candidate mappings. This means that the experiments that used the general transformations
needed more examples initially, but then were able to find the harder examples more easily.

In the restaurant domain there are fewer text inconsistencies than the other two domains, and
therefore, the transformation functions are not as critical for determining a mapping. This is the
reason that Active Atlas (stemming) outperforms the transformation sensitivity experiment. In
the other domains, where transformation functions are necessary, the transformation sensitivity
experiment outperforms Active Atlas (stemming).

624 Sheila Tejada et. al

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 50 100 150 200 250 300 350

Number of Examples

A
cc

u
ra

cy

Active Atlas

Active Atlas (stemming)

Active Atlas (sensitivity)

Fig. 19: Restaurant domain experimental results

3.2. Company Domain

In the company domain there are two websites, HooversWeb and IonTech, which both provide
information on companies (Name, Url and Description). In this domain the Url attribute is
usually a very good indicator for companies to match on, e.g. “Soundworks” (Figure 20). There
are examples where the Name matches very well, but the Url is not an exact match (“Cheyenne
Software”); or, where the Url matches exactly, but the names are not matched at all (“Alpharel”
& “Altris Software”). Atlas, therefore, learns the thresholds on the combination of the attributes
Name and Url, where one attribute needs to be highly matched and the other partially matched
in order for there to be a mapping between the objects.

Name Url Description

Soundworks, www.sdw.com , Stereos

Cheyenne Software,www.chey.com, Software

Alpharel, www.alpharel.com, Computers

Name Url Description

Soudworks, www.sdw.com, AV Equipment

Cheyenne Software,www.cheyenne.com, Software

Altris Software, www.alpharel.com, Software

HooversWeb IonTech

Fig. 20: Company Domain Examples

Learning Object Identification Rules for Information Integration 625

3.2.1. Experimental Results

In this domain HooversWeb has 1163 objects and the IonTech site has 957 objects. There
are 315 correct mappings between the sites. The results for the baseline case comparing separate
attributes are shown in Figure 21. The optimal threshold is at rank 282, where 41 examples
are incorrectly classified and 12% of the object mappings are missing. For the second baseline
experiment comparing objects as a whole, there are 119 incorrectly classified examples.

282

Ranked
Examples

Correct
Mappings

Missed
Mappings

False
Mappings

Accuracy

50 50 265 0 0.9723

223 222 93 1 0.9901

278 37 4 0.9957

390 308 7 82 0.9907

4919 315 0 4604 0.5189

Fig. 21: Baseline Results (separate attributes using stemming)

For the learning experiments (Figure 22) in the company domain, the candidate generator
proposed 9570 candidate mappings, and the results have been averaged over 10 runs. Similar to
the restaurant domain, Figure 22 shows that learning the mapping rules increases the accuracy of
the mapping assignment. Active Atlas achieves higher accuracy than the baseline experiment with
separate attributes at 80 examples (at 800 examples for Passive Atlas). The graph also shows that
the active learner requires fewer labeled examples than Passive Atlas.

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600 700

Number of Examples

A
cc

u
ra

cy

Active Atlas

Passive Atlas

Baseline (separate attributes)

Baseline (one attribute)

Fig. 22: Company Domain experimental results

The transformation functions have more influence in this domain. The transformation functions
are able to resolve the spelling mistake between “Soundworks” and “Soudworks” (Figure 20) using
the Soundex transformation function, which made the difference in it being mapped or unmapped.

626 Sheila Tejada et. al

In the Active Atlas experiments, the system with the transformations achieved 100% accuracy at
120 examples, the system with stemming achieved 100% accuracy at 900 examples, and the system
for the sensitivity experiment achieved 100% at 180 examples.

3.3. Airport/Weather Domain

We have a list of 428 airports in the United States and a list of over 12,000 weather stations in
the world. In order to determine the weather at each airport, we would like to map each airport
with its weather station. The airports and the weather stations share two attributes (Code and
Location). The airport code is a three letter code (e.g., ADQ), and the weather station code is a
four letter code (e.g., PADQ). In the majority of examples the airport code is the last three letters
of the weather station code, like the “Kodiak” example in Figure 23.

Code Location

PADQ, KODIAK, AK

KIGC, CHARLESTON AFB VA

KCHS, CHARLETON VA

Code Location

ADQ, Kodiak, AK USA

CHS, Charleston VA USA

Weather Stations Airports

Fig. 23: Airport/Weather Domain examples

3.3.1. Experimental Results

The results in this domain for the candidate generator at selected thresholds are shown in
Figure 24. The optimal threshold is set at rank 438, where 229 examples are incorrectly classified
and over 25% of the object mappings are missing. The accuracy for the baseline experiment is
also dramatically decreased in this domain, with 309 incorrectly classified examples at the optimal
threshold.

438

Ranked
Examples

Correct
Mappings

Missed
Mappings

False
Mappings

Accuracy

19 19 408 0 0.9052

355 276 151 79 0.9465

318 109 120 0.9468

479 331 96 148 0.9433

1667 400 27 1267 0.6996

Fig. 24: Baseline Results (separate attributes using stemming)

Learning Object Identification Rules for Information Integration 627

In this domain the set of transformation functions plays a larger role in increasing the accuracy
of the object mappings, as clearly shown by the candidate generator results. The main reason
for the lower accuracy of the experiments with stemming is because the baseline system is not
able to recognize that the airport code is a substring of the weather code for the Code attribute.
Therefore, it only uses the Location attribute to match objects, so it makes mistakes, such as
mapping the “KIGC” and “CHS” objects in Figure 25. There are 27 object mappings that were
not proposed by the candidate generator because it did not have the necessary transformations.

Figure 25 shows results from a baseline experiment comparing separate attributes and using the
set of transformation functions. The significant effect of the transformation functions are clearly
demonstrated in this domain. The optimal threshold is set at rank 368, where 76 examples are
incorrectly classified. This is less than one third of the incorrect classifications made by the baseline
experiment that compares separate attributes using stemming.

368

Ranked
Examples

Correct
Mappings

Missed
Mappings

False
Mappings

Accuracy

342 342 85 0 0.9801

351 350 77 1 0.9818

360 67 8 0.9825

648 407 20 241 0.9396

3282 420 7 2862 0.3297

Fig. 25: Baseline Results (separate attributes using set of transformations)

Like the other domains, Figure 26 shows that learning the mapping rules increases the accuracy
of the mapping assignment. Active Atlas immediately achieves higher accuracy than the baseline
experiments, and Passive Atlas achieves higher accuracy after 60 examples.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500
Number of Examples

A
cc

u
ra

cy

Active Atlas

Passive Atlas

Baseline (separate attributes)

Baseline (one attribute)

Fig. 26: Airport/Weather domain experimental results

628 Sheila Tejada et. al

The graph also shows that there are cases where (at 200 and 400 examples) Passive and Active
Atlas achieve the same accuracy. This is because for Active Atlas, the committee of learners
converged too quickly on a classification of the data; or in other words, all of their votes were
identical. Therefore, many more labeled examples were needed to achieve high accuracy. As
discussed in the Section 5, one of the goals for future work is to address this issue of reducing
the number of labeled examples needed by Active Atlas to achieve a high accuracy mapping
assignment.

4. RELATED WORK

Previous work on object identification has either employed manual methods to customize rules
for each domain or has required the user to apply a fixed threshold to determine which objects
are considered mapped together. These systems generally require heavy user interaction in order
to achieve high accuracy mapping. The main advantage of our system is that it can, with high
accuracy, learn to tailor mapping rules to a specific domain, while limiting user involvement.

The object identification problem occurs as a part of larger application areas, such as multi-
source integration, automatic domain modeling, and data warehousing. There are three application
areas that included the problem of object identification (Figure 27): databases, information re-
trieval, and probabilistic methods.

Databases Information
Retrieval

Solution Approaches

Probabilistic
Methods

Object Identification

Multi-Source
Integration

Data
Warehousing

Automatic
Domain Modeling

Application Areas

Fig. 27: Related work graph

4.1. Application Areas

Research in multi-source integration [79] is concerned with dynamically and efficiently accessing,
retrieving and integrating information from multiple information sources. The problem of object
identification can appear when integrating information from sources that use different formatting
conventions [6, 34, 75]. General information integration systems, like Pegasus [2], TSIMMIS [31],
Infomaster [32], InfoSleuth [7], COIN [13], and Information Manifold [51], manage objects from
multiple information sources, but they do not offer a general method to determine the mapping
of objects which contain text formatting differences. There are a few general systems [66, 65, 82,
46, 25] that allow for user-defined domain-specific functions to determine how to map objects with
formatting differences.

Learning Object Identification Rules for Information Integration 629

Current work on the problem of automatic domain modeling or schema integration [23, 24,
52, 59, 73] focuses on generating a global model of the domain for single, as well as multiple
information sources. Domain models contain information about the relationships in the data. To
create an abstract model or set of classification rules, these domain modeling tools compare the
data objects in the sources using statistical measurements. When the information sources contain
text formatting differences, these tools are not able to generate the correct domain model because
the data objects cannot be mapped properly. The text formatting differences must be resolved
before using the domain modeling tools or capabilities to handle these formatting differences. In
this context the objection identification problem can be considered a data cleaning technique [26].

Data warehousing creates a repository of data retrieved and integrated from multiple infor-
mation sources given a common domain model or global schema. Research on data warehousing
concentrates on efficient methods to merge and maintain the data [36, 76, 14, 15]. When merging
the data from the target information sources, problems can occur if there are errors and inconsis-
tencies in the data. To improve the integrity of the data warehouse, the data can be first filtered
or cleaned before the repository is created [77]. Object identification techniques can be applied
here to assist in cleaning the data [30].

4.2. Solution Approaches

The following solution approaches for object identification were developed by the database,
information retrieval and statistical communities.

4.2.1. Databases

In the database community the problem of object identification is also known as the merge/purge
problem, a form of data cleaning. Domain-specific techniques for correcting format inconsisten-
cies [17, 9, 10, 35, 49, 69] have been applied by many object identification systems to measure text
similarity [30, 29, 39, 38, 37, 44, 81]. The main concern with domain specific transformation rules
is that it is very expensive, in terms of user involvement, to generate a set of comprehensive rules
that are specific not only to the domain, but also to the data in the two information sources that
are being integrated.

There are also approaches [62, 61, 60, 67, 68] that have used a single very general transformation
function, like edit distance, to address the format inconsistencies. In our research we show that
having a single general transformation function is not flexible enough to optimize the mappings
across several domains. The same format inconsistencies can occur in many different domains, but
they may not be appropriate or correct for all of those domains.

Recent work by Hernandez and Stolfo [39, 38, 37], Lu et al [50, 57, 58], Chatterjee and Segev [16],
and Pu [71] have used mapping rules or templates to determine mapped objects, but these rules
are hand tailored to each specific domain or limited to only the primary key. Work conducted by
Pinheiro and Sun [67, 68] and Ganesh et al [30, 29] used supervised learning techniques to learn
which combinations of attributes are important to generate a mapping. Both of these techniques
assume that most objects in the data have at least one duplicate or matching object. They also
require that the user provides positive examples of mapped objects, and in some cases the user
labels as much as 50% of the data. These techniques are most similar to the passive Atlas system,
because they require either that the user choose the examples or they are randomly selected.

Another form of object identification focuses on comparing objects using attribute value conflict
resolution rules [46, 56, 54, 53, 55, 78, 14, 15]. These rules do not judge attributes by their
textual similarities, but by knowledge that they contain about how to compare attribute values
when there is a conflict. For example, an object from one source may have the attribute Age,
which holds the value for the age of a person, and an object from the other source may have the
attribute BirthDate, which holds the value for the person’s birthday. If there was an attribute
value conflict resolution rule that could convert the BirthDate to Age, then the attribute values
could be compared. This type of domain-specific data translation rule would be helpful for object
identification, but is not the focus of our work. In our system a user-defined transformation function
must be added for the two attributes BirthDate and Age to be correctly compared.

630 Sheila Tejada et. al

4.2.2. Information Retrieval

The problem of object identification has also appeared in the information retrieval commu-
nity [74, 64]. When determining relevant documents to satisfy a user’s query, words or tokens from
the documents are compared. If there are text formatting differences in the documents, then rele-
vant documents can be missed. Closely related work on the Whirl object identification system by
Cohen [20, 21, 18, 19, 22] views data objects from information sources as short documents. In this
work the object mappings are determined by using the information retrieval vector space model to
perform similarity joins on the shared attributes. A single transformation Stemming [70] is the only
transformation used to calculate similarity between strings; therefore, in Figure 10 “CPK” would
not match “California Pizza Kitchen.” The similarity scores from each of the shared attributes
are multiplied together in order to calculate the total similarity score of a possible mapping. This
requires that objects must match well on all attributes. The total similarity scores are then ranked
and the user is required to set a threshold determining the set of mappings. To set the threshold
the user scans the ranked set of objects [19, page 9]. Setting a threshold to obtain optimal accuracy
is not always a straightforward task for the user.

Work by Huffman and Steier [43, 42] on integrating information sources for an information
retrieval system, uses domain-specific normalization techniques to convert data objects into a
standard form for performing the mapping. This work involves maintaining a dictionary of domain-
specific normalizations to apply when appropriate. The Citeseer project [11, 33] is an information
retrieval system that finds relevant and similar papers and articles, where similarity is based on the
set of citations listed in the articles. Citeseer also uses domain-specific normalization techniques
to standardize article citations.

4.2.3. Probabilistic Methods

Related work conducted by Huang and Russell [40, 41] on mapping objects across information
sources uses a probabilistic appearance model. Their approach also compares the objects based
on all of the shared attributes. To determine similarity between two objects, they calculate the
probability that given one object it will appear like the second object in the other relation. Cal-
culating these probabilities requires a training set of correctly paired objects (like the objects in
the Figure 8). Unfortunately, appearance probabilities will not be helpful for an attribute with
a unique set of objects, like restaurant Name. Since “Art’s Deli” only occurs once in the set of
objects, knowing that it appears like “Art’s Delicatessen” does not help in mapping any other
objects, like “CPK” and “California Pizza Kitchen.”

In our approach we use a general set of transformations to handle this problem. The transfor-
mations are able to compare the textual similarity of two attribute values independent of other
attribute value matches. If the transformation exists between the two attribute values, e.g. (Abbre-
viation - “Deli” “Delicatessen”), then it has a transformation weight associated with it. Transfor-
mation weights should reflect the importance of the rule for the matching of the attribute values.
One of the future goals of our system is to learn to adjust these weights to fit the specific domain.

Probabilistic models of the data are also used within the record linkage community [3, 27, 45, 63,
80]. Work in the record linkage community grew from the need to integrate government census data;
therefore, they have developed domain-specific transformations for handling names and addresses.
In a record linkage system, the user is required to make several initial passes reviewing the data in
order to improve and verify the accuracy of the transformations. Once the user is satisfied with the
accuracy of the transformations, “blocking” attributes are chosen. Choosing blocking attributes
is a way to reduce the set of candidate mappings by only including the pairs that match on the
chosen attributes. The EM algorithm is then applied to learn the attribute weightings and classify
the candidate mappings into one of three classes: mapped, not mapped, or to be reviewed by the
user. The main problem that the record linkage community [80, 45] found with the use of the EM
algorithm is that because it is an unsupervised learning technique it may not divide the data into
the desired classes.

Learning Object Identification Rules for Information Integration 631

5. CONCLUSIONS AND FUTURE WORK

This paper has presented the Active Atlas object identification system that addresses the prob-
lem of mapping objects between structured web sources, where the same objects can appear in
similar yet inconsistent text formats. The experimental results for the system have shown that
Active Atlas can achieve high accuracy, while limiting user involvement. For our future work in
this area we would like to reduce user interaction even further.

We found that some transformations can be more appropriate for a specific application domain
than others; therefore, in order to increase the mapping accuracy, it is important to learn how
to weight the transformations appropriately for the application domain. In some domains very
specific transformations should be weighted more, e.g. (Abbreviation - “Deli”, “Delicatessen”),
and in other domains a general transformation function, such as Substring, should be weighted
more. In our approach we are planning to combine both the mapping-rule and the transformation
weighting learning in order to create a high accuracy object identification system.

The purpose of optimizing the transformation weights is to reduce the number of labeled ex-
amples needed by the system. The transformation weight learner must learn how to increase
the similarity scores for the correct mappings, while decreasing the scores for the incorrect map-
pings. Having the correct mapping scores higher than the incorrect mapping scores will allow the
mapping-rule learner to construct higher accuracy decision trees with fewer labeled examples.

We plan to combine these two learners (the mapping-rule learner and the transformation weight
learner) into one active learning system called the match learner (Figure 28). The match learner
will offer the user one example to label at a time, and from that example be able to learn both the
mapping rules, as well as, the transformation weights.

Set of
Mapped
Objects

Set of
Candidate
Mappings

Mapping
Rule

Learner

Transformation
Weight
Learner

USER

Update transformation weights

Choose
Example

Update learners with
labeled example

1
2 3

5
6

7

4

Fig. 28: Match Learner

In this hybrid system, there will be two types of learning. One type of learning is the trans-
formation weight learning, which can recognize possible relationships between tokens of object
attributes. The second type of learning is mapping-rule learning, which determines the impor-
tance of object attributes for generating a mapping. The advantage of this learning system will be
that it can intelligently reason and combine information gathered about each of the proposed ob-
ject mappings in order to decide the total mapping assignment. By simultaneously tailoring both
types of learning and efficiently utilizing user input we hope to achieve high accuracy mapping
with minimal user input.

632 Sheila Tejada et. al

Acknowledgements — The research reported here was supported in part by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-1-0504, in part by the Rome Laboratory of the Air Force Systems Command and the Defense
Advanced Research Projects Agency (DARPA) under contract number F30602-98-2-0109, in part by the United
States Air Force under contract number F49620-98-1-0046, in part by the Integrated Media Systems Center, a
National Science Foundation Engineering Research Center, Cooperative Agreement No. EEC-9529152, and in part by
a research grant from NCR. The U.S. Government is authorized to reproduce and distribute reports for Governmental
purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of any of the above organizations or any person connected with them.

REFERENCES

[1] Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and bagging. In Proceedings of
the Fifteenth International Conference on Machine Learning (1998).

[2] R. Ahmed, P.D. Smedt, W.M. Du, W. Kent, M. Ketabchi, W.A. Litwin, A. Rafii, and M.C. Shan. The pegasus
heterogeneous multidatabase system. Computer (1991).

[3] W. Alvey and B. Jamerson. Record linkage techniques. In Proceedings of an International Workshop and
Exposition, in Arlington, Virginia, Washington, DC. Federal Committee on Statistical Methodology, Office of
Management and Budget (1997).

[4] Jose Luis Ambite, Yigal Arens, Naveen Ashish, Craig A. Knoblock, Steven Minton, Jay Modi, Maria Muslea,
Andrew Philpot, Wei-Min Shen, Sheila Tejada, and Weixiong Zhang. The SIMS Manual: Version2.0. Working
Draft. USC/ISI (1997).

[5] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342 (1988).

[6] C. Batini, M. Lenzerini, , and S. Navathe. A comparative analysis of methodologies for database schema
integration. ACM Computing Surverys, 18(4):323–364 (1986).

[7] Roberto Bayardo, Jr., Bill Bohrer, Richard S. Brice, Andrzej Cichocki, Jerry Fowler, Abdelsalam Helal, Vipul
Kashyap, Tomasz Ksiezyk, Gale Martin, Marian H. Nodine, Mosfeq Rashid, Marek Rusinkiewicz, Ray Shea,
C. Unnikrishnan, Amy Unruh, and Darrell Woelk. Infosleuth: Semantic integration of information in open and
dynamic. In SIGMOD Conference, pp. 195–206 (1997).

[8] T.C. Bell, A. Moffat, I.H. Witten, , and J. Zobel. The mg retrieval system: compressing for space and speed.
Communications of the Association for Computing Machinery, 38(4):41–42 (1995).

[9] M.A. Bickel. Automatic correction to misspelled names: a fourthgeneration language approach. Communica-
tions of the ACM, 30(3):224–228 (1987).

[10] D. Bitton and D. J. DeWitt. Duplicate record elimination in large data files. ACM Transactions on Database
Systems, 8(2):255– 265 (1983).

[11] K.D. Bollacker, S. Lawrence, and C.L. Giles. Citeseer: An autonomous web agent for automatic retrieval and
identication of interesting publications. In Proc. of 2nd Int. Conf. on Autonomous Agents, Minneapolis, USA
(1998).

[12] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140 (1996).

[13] S. Bressan, K. Fynn, C. H. Goh, M. Jakobisiak, K. Hussein, H. Kon, T. Lee, S. Madnick, T. Pena, J. Qu,
A. Shum, and M. Siegel. The context interchange mediator prototype. In Proc. ACM SIGMOD/PODS Joint
Conference, Tuczon, AZ (1997).

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach to data inte-
gration and reconciliation in data warehousing. In Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’99) (1999).

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Data integration in data warehousing.
Int. J. of Cooperative Information Systems (2000).

[16] A. Chatterjee and A. Segev. Data manipulation in heterogeneous databases. SIGMOD Record, 20(4) (1991).

[17] K. W. Church and W. A. Gale. Probability scoring for spelling correction. Statistics and Computing, 1:93–103
(1991).

[18] William W. Cohen. Knowledge integration for structured information sources containing text. In SIGIR-97
Workshop on Networked Information Retrieval (1997).

[19] William W. Cohen. Integration of heterogeneous databases without common domains using queries based on
textual similarity. In SIGMOD Conference, pp. 201–212 (1998).

[20] William W. Cohen. A web-based information system that reasons with structured collections of text. In
Autonomous Agents (1998).

[21] William W. Cohen. The whirl approach to integration: An overview. In AAAI-98 Workshop on AI and
Information Integration (1998).

[22] William W. Cohen and Haym Hirsh. Joins that generalize: Text classification using whirl. In Proceedings of
the Fourth International Conference on Knowledge Discovery and Data Mining (1998).

Learning Object Identification Rules for Information Integration 633

[23] Son Dao and Brad Perry. Applying a data miner to heterogeneous schema integration. In Proceedings of the
First International Conference on Knowledge Discovery and Data Mining(KDD-95), Menlo Park, CA (1995).

[24] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. An evaluation of non-equijoin algorithms.
In VLDB, pp. 443–452 (1991).

[25] D. Fang, J. Hammer, and D. McLeod. The identification and resolution of semantic heterogeneity in multi-
database systems. Multidatabase Systems: An Advanced Solution for Global Information Sharing (1994).

[26] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data mining toward a unifying
framework. In Proceeding of The Second Int. Conference on Knowledge Discovery and Data Mining, pp. 82–88
(1996).

[27] I. P. Fellegi and A. B. Sunter. A theory for record-linkage. Journal of the American Statistical Association,
64:1183–1210 (1969).

[28] William Frakes and Ricardo Baeza-Yates. Information retrieval: Data structures and algorithms. Prentice
Hall (1992).

[29] M. Ganesh. Mining Entity-Identification Rules for Database Integration, Phd. Thesis. Technical Report TR
97-041, Univ. of Minnesota (1997).

[30] M. Ganesh, J. Sirvastava, and T. Richardson. Mining entity-identification rules for database integration. In
Proceedings of the Second International Conference on Data Mining and Knowledge Discovery, pp. 291–294
(1996).

[31] Hector Garcia-Molina, Dallan Quass, Yannis Papakonstantinou, Anand Rajaraman, Yehoshua Sagiv, Jeffrey D.
Ullman, and Jennifer Widom. The tsimmis approach to mediation: Data models and languages. In NGITS
(Next Generation Information Technologies and Systems), Naharia, Isreal (1995).

[32] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: An information integration
system. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Tucson
(1997).

[33] C. Lee Giles, Kurt Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system. In The
Third ACM Conference on Digital Libraries, pp. 89–98, Pittsburgh, PA (1998).

[34] Henry G. Goldberg and Ted E. Senator. Restructuring databases for knowledge discovery by consolidation and
link formation. In Second International conference on Knowledge Discovery and Data Mining (1996).

[35] J. T. Grudin. Error patterns in novice and skilled transcription typing. In W. E. Cooper, editor, Cognitive
Aspects of Skilled Typewriting, pp. 121–142. Springer-Verlag (1983).

[36] J. Hammer, H. Garcia-Molina, J. Widom, W Labio, and Y. Zhuge. The stanford data warehousing project.
IEEE Data Engineering Bulletin, 18(2):41–48 (1995).

[37] Mauricio Hernandez and Salvatore J. Stolfo. The merge/purge problem for large databases. In Proceedings of
the 1995 ACM-SIGMOD Conference (1995).

[38] Mauricio Hernandez and Salvatore J. Stolfo. A generalization of band joins and the merge/purge problem.
IEEE Transactions on Knowledge and Data Engineering (1996).

[39] Mauricio Hernandez and Salvatore J. Stolfo. Real-world data is dirty: Data cleansing and the merge/purge
problem. In Data Mining and Knowledge Discovery, pp. 1–31 (1998).

[40] Timothy Huang and Stuart Russell. Object identification in bayesian context. In Proceedings of IJCAI-97,
Nagoya, Japan (1997).

[41] Timothy Huang and Stuart Russell. Object identification: A bayesian analysis with application to traffic
surveillance. Artificial Intelligence, 103:1–17 (1998).

[42] S. B. Huffman and D. Steier. Heuristic joins to integrate structured heterogeneous data. In 1995 AAAI Spring
Symposium on Information Gathering in Distributed, Heterogenous Environments (1995).

[43] S. B. Huffman and D. Steier. A navigation assistant for data source selection and integration. In 1995 AAAI
Fall Symposium on AI Applications in Knowledge Navigation and Retrieval (1995).

[44] Jemy A. Hylton. Identifying and merging related bibliographic records. M.S. thesis. MIT Laboratory for
Computer Science Technical Report 678 (1996).

[45] Matthew A. Jaro. Advances in record-linkage methodology as applied to matching the 1985 census of tampa,
florida. Journal of the American Statistical Association, 84:414–420 (1989).

[46] W. Kim, I. Choi, S. Gala, and M. Scheevel. On resolving schematic heterogeneity in multidatabase systems.
Distributed and Parallel Databases, 1(3):251– 279 (1993).

[47] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Pragnesh Jay Modi, Ion Muslea, An-
drew G. Philpot, and Sheila Tejada. Modeling web sources for information integration. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, Madison, WI (1998).

[48] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Ion Muslea, Andrew G. Philpot, and
Sheila Tejada. The ariadne approach to web-based information integration. To appear in the International the
Journal on Cooperative Information Systems (IJCIS) Special Issue on Intelligent Information Agents: Theory
and Applications, Forthcoming (2001).

634 Sheila Tejada et. al

[49] K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys, 24(4):377–439
(1992).

[50] Mong Li Lee, Hongjun Lu, Tok Wang Ling, and Yee Teng Ko. Cleansing data for mining and warehousing.
In 10th International Conference on Database and Expert Systems Applications (DEXA99), Florence, Italy
(1999).

[51] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query answering algorithms for information agents.
In Proceedings of the AAAI Thirteenth National Conference on Artificial Intelligence (1996).

[52] Wen-Syan Li. Semantic integration in heterogeneous databases using neural networks. In Proceedings of the
20th VLDB Conference, pp. 1–12 (1994).

[53] E-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database integration. Tech-
nical Report TR 92-62, Univ. of Minnesota (1992).

[54] E-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database integration. In
Proceedings Ninth International Conference on Data Engineering, Vienna, pp. 294–301, Austria (1993).

[55] E.-P. Lim, J. Srivastava, and S. Shekhar. An evidential reasoning approach to attribute value conflict resolution
in database integration. IEEE Transactions on Knowledge and Data Engineering, 8(5) (1996).

[56] E.P. Lim, J. Srivastava, , and S. Shekhar. Resolving attribute incompatibility in database integration: An
evidential reasoning approach. In Proc. of 10th IEEE Data Eng. Conf. (1994).

[57] H. Lu, W. Fan, C-H. Goh, S. Madnick, and D. Cheung. Discovering and reconciling semantic conflicts: A data
mining prospective. In IFIP Working Conference on Data Semantics (DS-7), Switzerland (1997).

[58] H. Lu, B. Ooi, and C. Goh. Multidatabase query optimization: Issues and solutions. In Proc. RIDE-IMS ’93,
pp. 137–143 (1993).

[59] Stephen McKearney and Huw Roberts. Reverse engineering databases for knowledge discovery. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining (1996).

[60] Alvaro Monge and Charles P. Elkan. The field matching problem: Algorithms and applications. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining (1996).

[61] Alvaro Monge and Charles P. Elkan. The webfind tool for finding scientific papers over the worldwide web. In
3rd International Congress on Computer Science Research (1996).

[62] Alvaro Monge and Charles P. Elkan. An efficient domain-independent algorithm for detecting approximately
duplicate database records. In The proceedings of the SIGMOD 1997 workshop on data mining and knowledge
discovery (1997).

[63] H. B. Newcombe and J. M. Kenedy. Record linkage. Communications of the Association for Computing
Machinery, 5:563–566 (1962).

[64] Daniel O’Leary. Internet-based information and retrieval systems. Decision Support Systems, 27(3) (1999).

[65] M. Perkowitz and O. Etzioni. Category translation: Learning to understand information on the internet. In
IJCAI’95, pp. 930–936 (1995).

[66] Mike Perkowitz, Robert B. Doorenbos, Oren Etzoni, and Daniel S. Weld. Learning to understand information
on the internet: An example-based approach. Journal of Intelligent Information Systems, 8(2) (1997).

[67] Jose C. Pinheiro and Don X. Sun. Methods for linking and mining massive heterogeneous databases. In Fourth
International conference on Knowledge Discovery and Data Mining (1998).

[68] Jose C. Pinheiro and Don X. Sun. Methods for linking and mining massive heterogeneous databases. Technical
memorandum, Bell Laboratories, Lucent Technologies (1998).

[69] J. J. Pollock and A. Zamora. Automatic spelling correction in scientific and scholarly text. ACM Computing
Surveys, 27(4):358–368 (1987).

[70] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137 (1980).

[71] Calton Pu. Key equivalence in heterogenous databases. In Proceedings of the First International Workshop
on Interoperability in Multidatabase Systems, pp. 314–316 (1991).

[72] J. R. Quinlan. Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research,
4:77–90 (1996).

[73] J.S. Ribeiro, K.A. Kaufman, and L. Kerschberg. Knowledge discovery from multiple databases. In Knowlege
Discovery and Datamining, Menlo Park, CA (1995).

[74] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate interoperability among heterogeneous
information systems. ACM Transactions on Database Systems, 19(2):254–290 (1994).

[75] T. Senator, H. Goldberg, J. Wooton, A. Cottini, A. Umar, C. Klinger, W. Llamas, M. Marrone, , and R. Wong.
The fincen artificial intelligence system: Identifying potential money laundering from reports of large cash
transactions. In Proceedings of the 7th Conference on Innovative Applications of AI (1995).

[76] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, heterogeneous and
autonomous databases. ACM Computing Surveys, 22:183–236 (1990).

Learning Object Identification Rules for Information Integration 635

[77] E. Simoudis, B. Livezey, and R. Kerber. Using recon for data cleaning. In Knowledge Discovery and Datamining,
pp. 282 – 287, Menlo Park, CA (1995).

[78] Y.R. Wang and S.E. Madnick. The inter-database instance identification problem in integrating autonomous
systems. In Proc. of the Int’l Conf. on Data Eng. (1989).

[79] Gio Wiederhold. Intelligent integration of information. SIGMOD Record, pp. 434–437 (1993).

[80] William E. Winkler. Matching and record linkage. Survey Methods for Businesses, Farms, and Institutions
(1994).

[81] Tak W. Yan and Hector Garcia-Molina. Duplicate removal in information dissemination. In Proceedings of
VLDB-95 (1995).

[82] G. Zhou, R. Hull, R. King, and J-C. Franchitti. Using object matching and materialization to integrate
heterogeneous databases. In Proc. of Third Intl. Conf. On Cooperative Information Systems (CoopIS-95),
Vienna, Austria (1995).

