
Learning Domain-Independent String Transformation
Weights for High Accuracy Object Identification

Sheila Tejada
University of Southern

California
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

tejada@isi.edu

Craig A. Knoblock
University of Southern

California
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 9s0292

knoblock@isi.edu

Steven Minton
Fetch Technologies
4676 Admiralty Way

Marina del Rey, CA 90292

minton@fetch.com

ABSTRACT
The task of object identification occurs when integrating in-
formation from multiple websites. The same data objects
can exist in inconsistent text formats across sites, making
it difficult to identify matching objects using exact text
match. Previous methods of object identification have re-
quired manual construction of domain-specific string trans-
formations or manual setting of general transformation pa-
rameter weights for recognizing format inconsistencies. This
manual process can be time consuming and error-prone. We
have developed an object identification system called Active
Atlas [18], which applies a set of domain-independent string
transformations to compare the objects’ shared attributes
in order to identify matching objects. In this paper, we dis-
cuss extensions to the Active Atlas system, which allow it to
learn to tailor the weights of a set of general transformations
to a specific application domain through limited user input.
The experimental results demonstrate that this approach
achieves higher accuracy and requires less user involvement
than previous methods across various application domains.

1. INTRODUCTION
Information mediators [19], such as SIMS [2] and Ari-

adne [11], integrate information from multiple information
sources on the web. One problem that can arise when in-
tegrating information is that data objects can exist in in-
consistent text formats across several sources. An example
application of information integration involves integrating
all the reviews of restaurants from the Zagat’s Restaurants
website with the current restaurant health ratings from the
Department of Health’s website. To integrate these sources
requires comparing the objects from both sources and iden-
tifying which restaurants are the same.

Examples of the object identification problem are shown
in Figure 1. In the first example the restaurant referred to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02 July 23-26, 2002, Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

as “Art’s Deli” on the Zagat’s website may appear as “Art’s
Delicatessen” on the Health Department’s site. Because of
this problem, the objects’ instances cannot be compared us-
ing equality, they must be judged according to text similar-
ity in order to identify if the objects are the same. When
two objects are determined the same, a mapping is created
between them.

Name Street Phone

Art’s Deli12224 Ventura Boulevard 818-756-4124

Teresa's 80 Montague St. 718-520-2910

Steakhouse The 128 Fremont St. 702-382-1600

Les Celebrites 155 W. 58th St. 212-484-5113

Zagat’s Restaurants Department of Health

Name Street Phone

Art ’s Delicatessen12224 Ventura Blvd. 818/755-4100

Teresa's103 1st Ave. between 6th and 7th Sts. 212/228-0604

Binion’s Coffee Shop 128 Fremont Street 702/382-1600

Les Celebrites 160 Central Park S 212/484-5113

Figure 1: Matching Restaurant Objects

The examples in Figure 1 are each representative of a
type of possible mapping found in the restaurant domain.
Together, these types of examples demonstrate the impor-
tance of certain attributes or combinations of attributes for
deciding mappings between objects. Both sources list a
restaurant named “Teresa’s,” and even though they match
exactly on the Name attribute, we would not consider them
the same restaurant. These restaurants belong to the same
restaurant chain, but they may not share the same health
rating. In this restaurant application the Name attribute
alone does not provide enough information to determine the
mappings.

The “Steakhouse The” and “Binion’s Coffee Shop” restau-
rants are located in the same food court of a hotel, so that
they both have listed the same address and main phone num-
ber of the hotel. Although they match on the Street and
Phone attributes, these restaurants may not have the same
health rating and should not be considered the same restau-
rant. In the last example, due to error and unreliability
of the data values of the Street attribute, the restaurant
objects match only on the Name and Phone attributes.
Therefore, in order for objects to be correctly mapped to-
gether in this application, the objects must match highly on

both the Name and the Street attributes (“Art’s Deli”) or
on both the Name and Phone attributes (“Les Celebrites”).
This type of critical attribute information is captured in the
form of object identification rules (mapping rules), which are
then used to determine the mappings between the objects.

We have developed an object identification system called
Active Atlas [18], which applies a set of general string trans-
formations in order to propose possible mappings between
the objects and then employs an active learning technique
that learns the necessary mapping rules to classify the map-
pings with high accuracy. Previously, Active Atlas, as many
other object identification systems [15, 20, 14], required that
the transformation weights be set manually before the map-
ping process began.

The focus of this paper is to describe work extending Ac-
tive Atlas to learn to weight transformations for a specific
application domain. In order to increase mapping accuracy,
it is important to accurately weight transformations, be-
cause some transformations can be more appropriate for a
specific application domain than others. The transformation
weights measure the likelihood that a given transformation,
like “Equality” or “Acronym,” participates in a correct map-
ping between two objects.

It is expensive, in terms of the user’s time, to manually
encode this type of knowledge for an object identification
system. Also, due to errors that can occur in the data, a
user may not be able to provide comprehensive information
to classify the data with high accuracy without thoroughly
reviewing all data. Yet, in our view the user must play a
limited but important role in object mapping because the
mapping assignment may depend on the specific application.
If the application is altered then the mapping assignment
may change as well, even though the sets of data are the
same.

Since the data itself may not be enough to decide the
mappings between the sets of objects, the user’s knowledge
about object similarity is needed to increase the accuracy of
the total mapping assignment. We have adopted a general
domain-independent approach for incorporating the user’s
knowledge. Active Atlas achieves high accuracy object iden-
tification by simultaneously learning to tailor both the trans-
formation weights and mapping rules to a specific applica-
tion domain through limited user input. The main goal of
this research is to achieve the highest possible accuracy in
object identification with minimal user interaction.

1.1 Active Atlas System Overview
In this paper we provide descriptions of all stages and

components of Active Atlas in order to show how transfor-
mation weight learning has been integrated into the object
identification process. Learning the transformation weights
and mapping rules for a specific domain is a circular prob-
lem, where the accuracy of the mapping rules depends on
the accuracy of the transformation weights and vice-versa.
This process has two stages as shown in Figure 2, applying
the transformations to calculate initial similarity scores and
then learning the mapping rules and transformation weights
to properly map the objects between the sources.

In the first stage the candidate generator is used to pro-
pose the set of possible mappings between the two sets of
objects by applying the transformations to compare the at-
tribute values. Initially, it is unknown which transforma-
tions are more appropriate for a specific domain, so all trans-

formations are treated the same when computing the ini-
tial similarity scores for the proposed mappings. The set of
candidate mappings, produced by the candidate generator,
serves as the basis for the learning to begin.

In the next stage the mapping learner determines which
of the proposed mappings are correct by learning to tailor
the appropriate mapping rules and transformation weights
to the application domain. The given initial similarity scores
are highly inaccurate. To address this problem Active Atlas
employs an active supervised learning technique that iter-
atively refines both the mapping rules and transformation
weights. First, mapping rules can be created to classify the
mappings, then using this classification information, new
transformation weights can be calculated, allowing for new
attribute similarity scores and mapping rules that more ac-
curately capture the relationships between the objects.

Set of Mappings
between the Objects

((A3 B2 mapped)
(A45 B12 not mapped)
(A5 B2 mapped)
(A98 B23 mapped)

((A3 B2, (s1 s2 sk), W3 2, ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , (s1 s2 sk),W45 12,((T2,),(T3,,Tn),(T1 T8)))...)

Computing Similarity Scores

Candidate Generator
Attribute Similarity Formula:

Sn(an, bn) = ∑ (ant• bnt) / (||a||•||b||)
t∈T

Source 1
Input: A1: (a1 a2 …ak)

A2: (a1 a2 …ak)
A3: (a1 a2 …ak)
A4: …

(Object pairs, Similarity Scores, Total Scores, Transformations)

Source 2
Input: B1: (b1 b2 …bk)

B2: (b1 b2 …bk)
B3: (b1 b2 …bk)
B4: …

Mapping Learner
Mapping Rule Learner

Mapping Rules:
Attribute 1 > s1 => mapped

Attribute n < sn ∧ Attribute 3 > s3 => mapped
Attribute 2 < s2 => not mapped

Transformation Weight Learner
Transformations:

T 1 = p1

Tn = pn

Figure 2: General System Architecture

The remaining sections provide a detailed description of
the Active Atlas object identification system. Section 2 ex-
plains the process of applying the transformations to com-
pute the initial similarity scores, while section 3 describes

how both learning the transformation weights and mapping
rules are integrated together in the mapping learner. Section
4 presents the experimental results of the system. Section 5
discusses related work, and section 6 concludes with a dis-
cussion and future work.

2. APPLYING TRANSFORMATIONS
The candidate generator uses a set of domain-independent

transformations to judge the similarity between two objects,
so that only the most similar candidate mappings between
the sources are generated. The main function of the can-
didate generator is to produce an initial set of quality can-
didate mappings. The candidate generator keeps a record
of the set of transformations that were applied for each
mapping, which is essential for learning the transformation
weights, and also calculates a set of similarity scores, neces-
sary for learning the mapping rules.

When comparing objects, the alignment of the attributes
is determined by the user. The values for each attribute
are compared individually (e.g. Name with Name, Street
with Street, and Phone with Phone). Comparing the
attributes individually is important in reducing the confu-
sion that can arise when comparing the objects as a whole.
Words can overlap between the attribute values. Comparing
the attributes individually saves computation and also de-
creases mapping error by reducing the number of candidate
mappings considered.

Given the two sets of objects, the candidate generator is
responsible for generating the set of candidate mappings by
comparing the attribute values of the objects. The output
of this component is a set of attribute similarity scores for
each candidate mapping. A candidate mapping has a com-
puted similarity score for each attribute pair (Figure 3). The
process for computing these scores is described later in this
section.

Zagat’s

Dept of Health

Art’s Deli 12224 Ventura Boulevard 818-756-4124

Art’s Delicatessen 12224 Ventura Blvd. 818/755-4100

Name Street Phone

.967 .953 .3

Figure 3: Set of Computed Similarity Scores

Figure 3 displays example attribute similarity scores for
the candidate mapping of the objects “Art’s Deli” and “Art’s
Delicatessen.” The similarity scores for the Name and
Street attribute values are relatively high. This is because
the text values are similar and the text formatting differ-
ences between them can be resolved. The Phone attribute
score is low because the two phone numbers only have the
same area code in common, and since the dataset contains
many restaurants in the same city as “Art’s Deli,” the area
code occurs frequently.

2.1 General Transformations
There are two basic types of the transformations. Unary

transformations require only a single token as input in order
to compute its transformation. N-ary transformations com-
pare tokens from two objects. Included in this framework is
a set of general domain independent transformations to re-
solve the different text formats used by the objects. These

transformations (e.g. Abbreviation, Acronym, Substring,
etc.) are domain-independent and are applied to all of the
attribute values in every application domain and for every
attribute. These transformations determine if text transfor-
mations exist between words (tokens) in the attribute values,
e.g., (Prefix - “Deli”, “Delicatessen”) or between phrases,
e.g. (Acronym - “California Pizza Kitchen”, “CPK”). If
transformations exist between the tokens, then a candidate
mapping is proposed between the corresponding objects.

2.1.1 Unary transformations

• Equality tests if a token contains the same characters
in the same order.

• Stemming converts a token into its stem or root.

• Soundex converts a token into a Soundex code. To-
kens that sound similar have the same code.

• Abbreviation looks up token and replaces with cor-
responding abbreviation (e.g., 3rd or third).

2.1.2 N-ary transformations

• Initial computes if one token is equal to the first char-
acter of the other.

• Prefix computes if one token is equal to a continuous
subset of the other starting at the first character.

• Suffix computes if one token is equal to a continuous
subset of the other starting at the last character.

• Substring computes if one token is equal to a contin-
uous subset of the other, but does not include the first
or last character.

• Computed Abbreviation computes if one token is
equal to a subset of the other (e.g., Blvd, Boulevard).

• Acronym computes if all characters of one token are
initial letters of all tokens from the other object, (e.g.,
CPK, California Pizza Kitchen).

• Drop determines if a token does not match any other
token

2.2 Generating Candidate Mappings
For the candidate generator, the attribute values are con-

sidered short documents. These documents are divided into
tokens. The tokenization process is to first lowercase all
characters and remove punctuation, so that the instance or
document “Art’s Deli” would produce the following three
token list (“art” “s” “deli”). Once the instances have been
tokenized, they are then compared using the transforma-
tions. If a transformation exists between the tokens or if
the tokens match exactly, then a candidate mapping is gen-
erated for the corresponding objects. For the example be-
low, a candidate mapping is generated for the objects “Art’s
Deli” and “Art’s Delicatessen,” because there are transfor-
mations between their tokens: (Equality – “Art”, “Art”),
i.e. exact text match, (Equality – “s”, “s”), and (Prefix –
“Deli”, “Delicatessen”) (Figure 4).

The candidate generator applies the transformations in a
three-step process. The first step is to apply all of the unary

Zagat’s Name Dept of Health

Art’s Deli Art’s Delicatessen

Prefix
1

Equality

2Equality

3

Figure 4: Applying Transformations

transformations to the data. The second step, after apply-
ing the unary transformations, is to determine the set of
object pairs that are related. And the third step is to apply
the n-ary transformations in order to further strengthen the
relationship between the two data objects.

Table 1 shows a subset of the candidate mappings for the
query object “Art’s Deli.” This is important information for
learning the transformation weights. Keeping record of the
set of transformations that were applied for each mapping
will later allow the transformation weight learner to mea-
sure the likelihood that if the transformation is applied, the
objects will be classified as mapped.

Query: ”Art’s Deli” (Zagat’s)

Restaurant Name Hypothesis Rule Set
“Art’s Delicatessen” (“Art” Equality “Art”)

(“s” Equality “s”)
(“Deli” Prefix “Delicatessen”)

“Carnegie Deli” (“Deli” Equality “Deli”)
(Drop “Carnegie”)

(Drop “Art”)
(Drop “s”)

“Trattoria Dell’Arte” (“Art” Stemming “Arte”)
(“Deli” Stemming ”Dell”)

(Drop “Trattoria”)
(Drop “s”)

“Sonora Deli” (“Deli” Equality “Deli”)
(“s” Initial “Sonora”)

(Drop “Art”)

Table 1: Candidate Mappings with N-ary Transfor-
mations

This process of generating a set of candidate mappings by
applying the transformations is performed for each object of
the Zagat’s dataset across all of the attributes. Once these
sets have been computed for every candidate mapping, then
the attribute similarity scores can be calculated.

2.3 Computing Attribute Similarity Scores
The sets of applied transformations are used to calculate

the attribute similarity scores. The candidate generator em-
ploys the cosine measure commonly used in information re-
trieval engines with the TFIDF (Term Frequency x Inverse
Document Frequency) weighting scheme [7] to calculate the
similarity of each of the objects. Because the attribute val-
ues of the object are very short, the within-document term
frequency weighting is binary. The within-document fre-

quency is 1 if the term exists in the document and 0 oth-
erwise. The similarity score for a pair of attribute values is
computed using this attribute similarity formula:

Similarity(A,B) =

∑t
i=1(wia • wib)√∑t

i=1 w2
ia •

∑t
i=1 w2

ib

• wia= (0.5 + 0.5freqia) x IDF

• wib= freqib x IDFi

• freqia = frequency for token i of attribute value a

• IDFi= IDF (Inverse Document Frequency) of token i
in the entire collection

• freqib = frequency of token i in attribute value b

In this formula a and b represent the two documents (at-
tribute values) being compared and t represents the total
number of transformations in the document collection. The
terms wia and wib correspond to the weights computed by
the TFIDF weighting function.

When the candidate generator is finished, it outputs all
of the candidate mappings it has generated along with each
of their corresponding set of attribute similarity scores. For
each candidate mapping, the total object similarity score
is calculated as a weighted sum of the attribute similarity
scores. The mappings are then ranked my their total object
similarity score.

3. LEARNING TRANSFORMATION
WEIGHTS

The purpose of learning the transformation weights is to
reduce the amount of user involvement needed by the system
to achieve high accuracy mapping. The candidate generator
provides the necessary information to learn the rules and
weights for mapping the objects. Given with each candidate
mapping are the set of computed attribute similarity scores
and the set of transformations applied between the objects.
From this information mapping rules and transformations
weights are tailored to a specific application domain

The mapping learner (Figure 5) combines both types of
learning, the mapping-rule learning and the transformation
weight learning, into one active learning system. The map-
ping learner incrementally learns to classify the mappings
between objects by offering the user one example to label at
a time, and from those examples learning both the mapping
rules and transformation weights. The criteria for choosing
the next example for the user to label is determined by input
from both the mapping-rule learner and the transformation
weight learner.

3.1 Mapping-Rule Learner
The mapping-rule learner determines which attribute, or

combinations of attributes (Name, Street, Phone), are
most important for mapping objects. The purpose of learn-
ing the mapping rules is to achieve the highest possible accu-
racy for object mapping across various application domains.
In this approach, the system actively chooses the most infor-
mative candidate mappings (training examples) for the user
to classify as mapped or not mapped in order to minimize

Set of Mappings
between the Objects

((A3 B2 mapped)
(A45 B12 not mapped)
(A5 B2 mapped)
(A98 B23 mapped)

Label

Mapping Rule Learner

Transformation
Weight
Learner

((A3 B2, (s1 s2 sk), W3 2, ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , (s1 s2 sk),W45 12,((T2,),(T3,,Tn),(T1 T8)))...)

(Object pairs, Similarity Scores, Total Weight, Transformations)

USER

Mapping Learner

Figure 5: Mapping Learner

the number of user-labeled examples required for learning
high accuracy mapping rules.

The mapping-rule learner consists of a committee of de-
cision tree learners. Each decision tree learner creates its
own set of mapping rules from training examples labeled by
the user. The mapping rules classify an example as mapped
or not mapped. These classifications are used by the trans-
formation weight learner for increasing the accuracy of the
transformation weights, and are also needed for deciding
which training examples should be labeled.

Mapping rules contain information about which combina-
tion of attributes are important for determining the map-
ping between two objects, as well as, the thresholds on the
similarity scores for each attribute. Several mapping rules
may be necessary to properly classify the objects for a spe-
cific domain application. Examples of mapping rules for the
restaurant domain are:

• Rule 1: Name > .859 and Street > .912 =⇒mapped

• Rule 2: Name > .859 and Phone > .95 =⇒ mapped

To efficiently learn the mapping rules for a particular task
or domain, we use a supervised learning technique, which
uses a combination of several decision tree learners based
on an active learning algorithm called query by bagging [1].
This technique generates a committee of decision tree learn-
ers that vote on the most informative example or candidate
mapping for the user to classify next. A single decision tree
learner on its own can learn the necessary mapping rules
to properly classify the data with high accuracy, but may
require a large number of user-labeled examples.

With a committee of decision tree learners, the classifi-
cation of an example or candidate mapping by one decision

tree learner is considered its vote on the example. The votes
of the committee of learners determine which examples are
to be labeled by the user. One of the key factors in choosing
an example is the disagreement of the query committee on
its classification (Figure 6). The maximal disagreement oc-
curs when there are an equal number of mapped (yes) and
not mapped (no) votes on the classification of an example.
This example has the highest guaranteed information gain,
because regardless of the example’s label, half of the com-
mittee will need to update their hypothesis. As shown in
Figure 6 the example CPK, California Pizza Kitchen is
the most informative example for the committee (L1, L2,
L3, L4, L5, L6, L7, L8, L9, and L10).

Art’s Deli, Art’s Delicatessen

CPK, California Pizza Kitchen

Ca’Brea, La Brea Bakery

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Yes No Yes No Yes Yes Yes No No No

No No No No No No No No No No

Examples L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Figure 6: Committee Votes

The committee votes are used in deciding the next exam-
ple to label, and they are also necessary for determining the
classification of an example. Each learner votes on all candi-
date mappings. Those mappings where the majority of the
learners vote yes are considered mapped otherwise they are
not mapped. These classifications of the examples are then
given as input to the transformation weight learner.

Both the mapping-rule learner and the transformation
weight learner influence the decision on choosing the next
example to be labeled by the user. The mapping-rule learner
contributes the committee votes on each example, and the
transformation weight learner provides the new ranking of
the examples based on their total object similarity scores.
Using the mapping-rule learner criteria allows for the exam-
ple with the most information gain to be chosen.

Once an example is chosen, the user is asked to label
the example. After the user labels the query example, the
learner updates the committee and learns new mapping rules
in order to reclassify the examples. This learning process is
repeated until either all learners in the committee converge
to the same decision tree or the user threshold for labeling
examples has been reached. When learning has ended, the
mapping-rule learner outputs a majority-vote classifier that
can be used to classify the remaining pairs as mapped or not
mapped.

3.2 Transformation Weight Learner
The purpose of optimizing the transformation weights is

to reduce the number of labeled examples needed by the
system to achieve high accuracy mapping. The transforma-
tion weight learner must learn how to increase the similarity
scores for the correct mappings, while decreasing the scores
for the incorrect mappings. Having the correct mapping
scores higher than the incorrect mapping scores will allow
the mapping-rule learner to construct higher accuracy deci-
sion trees with fewer labeled examples.

Given as input to the transformation weight learner are
the mapping-rule learner’s classifications of the examples or
committee votes and the set of applied transformations for

each example collected by the candidate generator. With
this input the transformation weight learner first calculates
the transformation weights for each transformation and then
uses these new probability scores to recalculate the attribute
similarity scores for each example. Once all of the attribute
similarity scores are calculated for every attribute, the ex-
amples are then ranked according to their total object sim-
ilarity scores.

3.2.1 Calculating Transformation Weights
The method for calculating new transformation weights

takes into consideration classifications of both user-labeled
and unlabeled examples. The transformation weights mea-
sure the likelihood that a given transformation, like “Equal-
ity” or “Acronym,” participates in a correct mapping be-
tween two objects.

Because initially it is not known which transformations
are appropriate for the application domain, the initial at-
tribute similarity scores determined by the candidate gener-
ator do not accurately represent the true similarity between
all of the objects. Therefore, due to the inaccuracy of the
initial attribute similarity scores, there is some error in the
mapping rules and the classifications of the examples by the
mapping-rule learner. While there are some misclassifica-
tions of the unlabeled data, they still help to increase the
accuracy of the transformation weights. Using an active
learning approach reduces the number of user-labeled data,
so there are sparse number of labeled examples to learn the
correct transformation weights from.

The unlabeled data augments the information about trans-
formations known from the labeled examples. Yet, because
there are misclassifications on the unlabeled examples they
should not have the same impact on the computation of the
transformation weights as the labeled examples, as discussed
in previous work on combining labeled and unlabeled exam-
ples [16]. In order for the labeled examples to have greater
importance than the unlabeled ones, the population of the
labeled examples is increased by adding α duplicates of each
of the labeled examples to the set of training data.

Given the classifications of the examples the transforma-
tion weights can be tailored to the application domain. The
likelihood that if the transformation tf is applied between
two objects that those objects will be classified as mapped
�m can be estimated using the following formula:

p(m | tfi) =
positive classifications with transformationi

total number of transformationi

p(m | tfi) is calculated for each of the general transfor-
mations detailed in section 2, i.e. Equality, Acronym, etc.
Therefore, the instantiated transformations, like (Equality
“Art” “Art”) and (Equality “s” “s”), of the general transfor-
mation Equality will have the same transformation weight,
and the classifications of mappings which use these instan-
tiated transformations will contribute to the calculation of
the transformation weight of the general transformation, i.e.
Equality. Once all of the transformation weights have been
calculated then the attributes similarity scores are com-
puted.

3.3 Re-computing Attribute Similarity Scores
To determine the attribute similarity scores for each can-

didate mapping, first the product of the probabilities of the

applied transformations is computed, and then normalized.

AttributeSimilarityScore(A,B) =
t∏

i=1

tfi

Table 3 shows an example of how the attribute similarity
scores are recalculated for the candidate mapping of “Art’s
Deli” and “ Art’s Delicatessen.” The computing of the at-
tribute similarity scores is repeated for each attributes.

Example:
Mapping: “Art’s Deli” and “ Art’s Delicatessen”

Transformation p(m | t) ¬p(m | t)
(EQUAL ”Art” ”Art”) .9 .1

(EQUAL ”s” ”s”) .9 .1
(PREFIX ”Deli” ”Delicatessen”) .3 .7

Total mapped score m = .243
Total not mapped score n = .007

NormalizedAttributeSimilarityScore =
m

(m + n)

=
.243

(.243 + .007)

AttributeSimilarityScore = .9612

Table 3: Recalculating Attribute Similarity Scores

When the attribute similarity scores have been calculated
then the total object similarity scores are again computed
for each candidate mapping as shown in section 2. These
candidate mappings are ranked according the new total ob-
ject similarity scores. The new scores, attribute and object
similarity scores, are given to the mapping-rule learner in
order to create more accurate mapping rules. They play an
important factor in increasing the mapping accuracy and
deciding the next example to be labeled.

4. EXPERIMENTAL RESULTS
In this section we present the experimental results that

we have obtained from running Active Atlas with trans-
formation weight learning across three different application
domains: Restaurants, Companies and Airports. We have
included results from three other object identification sys-
tem experiments as well. For each domain, we ran exper-
iments for a system called Passive Atlas. The Passive At-
las system includes the candidate generator for proposing
candidate mappings and a single C4.5 decision tree learner
for learning the mapping rules, which is similar to previ-
ous methods for addressing the merge/purge problem of re-
moving duplicate records in a database [15, 9]. The second
system is a baseline experiment that runs the candidate gen-
erator only and requires the user to review the ranked list of
candidate mappings to choose an optimal mapping thresh-
old. In this experiment only the stemming transformation
is used, which is similar to an information retrieval system,
such as Whirl [5]. We will refer to this experiment as the
IR system. The third object identification system that will
be compared is the previous version of Active Atlas [18],

Zagats Health Dept Classification Labeled by
“Trattoria Dell’Arte” “Carnegie Deli” Not Mapped Learner

“Art’s Deli” “Art’s Delicatessen” Mapped Learner
“Spago (Los Angeles)” “Spago” Not Mapped Learner

“CPK” “California Pizza Kitchen” Mapped User
“Joe’s Restaurant” ”Jan’s Family Restaurant” Not Mapped Learner

Table 2: Candidate Mappings with Classifications

which did not perform transformation weight learning and
required the transformation weights be set manually prior
to the mapping process.

4.1 Restaurant Domain
For the restaurant domain, the shared object attributes

are Name, Street, and Phone. Many of the data objects
in this domain match almost exactly on all attributes, but
there are types of examples that do not, as shown in Fig-
ure 1. Because of these four types of examples, the system
learns two mapping rules: if the restaurants match highly on
the Name & Street or on the Name & Phone attributes
then the objects should be mapped together. These two
mapping rules are used to classify all of the candidate map-
pings. Any candidate mapping that fulfills the conditions of
these rules, will be mapped. Because in our application we
are looking for the correct health rating of a specific restau-
rant, examples matching only on the Name attribute, like
the “Teresa’s” example, or only on the Street or Phone at-
tribute, like “Steakhouse The” are not considered mapped.

In this domain the Zagat’s website has 331 objects and
the Dept of Health has 533 objects. There are 112 cor-
rect mappings between the two sites. When running the
IR system experiment, the system returns a ranked set of
all the candidate mappings. The user must scan the map-
pings and decide on the mapping threshold or cutoff point
in the returned ranked list. Every candidate mapping above
the threshold is classified as mapped and every candidate
mapping below the threshold is not mapped. The optimal
mapping threshold has the highest accuracy. Accuracy is
measured as the total number of correct classifications of the
candidate mappings divided by the sum of the total num-
ber of candidate mappings and the number of true object
mappings not proposed. This method is comparable to the
Whirl system [5].

For the IR system experiment the optimal mapping thresh-
old is at rank 111 in the list, and therefore, the top 111 ex-
amples in the list are considered mapped together. At this
optimal threshold, only 109 examples of the 111 are correct
mappings, 3 true examples have been missed and 2 false
examples have been included; therefore, 5 examples in to-
tal are incorrectly classified. In this domain application, a
threshold can not be chosen to achieve perfect accuracy. In
general, selecting the optimal threshold to obtain the highest
possible accuracy is an unsolved problem. Also, even though
this approach computationally less intensive, it can poten-
tially require more user involvement because a user must
view a positive mapping for it to be considered mapped.

The accuracy results from the four types of experiments
are shown in relation to the number of examples that were
labeled. For the two learning systems the results have been
averaged over 10 runs, and the learners classified 3310 can-
didate mappings proposed by the candidate generator. Fig-

ure 7 shows that learning the mapping rules increases the
accuracy of the mapping assignment. In the Active Atlas
experiments, the system achieved 100% accuracy at 45 ex-
amples, while Passive Atlas surpassed the IR system results
at 1594 and reached 100% accuracy at 2319 examples. The
graph also shows that Active Atlas systems require fewer
labeled examples than Passive Atlas.

0.95

0.96

0.97

0.98

0.99

1

0 20 40 60 80 100

Number of Examples

A
cc

u
ra

cy

IR system

Passive Atlas

Active Atlas
(No Transformation Learning)
Active Atlas

Figure 7: Restaurant Domain Experimental Results

The purpose of the Passive Atlas experiments are to show
that learning the mapping rules can achieve higher accu-
racy than the IR system experiment, while also demonstrat-
ing that both Active Atlas systems can achieve the higher
accuracy with fewer labeled examples. The goal of the learn-
ing systems is to deduce more information about how the
objects match in order to increase the accuracy of the to-
tal mapping assignment. Both active learners are able to
outperform the passive learner because it is able to choose
examples that give it the most information about the do-
main and guide the learning process. The passive learner
chooses examples in a random manner, independent of the
actual data. Because these domains have a sparse number of
positive (mapped) examples, on the order of 1% of the data,
it is harder for the passive learner to randomly choose posi-
tive examples that lead to high accuracy mapping rules; and
therefore, it requires more examples. The sparse number of
positive examples also explains why the IR system accuracy
appears high. When the threshold is set to 0 so that no ex-
ample is considered mapped, it still has over 96% accuracy
because the vast majority of examples are not mapped.

These results of the Active Atlas system with transforma-
tion weight learning are also a significant improvement (43%
fewer examples needed) over the results of Active Atlas with

manually set transformation weights [18]. The same set of
general transformations is applied in every application do-
main and for every attribute. These transformations can
suggest possible relationships between tokens, e.g. (Prefix
“Deli”, “Delicatessen”) or between phrases, e.g. (Acronym
“California Pizza Kitchen”, “CPK”), but these relationships
may not accurately represent the true relationship between
the tokens. Therefore, the initial similarity scores calcu-
lated by the candidate generator may inaccurately reflect
the similarity of the attribute values. The three other ap-
proaches must classify examples with inaccurate similarity
scores, while the Active Atlas with transformation weight
learning can learn to adjust the similarity scores to more
accurately capture the true similarity between the attribute
values.

4.2 Company Domain
In the company domain there are two websites, Hoover-

sWeb and IonTech, which both provide information on com-
panies (Name, Url and Description). In this domain the
Url attribute is usually a very good indicator for companies
to match on, e.g. “Soundworks” (Figure 8). There are ex-
amples where the Name matches very well, but the Url is
not an exact match (“Cheyenne Software”); or, where the
Url matches exactly, but the names are not matched at all
(“Alpharel” & “Altris Software”). Active Atlas, therefore,
learns the thresholds on the combination of the attributes
Name and Url, where one attribute needs to be highly
matched and the other partially matched in order for there
to be a mapping between the objects.

Name Url Description

Soundworks, www.sdw.com , Stereos

Cheyenne Software,www.chey.com, Software

Alpharel, www.alpharel.com, Computers

Name Url Description

Soudworks, www.sdw.com, AV Equipment

Cheyenne Software,www.cheyenne.com, Software

Altris Software, www.alpharel.com, Software

HooversWeb IonTech

Figure 8: Company Domain Examples

In this domain HooversWeb has 1163 objects and the Ion-
Tech site has 957 objects. There are 294 correct mappings
between the sites. The optimal threshold for the IR system
experiment is at rank 282, where 41 examples are incor-
rectly classified and 12% of the object mappings are miss-
ing. Figure 9 shows the results for the learning experiments.
For these experiments in the company domain, the candi-
date generator proposed 14303 candidate mappings, and the
results have been averaged over 10 runs. Similar to the
Restaurant domain, Figure 9 shows that learning the map-
ping rules increases the accuracy of the mapping assignment.
Active Atlas with transformation weight learning achieves
higher accuracy than the IR system experiments at 49 exam-
ples (at 7120 examples for Passive Atlas)and 100% accuracy
at 95 examples. The graph clearly demonstrates that the
active learner requires fewer labeled examples than Passive
Atlas, as well as demonstrating the effect of the inaccura-

cies of the initial attribute similarity scores on being able to
classify the mappings.

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300

Number of Examples

A
cc

u
ra

cy

IR system

Passive Atlas

Active Atlas
(No Transformation Learning)

Active Atlas

Figure 9: Company Domain Experimental Results

The transformations have more influence in this domain.
The transformations are able to resolve the spelling mistake
between “Soundworks” and “Soudworks” (Figure 8) using
the Soundex transformation, which made the difference in
it being mapped or unmapped. Also, these Active Atlas
results required 21% fewer examples than Active Atlas with
manually set transformation weights.

4.3 Airport/Weather Domain
We have a list of 428 airports in the United States and a

list of over 12,000 weather stations in the world. In order
to determine the weather at each airport, we would like to
map each airport with its weather station. The airports
and the weather stations share two attributes (Code and
Location). The airport code is a three letter code (e.g.,
ADQ), and the weather station code is a four letter code
(e.g., PADQ). In the majority of examples the airport code
is the last three letters of the weather station code, like the
“Kodiak” example in Figure 10.

Code Location

PADQ, KODIAK, AK

KIGC, CHARLESTON AFB VA

KCHS, CHARLETON VA

Code Location

ADQ, Kodiak, AK USA

CHS, Charleston VA USA

Weather Stations Airports

Figure 10: Airport/Weather Domain examples

The optimal threshold for the IR system experiment is
set at rank 438, where 220 examples are incorrectly classi-
fied and over 25% of the object mappings are missing. In
this domain the set of transformations plays a larger role in
increasing the accuracy of the object mappings, as clearly
shown by the IR system results. The main reason for the
lower accuracy of the experiments with stemming is because
the IR system is not able to recognize that the airport code

is a substring of the weather code for the Code attribute.
It, therefore, only uses the Location attribute to match ob-
jects, so it makes mistakes, like mapping the “KIGC” and
“CHS” objects. There are 18 object mappings that were not
proposed by the candidate generator because it did not have
the necessary transformations.

Like the other domains, Figure 11 shows that learning
the mapping rules increases the accuracy of the mapping
assignment. Active Atlas with transformation weight learn-
ing achieves 100% accuracy at 294 examples, and Passive
Atlas achieves higher accuracy than the IR system results
after only 80 examples. These results are also a significant
improvement (40% fewer examples needed) over the results
of Active Atlas with manually set transformation weights.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300 350 400 450 500
Number of Examples

A
cc

u
ra

cy

IR system

Passive Atlas

Active Atlas
(No Transformation Learning)
Active Atlas

Figure 11: Airport/Weather Domain Experimental
Results

5. RELATED WORK
Previous work on object identification has either employed

manual methods to customize rules or transformations for
each domain or has required the user to apply a fixed thresh-
old to determine which objects are considered mapped to-
gether. These systems generally require heavy user interac-
tion in order to achieve high accuracy mapping. None of the
previous work apply general domain-independent transfor-
mations that are then adjusted to fit the specific application
domain. The main advantage of our system is that it can,
with high accuracy, learn to simultaneously tailor mapping
rules and transformation weights to a specific domain, while
limiting user involvement.

In the database community the problem of object identi-
fication is also known as the merge/purge problem, a form
of data cleaning. Domain-specific techniques for correct-
ing format inconsistencies [4, 3, 12] have been applied by
many object identification systems to measure text similar-
ity [8, 9, 10, 21]. The main concern with domain specific
transformations is that it is very expensive, in terms of user
involvement, to generate a comprehensive set of transforma-
tions that are specific not only to the domain, but also to
the data that is being integrated.

There are also approaches [15, 17] that use a single very
general transformation function, like edit distance, to ad-
dress the format inconsistencies. These approaches require
the user to manually set the transformation parameters for
each application domain. Work conducted by Pinheiro and
Sun [17] and Ganesh et al. [8] used a supervised learning

technique to learn which combinations of attributes are im-
portant to generate a mapping. This technique assumes
that most objects in the data have at least one duplicate
or matching object. It is most similar to the Passive Atlas
system, because it requires either that the user choose the
examples or they are randomly selected.

The problem of object identification has also appeared
in the information retrieval community. When determining
relevant documents to satisfy a user’s query, words or to-
kens from the documents are compared. If there are text
formatting differences in the documents, then relevant doc-
uments can be missed. Closely related work on the Whirl
object identification system by Cohen [5] views data objects
from information sources as short documents. In this work
the object mappings are determined by using the informa-
tion retrieval vector space model to perform similarity joins
on the shared attributes. A single transformation Stem-
ming is the only transformation used to calculate similarity
between strings; therefore, “CPK” would not match “Cal-
ifornia Pizza Kitchen.” The similarity scores from each of
the shared attributes are multiplied together in order to cal-
culate the total similarity score of a possible mapping. This
requires that objects must match well on all attributes. The
total similarity scores are then ranked and the user is re-
quired to set a threshold determining the set of mappings.
To set the threshold the user scans the ranked set of ob-
jects [5, page 9]. Setting a threshold to obtain optimal ac-
curacy is not always a straightforward task for the user. The
Citeseer project [13] is an information retrieval system that
finds relevant and similar papers and articles, where simi-
larity is based on the set of citations listed in the articles.
Citeseer also uses domain-specific normalization techniques
to standardize article citations.

Probabilistic models of the data are used within the record
linkage community [6, 20]. Work in the record linkage com-
munity grew from the need to integrate government census
data; therefore, they have developed domain-specific trans-
formations for handling names and addresses to normalize
attribute values. After the values are normalized then a
string edit distance function is applied for which the param-
eters are manually set. In a record linkage system, the user
is required to make several initial passes reviewing the data
in order to improve and verify the accuracy of the transfor-
mations. Once the user is satisfied with the accuracy of the
transformations, “blocking” attributes are chosen. Choos-
ing blocking attributes is a way to reduce the set of candi-
date mappings by only including the pairs that match on
the chosen attributes. The EM algorithm is then applied to
learn attribute weightings and classify the candidate map-
pings into one of three classes: mapped, not mapped, or to
be reviewed by the user.

Work conducted by McCallum et al. [14] used a two step
process of applying transformations in their approach to per-
forming object identification on citations. Similar to our
method in that they first apply less computationally expen-
sive transformations to determine the initial set of mappings
and then apply the more expensive transformation, edit dis-
tance, to compute the similarity metric between the objects.
This requires the user to manually set the transformation
weights for each new domain application.

6. CONCLUSIONS AND FUTURE WORK
We have developed a domain-independent approach for

incorporating the user’s knowledge into an object identifica-
tion system To achieve high accuracy object identification
Active Atlas simultaneously learns to tailor both domain-
independent transformations and mapping rules to a spe-
cific application domain through limited user input. The
experimental results demonstrate that Active Atlas achieves
higher accuracy and requires less user involvement than pre-
vious methods across various application domains.

Currently, we are working on running Active Atlas on
larger data sets. There are several issues for future work
that we are pursuing, such as providing a method to mini-
mize noise or error in the labels provided by the user. We
would also like to applying Active Atlas to other types of re-
lated research problems, such as sensor fusion or objection
identification for multimedia data.

Acknowledgments
The research reported here was supported in part by the
United States Air Force under contract number F49620-01-
C-0042, in part by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory under
contract/agreement numbers F30602-01-C-0197, F30602-00-
1-0504, F30602-98-2-0109, in part by the Air Force Office of
Scientific Research under grant number F49620-01-1-0053,
in part by a gift from the Microsoft Corporation, and in part
by the Integrated Media Systems Center, a National Sci-
ence Foundation Engineering Research Center, cooperative
agreement number EEC-9529152. The U.S. Government is
authorized to reproduce and distribute reports for Govern-
mental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of any of the above organizations
or any person connected with them.

7. REFERENCES
[1] N. Abe and H. Mamitsuka. Query learning strategies

using boosting and bagging. In Proceedings of the
Fifteenth International Conference on Machine
Learning, 1998.

[2] Y. Arens, C. Y. Chee, C.-N. Hsu, and C. A. Knoblock.
Retrieving and integrating data from multiple
information sources. International Journal on
Intelligent and Cooperative Information Systems,
2(2):127–158, 1993.

[3] D. Bitton and D. J. DeWitt. Duplicate record
elimination in large data files. ACM Transactions on
Database Systems, 8(2):255– 265, June 1983.

[4] K. W. Church and W. A. Gale. Probability scoring for
spelling correction. Statistics and Computing,
1:93–103, 1991.

[5] W. W. Cohen. Integration of heterogeneous databases
without common domains using queries based on
textual similarity. In SIGMOD Conference, pages
201–212, Seattle, WA, 1998.

[6] I. P. Fellegi and A. B. Sunter. A theory for
record-linkage. Journal of the American Statistical
Association, 64:1183–1210, 1969.

[7] W. Frakes and R. Baeza-Yates. Information retrieval:
Data structures and algorithms. Prentice Hall, 1992.

[8] M. Ganesh, J. Sirvastava, and T. Richardson. Mining
entity-identification rules for database integration. In
Proceedings of the Second International Conference on
Data Mining and Knowledge Discovery, pages
291–294, Portland, OR, 1996.

[9] M. Hernandez and S. J. Stolfo. Real-world data is
dirty: Data cleansing and the merge/purge problem.
In Data Mining and Knowledge Discovery, pages 1–31,
New York, NY, 1998.

[10] J. A. Hylton. Identifying and merging related
bibliographic records. M.S. thesis. MIT Laboratory for
Computer Science Technical Report 678, 1996.

[11] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish,
I. Muslea, A. G. Philpot, and S. Tejada. The ariadne
approach to web-based information integration.
International the Journal on Cooperative Information
Systems (IJCIS), Special Issue on Intelligent
Information Agents: Theory and Applications,
10(1):145–169, 2001.

[12] K. Kukich. Techniques for automatically correcting
words in text. ACM Computing Surveys,
24(4):377–439, 1992.

[13] S. Lawrence, K. Bollacker, and C. L. Giles.
Autonomous citation matching. In Proceedings of the
Third International Conference on Autonomous
Agents, New York, 1999.

[14] A. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In In Sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2000), 2000.

[15] A. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In The
proceedings of the SIGMOD 1997 workshop on Data
Mining and Knowledge Discovery, Tuczon, AZ, 1997.

[16] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
Learning to classify text from labeled and unlabeled
documents. In In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), 1998.

[17] J. C. Pinheiro and D. X. Sun. Methods for linking and
mining massive heterogeneous databases. In Fourth
International conference on Knowledge Discovery and
Data Mining, New York, NY, 1998.

[18] S. Tejada, C. A. Knoblock, and S. Minton. Learning
object identification rules for information integration.
Special Issue on Data Extraction, Cleaning, and
Reconciliation, Information Systems Journal, 26(8),
2001.

[19] G. Wiederhold. Intelligent integration of information.
In Proceedings of ACM SIGMOD conference on
manangement of data, pages 434–437, Washington,
DC, May 1993.

[20] W. Winkler. Record Linkage Software and Methods for
Merging Administrative Lists. Statistical research
division Technical Report RR01—03, U.S. Bureau of
Census, 2001.

[21] T. W. Yan and H. Garcia-Molina. Duplicate removal
in information dissemination. In Proceedings of
VLDB, Zurich, Switzerland, 1995.

