
Abstract 

Information integration systems provide a uni-
form query interface to a set of sources.  One of 
the key challenges for an information integration 
system is to provide maximally complete an-
swers to user queries and to execute user queries 
efficiently.  We describe an approach to map re-
cursive datalog programs into a streaming, data-
flow execution system. We show that our 
method can be used in conjunction with the In-
verse Rules algorithm to create a new informa-
tion integration system that can provide maxi-
mally complete answers to user queries and effi-
ciently execute those queries.  Our preliminary 
results show that in addition to generating 
maximally complete answers, we obtain per-
formance improvements ranging from 8% to 
24.3% over datalog execution. 

1 Introduction 
Information integration systems, such as, InfoMaster 
[Duschka, 1997], Ariadne [Knoblock et al., 2001], and 
Information Manifold [Levy et al., 1996] provide users 
with uniform access to various sources. One of the chal-
lenges for the information integration systems is to re-
formulate user queries into a query plan containing a set 
of source queries that provide maximally complete an-
swers to the user query and execute the source queries as 
efficiently as possible. We show that the state of the art 
information integration systems can only provide either 
efficient execution or maximally complete answers to the 
user queries. In this paper, we describe an information 
integration framework that utilizes the Inverse Rules al-
gorithm [Duschka, 1997] to reformulate user queries into 
a set of source queries, maps the resulting set of source 
queries to integration plans that can be executed by a 
streaming dataflow style execution system called Theseus 
[Barish and Knoblock, 2002], and executes the integra-
tion plans efficiently using the Theseus execution engine. 
We show that the information integration framework de-
scribed in this paper can provide maximally complete 
answers to the user queries and execute the user query as 

efficiently as possible.  The key contributions of this pa-
per are (1) mapping the set of source queries produced by 
the Inverse Rules algorithm into an integration plan for a 
streaming dataflow style execution system, and (2) utiliz-
ing the mapping procedure in conjunction with the In-
verse Rules algorithm and the Theseus execution engine 
to create a new information integration system.  

The remainder of this paper is organized as follows.  
Section 2 describes the problem of translating datalog 
programs to query plans and applying the resulting 
method to the information integration domain.  Section 3 
provides a brief overview of a state of the art query re-
formulation algorithm called the Inverse Rules algorithm 
and a streaming dataflow execution system termed The-
seus.  Section 4 describes the process of translating data-
log programs to Theseus plans.  Section 5 provides initial 
experimental results of the resulting information integra-
tion system.  Section 6 describes the related work and 
Section 7 concludes the paper by discussing our contribu-
tions and future work. 

2 Problem Description 
Datalog has an extensive set of features that can be used 
to represent different type of query plans.  However, 
datalog execution engines cannot execute several datalog 
predicates in parallel or stream data between datalog 
predicates.  In this paper we describe a method to trans-
late datalog programs to the programs that can be exe-
cuted by a streaming dataflow execution engine.  A key 
application of such a method is in the area of information 
integration.  Information integration systems have three 
key components: (1) query reformulation, (2) query op-
timization, and (3) query execution.  A major challenge 
for an information integration system is to reformulate 
user queries into set of source queries that provide maxi-
mally complete answers to the user query and execute the 
source queries as efficiently as possible.  

In order to meet this challenge, the query reformulation 
engine must reformulate the user query into a set of 
source queries that can be executed by the query execu-
tion engine.  The limitations of the state of the art algo-
rithms for query reformulation algorithms force the in-

Efficient Execution of Recursive Integration Plans 

 
Snehal Thakkar and Craig A. Knoblock 

University of Southern California 
Information Sciences Institute & Department of Computer Science 

4676 Admiralty Way 
Marina del Rey, CA 90292 

{thakkar, knoblock}@isi.edu 



formation integration system developers to pick either 
maximally complete answers or efficient execution.  The 
MiniCon algorithm [Pottinger and Levy, 2000] (based on 
the earlier Bucket algorithm [Levy et al., 1996] ) and the 
Inverse Rules algorithm [Duschka, 1997] are two state-
of-the-art algorithms to reformulate user queries into a 
set of queries on the source relations. 

The source queries generated by the MiniCon algo-
rithm can be executed efficiently using a streaming data-
flow execution system, such as, Tukwila.  The Tukwila 
execution system uses flexible scheduling of queries, 
pipelining, and convergent query processing to execute 
the source queries efficiently [Ives et al., 1999]. How-
ever, the MiniCon algorithm does not support recursion.  
Therefore, if the information integration system utilizes 
the MiniCon algorithm, it may not be able to answer re-
cursive user queries and may lose completeness of the 
results in the presence of recursive queries.  Furthermore, 
an information integration system may have to reformu-
late the user query into recursive queries on the sources 
to satisfy binding patterns.  An information integration 
system that utilizes the Minicon algorithm would not 
support such queries. 

The Inverse Rules algorithm [Duschka, 1997] can re-
formulate recursive user queries.  The Inverse Rules al-
gorithm produces a datalog program, which can be exe-
cuted using any datalog execution engine.  However, 
datalog execution engines do not have the ability to both 
execute multiple operations in parallel and stream data 
between operations.  Therefore, at present information 
integration system developers face a dilemma of picking 
between the completeness of query results or highly par-
allel, streaming execution.  

In this paper, we describe how we solve this problem 
by translating datalog programs to information integra-
tion plans that can be executed efficiently using the The-
seus execution engine [Barish and Knoblock, 2002].  We 
show that by using our system in conjunction with the 
Inverse Rules algorithm and the Theseus execution en-
gine, one can develop information integration system that 
can handle recursive user queries and efficiently execute 
the queries on the source relations. 

2.1 Motivating Example 
To better understand the problem addressed in this paper, 
consider the following scenario.  An information integra-
tion system for flight schedules can access the following 
source relation.1  
 

NonstopSrc(depb, arrb, airlinef, numf, deptimef, arrtimef, dep-
gatef, arrgatef) 

 
NonstopSrc is a source that provides airline, flight 

number, departure time, and arrival time information 

about direct flights between any two airports.  The dep 
and the arr columns in the NonstoSrc relation have bind-
ing constraints, i.e. the user must provide values for those 
columns to query the NonstopSrc relation.  The informa-
tion integration system allows the user to query the flight 
information using the following global relations. 

 
Flights(dep, arr, airline, num, deptime, arrtime) 
GateInfo(airline, num, depgate, arrgate) 
Allflights(dep, arr, airline, deptime, arrtime, depgate, arrgate) 
 

Here the Flights relation provides information about 
direct flights between any two airports while the 
GateInfo relation provides information about the depar-
ture and arrival gates for a given flight.  Allflights rela-
tion provides the information about all direct and con-
necting flights between any two airports.  The informa-
tion integration system defines the following view defini-
tion for the source relation NonstopSrc: 
 

NonstopSrc(dep, arr, airline, num, deptime, arrtime, depgate, 
arrgate) :-  

      Flights(dep, arr, airline, num,deptime, arrtime)^ 
GateInfo(airline, num, depgate, arrgate). 
 

The Allflights global relation is defined as a part of 
domain rules to make user queries easier. Here is the 
definition of the Allflights relation: 

  
Allflights(dep, arr, airline, deptime, arrtime, depgate, arrgate) :-  

Flights(dep, arr, airline, num, deptime, arrtime)^ 
GateInfo(airline, num, depgate, arrgate). 

 
Allflights(dep, arr, airline, deptime, arrtime, depgate, arrgate) :-  

Flights(dep, conarr, airline, num, deptime, conarrtime)^ 
GateInfo(airline, num, depgate, conarrgate)^ 
Allflights(conarr, arr, airline, condeptime, arrtime, condep-

gate, arrgate)^ 
condeptime > conarrtime. 
 

The user can pose queries, such as, find flight informa-
tion for all flights operated by the ‘American Airlines’ 
between the ‘LAX’ airport and the ‘JFK’ airport.  
 

Q1(deptime, arrtime, depgate, arrgate) :-  
Allflights(‘LAX’, ‘JFK’, ‘AA’, deptime, arrtime, depgate, 

arrgate). 
 

Using the MiniCon algorithm [Pottinger and Levy, 
2000], there is no way to write a recursive query plan to 
get all direct and indirect flights between the ‘LAX’ air-
port and the ‘JFK’ airport.  Using the Inverse Rules algo-
rithm [Duschka, 1997], the user can obtain a datalog pro-
gram to query all direct and connecting flights between 
those airports.  In this paper, we describe a system that 
utilizes the Inverse Rules algorithm [Duschka, 1997] to 
reformulate user queries into queries on the source rela-
tions, translate the datalog program produced by the In-

 
1 The flight schedule example in the paper is simplified for ex-
position. Actual flight scheduling system may take into account 
lots of other factors, such as, the flight frequency, and airfare. 



verse Rules algorithm into a Theseus plan, and execute 
the generated Theseus plan using the Theseus execution 
engine [Barish and Knoblock, 2002].  

3 Background Work 
Research described in this paper builds on the Inverse 
Rules algorithm to reformulate the user queries into que-
ries on the source relations and the Theseus execution 
engine to execute the information integration plan.   

3.1 Inverse Rules algorithm 
The Inverse Rules algorithm was utilized by the InfoMas-
ter information integration system [Duschka, 1997].  The 
key advantages of the Inverse Rules algorithm are the 
ability to handle recursive user queries, functional de-
pendencies, and access pattern limitations.  The informa-
tion integration systems that use the inverse view algo-
rithm utilize the Local-as-view model [Levy, 2000], i.e. 
they define the source relations as a view over the global 
relations.  The first step in the Inverse Rules algorithm is 
to invert the view definitions to obtain definitions for all 
global relations as view(s) over the source relations.  For 
every view definition, V(X) :- S1(X1),..,Sn(Xn), where X, 
Xi refer to set of attributes in the corresponding view or 
relation, the Inverse Rules algorithm generates n inverse 
rules, for i = 1,..,n, Si(X’i) :- V(X), where if Xi ε X, X’i is 
the same as Xi else Xi is replaced by a function symbol 
[Duschka, 1997].   For the given example, the Inverse 
Rules algorithm analyzes the view definitions and gener-
ates the rules R1 through R4.     

The second step to reformulate the user query is to un-
ion the inverse rules with the query to produce set of 
datalog rules to answer the user query.  The resulting 
program for our example is shown in Figure 1.2 

3.2 Theseus Execution Engine 
Theseus is based on a streaming dataflow architecture 
[Barish and Knoblock, 2002].  The tuples of different 
relations in a Theseus plan are streamed between the op-
erators.  Theseus has variety of operators ranging from 
data access operators to allow easy access to different 
types of data sources, such as, databases and web pages 
to data management operators, such as, select, project, 
and join.  Theseus is also unique in its support for recur-
sion among the streaming dataflow systems.     

Most operators in Theseus accept one or more relations 
as inputs and produce one or more relations as outputs.  
For example, the select operator accepts a relation as in-
put and a select condition and generates a new relation 
with tuples that satisfy the select condition. 

Figure 2 shows graphical representation of the Theseus 
plan for the rule R4 in the example datalog program.  The 
generated Theseus plan consists of a retrieval operation 

to extract the flight data from the NonstopSrc relation 
(1).  Next, flights from the extracted flights that reach the 
destination are added to the list of flights that reach the 
users destination (4a).  In parallel, Theseus finds all 
flights that reach at an intermediate airport, i.e. all flights 
that may have connecting flights from the intermediate 
airport to the user’s destination (4b).  From the set of 
possible indirect flights, flights that fly to the previously 
visited airports are filtered out using a select operation 
(5b).  If there are no possible indirect flights that fly to 
previously unvisited airports, then the list of flights that 
reach the users destination are routed to a project opera-
tor (7a). The output of the project operator is the query 
result.  If there are some possible indirect flights, then the 
plan calls itself with the indirect flights and a new set of 
results as new inputs (7b).  Theseus can execute multiple 
operations in parallel, for example operations (4a) and 
(4b) are executed in parallel.  Furthermore, Theseus also 
streams tuples between operators, e.g. if there were sev-
eral flights retrieved from the NonstopSrc relation, The-
seus would stream them one tuple at a time to the select 
operation (2) and as soon as the select operator was done 
processing one flight that flight would be passed to the 
next operation [Barish and Knoblock, 2002].  

 
Schema: 
Nonstopsrc(dep, arr, airline, num, deptime, arrtime, depgate, 

arrgate) 
Rules: 
R1: Flights(dep, arr, airline, num, deptime, arrtime) :-  

NonstopSrc(dep, arr, airline, num, deptime, arrtime, dep-
gate, arrgate). 

R2: GateInfo(airline, num, depgate, arrgate) :-  
NonstopSrc(dep, arr, airline, num, deptime, arrtime, dep-

gate, arrgate). 
R3: Allflights(dep, arr, airline, deptime, arrtime, depgate, 

arrgate) :-  
Flights(dep, arr, airline, num, deptime, arrtime)^ 
GateInfo(airline, num, depgate, arrgate). 

R4: Allflights(dep, arr, airline, deptime, arrtime, depgate, 
arrgate) :-  

Flights(dep, conarr, airline, num, deptime, conarrtime)^ 
GateInfo(airline, num, depgate, conarrgate)^ 
Allflights(conarr, arr, airline, condeptime, arrtime, condep-

gate, arrgate). 
Q1(deptime, arrtime, depgate, arrgate) :-  

Allflights(LAX, JFK, AA, deptime, arrtime, depgate, 
arrgate). 

 
Figure 1.  Example Datalog Program 

4 Translating Datalog Program 
The Theseus execution engine can execute the given 
query much more efficiently compared to any datalog 
execution engine.  However, the result of the Inverse 
Rules algorithm is a datalog program and Theseus cannot 
execute datalog programs.  In this section we show how 
the datalog programs generated by the Inverse Rules al-

 
2 If any function symbols are generated while inverting the 
view definition, we can use a flattening procedure described in 
[Duschka, 1997], to eliminate the function symbols. 



gorithm can be automatically translated to the plans that 
can be executed by Theseus. 

The process of translating a given datalog program into 
a Theseus plan starts by validating the given datalog pro-
gram.  The datalog program is first parsed to check the 
syntactical validity of the program. Next, we check that 
the queries specified in the queries section can be an-
swered by the rules given in the datalog program.  After 
the validation, each datalog rule is translated into a The-
seus subplan. Finally, the system generates a master plan 
that calls the subplans corresponding to the datalog rules.  

4.1 Mapping Datalog Rules to Theseus 
In the absence of recursion, datalog rules can be directly 
mapped into Theseus subplans.  The Theseus subplans 
may accept one or more input relations and generate one 
of more output relations.  Each datalog rule consists of a 
head and a body. The body of the rule consists of a set of 
datalog predicates.  To translate a datalog rule to the 
Theseus plan, we map each datalog predicate to a The-
seus operation.  The rest of this section describes how 
different datalog predicates are mapped to the corre-
sponding Theseus operators. 

Data access: Data access predicates are translated to a 
retrieval operation in a Theseus plan.  For example, Non-
stopSrc(dep, arr, airline, num, deptime, arrtime, depgate, 
arrgate) is translated to a retrieval operation.  A data ac-
cess predicate may include constants in the attribute list 
for a relation.  Data access statement containing a rela-
tion with a constant value for an attribute having a bind-
ing constraint, is translated to a retrieval operation with 
the constant as the input parameter value.  For example,   
NonstopSrc(‘LAX’, ‘JFK’, airline, num, deptime, arrtime, 
depgate, arrgate), is translated to a retrieval call with 
inputs dep = ‘LAX’ and arr = ‘JFK’ (operation 1). 

If the attribute list of the relation in the data access 
predicate contains a constant for a free attribute, then the 
data access statement is replaced by a retrieval operation 
followed by a select operation.   In our example, data 
access predicate NonstopSrc(‘LAX’, ‘JFK’, ‘AA’, num, 
deptime, arrtime, depgate, arrgate) is replaced by re-
trieval operation (1) and select operation (2) in the exam-
ple Theseus plan shown in Figure 2.  

Select: Order constraints, such as (x = 5) or (condep-
time > conarrtime) are translated into a select operations.  

The Select operation accepts a relation and a select con-
dition and provides a new relation that contains tuples 
that satisfy the selection condition.  In our example, se-
lect predicate (condeptime > conarrtime) is translated to a 
select operation (operation 3) in the example Theseus 
plan shown in Figure 2. 

Project: A projection in datalog is translated to a pro-
ject operation.  The Project operation accepts a relation 
and attributes to be projected and provides a new relation 
consisting of tuples with the specified attributes.  In the 
example query, Q1(deptime, arrtime, depgate, arrgate) is 
translated to a project operation (7) in Figure 2. 

Join: A datalog statement containing two relations 
with one or more common attribute name specifies a join.  
If the common attribute name in the join is a free attrib-
ute in both relations, then the join is replaced by a join 
operation.  A join operation accepts two relations and a 
join condition, and outputs a joined relation.   

If the common attribute in the join has a binding con-
straint in one of the relations, then the join is translated 
into a dependency between two operations in Theseus.  
For example, the datalog statement SigmodPapers(title, 
year)^AuthorInfo(titleb, author, institution) is translated 
to a retrieval from SigmodPapers followed by a retrieval 
from AuthorInfo data source using the title attribute from 
the SigmodPapers data source. 

4.2 Generating the Master Plan 
Generating a master plan involves both analyzing rules 
for union predicates and adding calls to subplans corre-
sponding to individual rules.  If a datalog program con-
tains one or more unions, then the system generates the 
Theseus subplans to perform a union operation.    

Union: In datalog two statements having the same tar-
get relation represent a union.  The union is translated to 
a union operation in Theseus.  The union operation ac-
cepts two relations as input and provides one output rela-
tion that is the union of the two relations.  The subplan 
corresponding to the union datalog predicate contains one 
of more union operations to union a set of input relations. 

Once the subplans corresponding to all the rules are 
generated, the system generates a master plan to call the 
generated subplans.  The master plan is executed using 
the Theseus execution engine to obtain the query results.   

 
Figure 2: Example Theseus Plan 



4.3 Mapping Recursive Rules 
The recursive datalog rules are translated to recursive 
Theseus plans.  The recursive Theseus plans are typically 
divided in five parts: (1) data processing, (2) query re-
sults update, (3) loop detection, (4) termination check, 
and (5) recursive callback. 

The first part of a recursive Theseus plan is data proc-
essing.  Data processing in a recursive Theseus plan may 
involve accessing data from a data source and processing 
the data.  In the example Theseus plan, operations 1, 2, 
and 3 perform data processing.  This part typically corre-
sponds to the non-recursive part of the datalog statement 
and is translated in the same manner as the non-recursive 
datalog statements.   

The second part of the recursive Theseus plan is the 
update of the query results.  Recursive Theseus plans 
may need to keep track of all results that have been ac-
quired through recursion.  The query results update seg-
ment of the recursive Theseus plan contains statements to 
update the cumulative result set.  In our example, this 
part is responsible for adding qualifying tuples to the 
relation Q1 using a union operation as shown in the ex-
ample plan in Figure 2. 

The third part of the recursive plan is loop detection.  
In datalog, the interpreter is responsible for handling 
loops.  Therefore, the datalog programs do not require 
explicit statements to perform loop detection.  Theseus 
does not automatically handle loop detection.  Therefore, 
when translating datalog programs to Theseus plans, we 
must add Theseus operations to handle loop detection. 
Intuitively, recursion can be viewed as a graph traversal 
problem, where each recursive step is to follow an edge 
from one node in the graph to the other.  We handle loop 
detection in recursive plans by keeping track of all vis-
ited nodes in the graph and in each recursive step only 
follow the edges that lead to unvisited node.  The attrib-
ute corresponding to the nodes in the graph is the attrib-
ute involved in the recursive join condition.  In the given 
example, conarr attribute in the Flights relation corre-
sponds to nodes in the graph.  Next, a select to filter out 
previously visited nodes is added to the plan.  In the 
given example, a select operation (5b) is used to filter out 
tuples with previously visited destination airports.   

The fourth part of the recursive Theseus plan is to 
check for the termination condition.  When translating 
datalog programs to Theseus plans, the termination con-
dition is satisfied when no new input tuples can be found.  
In the example plan, null operation (operation 6) checks 
for the termination condition.  Finally, the last part of the 
recursive Theseus plan is a recursive call if the termina-
tion condition is not satisfied. 

5 Experimental Results 
The goal of our initial experiments was to demonstrate 
that our system provides maximally complete answers to 
user queries and provides better response time to answer 
the user queries compared to a datalog execution.  To 

facilitate experimental evaluation, we used flight sched-
ules from American Airlines, Northwest Airlines and 
Delta Airlines consisting of about 15,000 nonstop flights 
between over 250 different airports.  The flight schedule 
and airports data was stored in Microsoft Access data-
bases with the same schema as the example shown in 
Section 2.1.  We implemented two mediator systems with 
the example global schema.  Both mediator systems util-
ized the Inverse Rules algorithm to reformulate user que-
ries into source queries.  One mediator system translated 
the datalog programs generated by the Inverse Rules al-
gorithm to plans for the Theseus execution engine and 
executed the resulting plans using Theseus.  The other 
mediator system executed the datalog program generated 
by the Inverse Rules algorithm using the Theseus execu-
tion engine without streaming and parallel execution.   

Both mediator systems executed following three que-
ries: (1) Find all direct flights between the given airports, 
(2) Find all flights between the given airports, and (3) 
Find all airports that can be reached from the given air-
port.  The MiniCon algorithm can only reformulate the 
first query into source queries.  The MiniCon algorithm 
cannot reformulate user queries (2) and (3) as it does not 
support recursion.  As shown in Table 1, the mediator 
with the Theseus execution system executes all queries 
more efficiently compared to the simulated datalog exe-
cution engine.  In fact, the example plan described in this 
paper does not benefit a lot from parallel execution as 
there is only one data source.  We plan to perform more 
experiments with plans that more closely model the way 
data sources on the web would be accessed. 

6 Related Work 
Work on parallel execution strategies for logic programs 
execution has mainly focused on either assigning differ-
ent operators to different processors or assigning differ-
ent data to different processors [Cacace et al., 1993].  In 
addition, parallel execution strategies described in the 
survey do not support recursion.  Using our methods, we 
can map both recursive and non-recursive datalog to 
plans for highly parallel streaming execution engine. 

In [Kambhampati et al., 2003], the authors describe 
strategies to optimize the recursive and non-recursive 
datalog programs generated by the Inverse Rules algo-
rithm.  The research focus of their work is to remove re-
dundant information sources and to order access to dif-
ferent sources to reduce the query execution time.  The 
focus of our work is to execute the given datalog program 
using a highly parallel, streaming execution engine.  In 
that sense, the two works are complementary to each 
other as we can optimize the datalog programs using the 
algorithms described in [Kambhampati et al., 2003].  The 
resulting optimized programs can be translated to The-
seus plans using the technique described in this paper.   

In [Ullman, 1988], the author describes various tech-
niques, such as, semi-naïve execution, to optimize the 
execution of datalog programs. However, none of the 
techniques can execute multiple datalog predicates in 



parallel or stream tuples between different predicates.  
There has been some work on streaming query execution 
in the data integration community [Barish and Knoblock, 
2002; Hellerstein et al., 2000; Ives et al., 1999; Naughton 
et al., 2001].  However, these streaming query execution 
engines cannot directly execute datalog programs. 

7 Conclusions and Future Work 
In this paper, we describe our research on mapping data-
log programs to programs for streaming dataflow style 
execution engines.  We described a mediator system that 
utilizes the Inverse Rules algorithm to reformulate user 
queries into a datalog program consisting of a set of 
source queries.  The resulting datalog program is trans-
lated to an integration plan for the Theseus execution 
engine using our technique to map datalog program to the 
integration plan for the Theseus execution engine.  The 
resulting execution plan is executed in highly parallel and 
streaming manner using the Theseus execution engine. 
We show that we get significant performance improve-
ments compared to the mediator that executes the datalog 
program using a simulated datalog execution engine. 

Acknowledgements 
We would like to thank Dr. Jose Luis Ambite for his 
comments on various issues in this paper.  This material 
is based upon work supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) and Air 
Force Research Laboratory under contract/agreement 
numbers F30602-01-C-0197 and F30602-00-1-0504, in 
part by the Air Force Office of Scientific Research under 
grant numbers F49620-01-1-0053 and F49620-02-1-
0270, in part by the United States Air Force under con-
tract number F49620-02-C-0103, and in part by a gift 
from the Microsoft Corporation. 

The U.S.Government is authorized to reproduce and 
distribute report for Governmental purposes notwith-
standing any copy right annotation thereon.  The views 
and conclusions contained herein are those of the authors 
and should not be interpreted as necessarily representing 
the official policies or endorsements, either expressed or 
implied, of any of the above organizations or any person 
connected with them. 

References 
[Barish and Knoblock, 2002] G. Barish and C. A. Knoblock. An 
Expressive and Efficient Language for Information Gathering 
on the Web. Proceedings of the Sixth International Conference 
on AI Planning and Scheduling (AIPS-2002) Workshop: Is 

There Life Beyond Operator Sequencing? - Exploring Real-
World Planning, Toulouse, France, 2002. 

[Cacace et al., 1993] F. Cacace, S. Ceri and M. A. W. Houtsma. 
A Survey of Parallel Execution Strategies for Transitive Clo-
sure and Logic Programs. Distributed and Parallel Databases 
1(4): 337-382, 1993. 

[Duschka, 1997] O. M. Duschka. Query Planning and Optimi-
zation in Information Integration. Ph.D. Thesis, Computer Sci-
ence, Stanford University, 1997. 

[Hellerstein et al., 2000] J. M. Hellerstein, M. J. Franklin, S. 
Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden, V. 
Raman and M. A. Shah. Adaptive Query Processing: Technol-
ogy in Evolution. IEEE Data Engineering Bulletin, 2000. 

[Ives et al., 1999] Z. G. Ives, D. Florescu, M. Friedman, A. 
Levy and D. S. Weld. An Adaptive Query Execution System for 
Data Integration. ACM SIGMOD Conference, 1999. 

[Kambhampati et al., 2003] S. Kambhampati, E. Lambrecht, U. 
Nambiar, Z. Nie and S. Gnanaprakasam. Optimizing Recursive 
Information Gathering Plans in EMERAC. To appear in Jour-
nal of Intelligent Information Systems, 2003. 

[Knoblock et al., 2001] C. Knoblock, S. Minton, J. L. Ambite, 
N. Ashish, I. Muslea, A. Philpot and S. Tejada. The ARIADNE 
Approach to Web-Based Information Integration. International 
Journal on Intelligent Cooperative Information Systems (IJCIS) 
10(1-2): 145-169, 2001. 

[Levy, 2000] A. Levy. Logic-Based Techniques in Data Inte-
gration. Logic Based Artificial Intelligence. J. Minker, Kluwer 
Publishers, 2000. 

[Levy et al., 1996] A. Y. Levy, A. Rajaraman and J. J. Ordille. 
Querying Heterogeneous Information Sources Using Source 
Descriptions. Proceedings of the 22nd VLDB Conference, 
Bombay, India, 1996. 

[Naughton et al., 2001] J. F. Naughton, D. J. DeWitt, D. Maier, 
A. Aboulnaga, J. Chen, L. Galanis, J. Kang, R. Krishnamurthy, 
Q. Luo, N. Prakash, R. Ramamurthy, J. Shanmugasundaram, F. 
Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson, A. 
Gupta and R. Chen. The Niagara Internet Query System. IEEE 
Data Engineering Bulletin 24(2): 27-33, 2001. 

[Pottinger and Levy, 2000] R. Pottinger and A. Levy. A Scal-
able Algorithm for Answering Queries Using Views. VLDB 
Journal: 484-495, 2000. 

[Ullman, 1988] J. Ullman. Principles of Data and Knowledge-
Base Systems. New York, Computer Science Press, 1988. 

Table 1 Experimental Results 

 


