
Quality-Driven Geospatial Data Integration

Snehal Thakkar, Craig A. Knoblock, Jose Luis Ambite
University of Southern California

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
thakkar,knoblock,ambite@isi.edu

ABSTRACT
Accurate and efficient integration of geospatial data is an
important problem with applications in areas such as emer-
gency response and urban planning. Some of the key chal-
lenges in supporting large-scale geospatial data integration
are automatically computing the quality of the data pro-
vided by a large number of geospatial sources and dynam-
ically providing high quality answers to the user queries
based on a quality criteria supplied by the user. We describe
a framework called the Quality-driven Geospatial Mediator
(QGM) that supports efficient and accurate integration of
geospatial data from a large number of sources. The key con-
tributions of our framework are: (1) the ability to automat-
ically estimate the quality of data provided by a source by
using the information from another source of known quality,
(2) representing the quality of data provided by the sources
in a declarative data integration framework, and (3) a query
answering technique that exploits the quality information
to provide high quality geospatial data in response to user
queries. Our experimental evaluation using over 1200 real-
world sources shows that QGM can accurately estimate the
quality of geospatial sources. Moreover, QGM provides bet-
ter quality data in response to the user queries compared
to the traditional data integration systems and does so with
lower response time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Management, Design, Performance

Keywords
Geospatial Data Quality, Quality-driven Query Answering

1. INTRODUCTION
The proliferation of geospatial data on the Internet has

resulted in the availability of a large number of geospatial
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data sources with different types of data of varying quality.
While it is hard to estimate the total number of available
geospatial data sources in the web, a quick check on collec-
tions of available data reveals the following statistics: (1) the
Geospatial Information Database (GiDB) 1 project provides
a list of over 1400 web map servers that provide over 200,000
map data layers and (2) for vector data, a Google search for
keywords ‘download shapefile’ produces over 344,000 result
pages. These simple statistics clearly show that there are
many available geospatial data sources on the web. How-
ever, each source is different from another in respect to the
types of data that it provides, coverage of the data, and
the quality of the data. Moreover, a lot of geospatial data
sources do not provide information about the quality of their
data or bury the quality information in a text document.

While for most users it is easy to find geospatial sources
and possibly even identify the type of data they provide, it
is difficult for them to evaluate the quality of data provided
by the available sources. For example, there are over 317
road network data sources covering the area of the Los An-
geles county in the GiDB portal and Mapdex2 repositories.
A user searching for high quality road network data would
have to go through all the sources and assess the quality
of data from each source to find high quality road network
data. The task of manually evaluating the quality of sources
is very tedious. Moreover, the geospatial sources on the In-
ternet have huge differences in the quality of data. At one
end of the spectrum is the high quality data provided by var-
ious universities or commercial companies that usually have
limited coverage. At the other end of the spectrum, public
data sources, like the U.S. Census Bureau’s Tigerlines, cover
much larger areas, but have lower quality.

We have developed a flexible geospatial data integration
framework called Quality-driven Geospatial Mediator (QGM)
that can automatically assess the quality of a large number
of data sources, represent the quality information declara-
tively, and exploit the quality information to provide high
quality data in response to a user query. QGM allows data
providers to specify available data sources and their cover-
ages. QGM has the ability to automatically assess the qual-
ity of data. Given the information from the source provider,
the assessed quality information, a user query, and a quality
metric, QGM can then provide the best quality results for
the given query.

The rest of the paper is organized as follows. Section 2
discusses a motivating example that we use throughout the

1http://dmap.nrlssc.navy.mil/
2http://www.mapdex.org
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Source Name Type Coverage QualityInfo
NavTeqRoads Road Vector [[33.5,-117],[34,-118]] Yes
TigerRoads Road Vector [[33.5,-117],[34,-117.5]] No
CasilRoads Road Vector [[33,-117],[34,-118]] No
NavteqHospitals Hospital Points [[33.5,-117],[34,-118]] Yes
TerraServerImages Satellite Image [[33,-116],[34,-118]] Yes
GoogleMapsImages Satellite Image [[33,-116],[34,-118]] Yes
TerraServerTopoMaps Topo Maps [[33,-116],[34,-118]] Yes

Table 1: Available Sources

paper to explain our approach. Section 3 describes QGM’s
method to estimate the quality of geospatial sources. Sec-
tion 4 describes QGM’s approach to representing geospatial
sources and the quality of data they provide. Section 4 de-
scribes the representation of geospatial data sources. Sec-
tion 5 describes QGM’s query answering technique. Section
6 describes the results of our experimental evaluation us-
ing real-world geospatial data sources. Section 7 discusses
closely related work. Section 8 concludes the paper by dis-
cussing our contributions and plans for future work.

2. MOTIVATING EXAMPLE
In this section we describe an example scenario using real-

world geospatial data sources to illustrate our approach. In
the example scenario QGM has access to the data sources
shown in Table 1. Different sources provide different types
of data and have different coverage. While QGM can handle
sources with different coordinate systems, in the motivating
example we assume that all sources provide information in
one coordinate system. We also assume QGM has informa-
tion about the quality of data provided by some of the data
sources, but not all sources.

In general, QGM allows a domain expert to specify dif-
ferent quality attributes for different sources and domain
concepts. For example, we can utilize the quality attributes
from FGDC geospatial metadata guidelines. In our motivat-
ing example, we use the most common measures represent-
ing positional accuracy of data provided by sources and the
completeness of data. For vector data sources that provide
information about a feature,3 QGM has information about
the completeness of a source and the positional accuracy of
features provided by a source. The completeness of a vector
data source refers to the percentage of real-world features
that the source provides. For example, if there are 100 hos-
pitals in an area and a source provides 25 hospital points,
then the source is 25% complete.

We use two variables to represent the positional accuracy
of a data source: accuracy bound and features within the
accuracy bounds. The accuracy bound attribute represents
an area around the actual location of the feature, while the
features within the accuracy bounds attribute provides the
percentage of features provided by a source that fall within
the area around the actual location of the feature. The two
attributes relate to the following quality information that
is often present in the metadata provided by sources: The
location of the provided features is accurate within ‘n units’
for ‘k %’ features. The ‘n units’ refer to the accuracy bounds
for the dataset, while the ‘k%’ refers to the features within
accuracy bounds attribute.

In our motivating example, we assume that we have qual-
ity information for the NavteqRoads and NavteqHospitals
data sources. Table 2 shows the quality information. For

3We use the term feature to refer to a geographic entity that
can be represented using either a point, polyline, or polygon.

% Positional Accuracy
Source Completeness Accuracy

Bounds
(meters)

% Features
Within
Bounds

NavteqRoads 85 3.6 91
NavteqHospitals 89 3.6 93

Table 2: Quality of Vector Data Sources

Source Date Collected Orig. Resolution
TerraServerImages 1/1/2001 0.3 m/p
GoogleMaps 1/1/2004 0.5 m/p
TerraServerTopoMaps 1/5/1999 2 m/p

Table 3: Quality of Raster Data Sources

image sources, we use two measures: (1) the date the im-
age was taken and (2) the resolution at which the image
was collected. Table 3 shows the quality data for the image
sources.

Given this information, QGM’s task is to answer the fol-
lowing user query: Find the most accurate and complete
road vector data set and a satellite image collected at reso-
lution better than 1 meter/pixel for the area covered by the
bounding box ‘[[33,-116][34,-118]]’.

3. ASSESSING QUALITY OF SOURCES
In this section, we describe QGM’s approach to assessing

the quality of data provided by sources. QGM only needs to
assess the quality of data for sources that do not provide the
quality information. In our running example QGM assesses
the quality of data from the TigerRoads and the CasilRoads
data sources. The estimation of quality may lead to better
quality answers to the user query or improved coverage.

The intuition behind the automatic quality assessment is
to utilize the information from sources with known quality
of data to estimate the quality of data provided by sources
with unknown quality of data. When QGM encounters a
source that does not provide information about the quality
of data, QGM estimates the quality of data for each type of
data provided by a source separately. First, for each source
with unknown quality, QGM identifies a source with known
quality that provides the same type of data and has some
overlapping coverage with the source with unknown quality.
If no such sources exist, QGM adds the source with unknown
quality to list of available sources with unknown quality of
data. After QGM successfully assesses the quality of data
provided by any new source, it checks to see if the expanded
coverage due to the new source allows QGM to evaluate
any new sources. For example, consider that QGM needs
to assess the quality of road network data covering the city
San Diego provided by some data source. However, the only
source with known quality road network data only covers the
city of Los Angeles. As there is no overlap, QGM adds the
road network source covering the city of San Diego to list of
sources with unknown quality of data. Next, QGM needs to
assess the quality of road network data covering the entire
Southern California region provided by some data source.
As the Southern California region overlaps with the city of
Los Angeles, QGM can assess the quality of road network
data for the source covering the Southern California region.
Once QGM finishes assessing the quality of data provided
by the source, it checks the list of sources with unknown
quality and discovers that it can now assess the quality of

2



Figure 1: Sampling pattern Utilized by QGM

the source that provides the road network data for the city
of San Diego.

If QGM finds a source with known quality and overlapping
coverage, it continues the quality assessment process using
the source with the known quality as a reference source.
The second step of the assessment process is to sample data
from the source with unknown quality data and the refer-
ence source. As geospatial data sources may contain a lot
of data and may not allow querying of all of its data, it is
important to sample a small amount of data instead of re-
trieving all the data provided by a source. In order to obtain
a representative sample, QGM divides the overlapping area
between the source with unknown quality and the reference
source into a grid with equal size cells.

From the generated grid, QGM samples data from sev-
eral cells located along the diagonals in the grid similar to
the pattern shown in Figure 1. The dark cells in the figure
indicate the sampled area. As geospatial data may not be
distributed uniformly, it is important to select cells that rep-
resent the distribution of the data provided by a source. The
rationale behind selecting this pattern was that by selecting
cells distributed throughout the coverage area, we would get
a good representative set of features. The assumption in the
quality estimation process is that the quality of data pro-
vided by a source is uniform across its coverage.

The third step in the quality assessment process is to ana-
lyze the sampled features from both sources to compute val-
ues for the quality attributes for the source with unknown
quality. QGM has to assess values for one attribute corre-
sponding to the completeness of the data and two attributes
corresponding to the positional accuracy of the data (accu-
racy bound and features within accuracy bounds).

3.1 Estimating Completeness
QGM estimates the completeness of a new source given

the sampled data from the reference source and the com-
pleteness of the reference source. The completeness of a
geospatial source refers to the percentage of total existing
features that the source provides. As QGM does not know
the total number of existing features in the area, it esti-
mates the existing features using the reference source. For
example, if the reference source is 50% complete and it pro-
vides two features in an area, QGM estimates that there
are four features in the area. QGM estimates the complete-
ness for the new source by comparing the number of features
provided by the new source with the estimated number of
features in the area using the following formula:

Cnew =
# of featuresnew

# of featuresreference

∗ Creference

The formula takes into account the fact that the reference

Figure 2: Examples of buffers for points, lines, and
polygons

source may not be complete. First, the formula computes
the completeness of the new source compared to the refer-
ence source and multiplies that number with the complete-
ness of the reference source to obtain the completeness of
the new source.

In the case of polylines, the number of features is not a
good indicator as different sources may use different granu-
larity to define features. For example, one source may con-
sider a freeway as a set of separate features each representing
one segment, while the other may consider entire freeway as
one feature. Therefore, if a source provides polylines, QGM
utilizes a different formula that takes into account the length
of the polylines, instead of the number of polylines.

Cnew =

∑
(length of all polylinesnew)∑

(length of all polylinesreference)
∗ Creference

3.2 Estimating Positional Accuracy
In this section, we describe QGM’s approach to estimating

the accuracy of the data provided by the new source. The
accuracy of the data source is measured using two attributes:
(1) accuracy bounds and (2) features within accuracy bounds.

As QGM does not have access to the actual location of a
feature, it utilizes the features from the reference source to
approximate the actual location of the feature and computes
the values for the accuracy of the data provided by the new
source. First, QGM retrieves the values for the accuracy
attributes for the reference source. QGM utilizes the values
of the accuracy attributes to generate a buffer around all
sampled features from the reference set. Figure 2 shows
examples of buffers for points, polylines, and polygons.

Next, QGM determines the percentage of features from
the sample data retrieved from the source with unknown
quality that fall within the buffer. If the source provides
point data, QGM counts the number of points that are
within the buffer using the following formula.

Accnew =
# of features within the buffer

# of features

As QGM has computed the percentage of features from
the source with unknown quality that fall within the accu-
racy bounds used by the reference set, it utilizes the value
for the accuracy bounds from the reference set as the value
for the accuracy bounds attribute. QGM utilize the Accnew

value as the percentage of features within accuracy bounds.
If the source provides polylines, QGM computes the total

length of all parts of the polylines that are within the buffer
using the following formula.

Accnew =

∑
(length of all polylines within buffer)∑

(length of all polylines)
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Figure 3: Domain Concepts Hierarchy

Vector(type, source, bbox, format, cs, vectorobj)
Transportation(type, source, bbox, format, cs, vectorobj)
Raster(type, source, bbox, format, size, cs, rasterobj)
Image(type, source, bbox, format, size, cs, rasterobj)

Table 4: Example Domain Relations

If the source provides polygons, QGM computes the total
area of all parts of the polygons that are within the buffer.

Accnew =

∑
(area of polygons within buffer)∑

(area of all polygons)

QGM utilizes the computed values as the values for the
accuracy of the new source.

4. REPRESENTING GEOSPATIAL DATA
In this section, we describe our approach to describing

the content and the quality of geospatial sources in QGM.
We begin by reviewing the previous work on representing
domain concepts and available sources. Next, we describe
our approach to representing the quality of data provided
by the sources.

4.1 Previous Work: Representing Domain
Concepts and Sources

QGM builds on the research in data integration systems
[10, 15] that represent various entities in the domain as re-
lations with attributes. The set of domain relations form
the mediated schema of the integration framework. In ad-
dition, we organize the domain concepts in a hierarchy by
manually merging the domain concepts from the FGDC list
of geographic concepts,4 the hierarchy of geospatial data
types from the National Atlas,5 and the National Geospa-
tial Agency (NGA) spatial data types6. Figure 3 shows the
partial domain concepts hierarchy focusing on the domain
concepts relevant to our running example. Table 4 shows
the attributes associated with different domain concepts.

Similar to the domain concepts, QGM also represents the
sources as relations with a set of attributes. For example,
the NavteqRoads data source, which accepts a bounding box
of an area and provides road vector data object containing
road segments in the area, is represented as a relation with
two attributes: bbox and vectorobj. The image sources in
our example accept the size of the image and the bounding
box of an area as inputs and provide an image object that
contains the image of the area as output.

QGM utilizes the Local-As-View approach [14, 15] to de-
scribe the relationship between the available sources and do-
main concepts. In the Local-As-View approach, each source
4http://clearinghouse1.fgdc.gov/servlet/FGDCWizard
5http://www.nationalatlas.gov
6http://earth-info.nga.mil/publications/specs/

S1:NavteqRoads(bbox, vectorobj):-

Roads(type, source, bbox, format, cs, vectorobj)^

format = ‘GML’^ cs = ‘EPSG:4326’^

type = ‘Roads’^ source = ‘Navteq’

vectorobj coveredby ‘[[33.5,-117],[34,-118]]’

S2:TerraServerImages(bbox, size, rasterobj):-

SatelliteImage(type, source, bbox, format, size,

cs, rasterobj)^

format = ‘JPG’^ cs = ‘EPSG:4326’^

rasterobj coveredby ‘[[33,-116],[34,-118]]’^

source = ‘TerraServer’^ type = ‘SatelliteImage’

Figure 4: Example Source Descriptions

is defined as a view over a one or more domain relations.
Figure 4 shows the source descriptions for the NavteqRoads
and TerraServerImages data sources. The source descrip-
tions specify the type of data a source provides and the
coverage limitation of the data source. For example, the
rule S1 in Figure 4 states that the NavteqRoads data source
provides road vector data covering the bounding box ‘[[33.5,-
117],[34,-118]]’.

4.2 Describing the Quality of Geospatial Data
In QGM we represent the quality of geospatial data in four

steps. First, we create quality relations for each domain re-
lation to allow users to specify restrictions on the quality
of data. For example, corresponding to the Vector domain
relation, we have a VectorQuality domain relation that de-
scribes the quality of a vector data object with the following
attributes: (1) vector type, (2) source, (3) completeness, (4)
accuracy bounds, and (5) vectors within accuracy bounds.
Simiarly, we also have a quality relation for the Raster do-
main relation with the following attributes: (1) raster type,
(2) source, (3) date collected, and (4) resolution collected.
We create similar quality relations for all domain relations.

Second, we also define a quality relation for each source.
The quality relations for the sources have all attributes from
the corresponding domain quality relation, except the at-
tribute for the data object. For example, the source quality
relation for the NavteqRoads source has the following at-
tributes: (1) completeness, (2) accuracy bounds, and (3)
vectors within accuracy bounds. The image sources have
the following two attributes for the quality: (1) date col-
lected and (2) resolution collected.

Third, we provide QGM descriptions of the source quality
relations as views over the quality relations for the domain
concepts. These descriptions are similar to the source de-
scriptions that relate the sources and the domain concepts.
Below is an example description for a source quality relation:

NavteqRoadsQuality(completeness, accbounds,

featureswithinaccbounds):-

RoadsQuality(type, source, completeness,

accbounds, featureswithinaccbounds)^

type = ‘Roads’ ^ source = ‘Navteq’

Fourth, we also provide QGM a set of facts that constitute
the tuples in each source quality relation. For the sources
with unknown quality QGM generates the facts about the
quality using techniques described in Section 3. Table 5
shows list of facts about the quality of data for our motivat-
ing example. The quality facts for the TigerRoadsQuality
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Relation Quality
NavteqRoadsQuality(85, 3.6, 91) Provided
NavteqHospitalsQuality(89, 3.6, 93) Provided
TigerRoadsQuality(76, 3.6, 68) Estimated
CasilRoadsQuality(93, 3.6, 88) Estimated
TerraserverImageQuality(‘1/1/2001’, 0.3) Provided
GoogleMapsImageQuality(‘1/1/2004’, 0.5) Provided
TerraserverTopoMapsQuality(‘1/1/1999’, 2) Provided

Table 5: Quality Facts for our Running Example

and the CasilRoadsQuality are generated using the auto-
matic quality estimation technique described in Section 3.

The domain hierarchy rules, source descriptions, source
quality descriptions, and facts about the quality relations
together make up QGM’s domain model.

5. EXPLOITING QUALITY IN QUERY AN-
SWERING

The assessment and representation of quality of data pro-
vided by the available sources allows QGM to exploit the
quality of data to provide more accurate answers for user
queries. In this section, we describe QGM’s process of pro-
viding high quality data in response to user queries. We
begin by reviewing the previous work on using the view in-
tegration approach to answering user queries [6]. Then, we
describe QGM’s query answering algorithm that exploits the
quality information.

5.1 Previous Work: View Integration
Data integration systems provide a uniform interface to

a large number of sources. Users can specify their queries
using logic rules containing the domain relations and order
constraints. For example, a query to obtain the road vector
data and a satellite image covering the area specified by the
bounding box ‘[[33,-116][34,-118]]’ can be specified using the
query shown below:

Q1Data(vectorobj, imageobj, vtype, vsource, rtype,

rsource):-

Roads(vtype, vsource, bbox, format, cs, vectorobj)^

SatelliteImage(rtype, rsource, bbox, format, size,

cs, rasterobj)^

vformat = ‘GML’^ iformat = ‘JPG’^

cs = ‘EPSG:4326’^ bbox = ‘[[33,-116],[34,-118]]’^

vectorobj coveredby bbox^

imageobj coveredby bbox

Given the user query, a data integration system utilizes
a query reformulation algorithm to generate a datalog pro-
gram to answer the query using the source descriptions and
the domain rules. Second, the system optimizes the gener-
ated datalog program to reduce the execution time. Third,
the system executes the generated plan and returns the an-
swers to the user.

One of the well-known algorithms to generate a datalog
program to answer a given user query is called the Inverse
Rules algorithm [6]. The intuition behind the Inverse Rules
algorithm is to obtain executable rules from the source de-
scriptions by inverting the descriptions. For every source
description, S(X) : −P1(X1), ..., Pn(Xn), where X and Xi

refer to set of attributes in the corresponding view or rela-
tion, the Inverse Rules algorithm generates n inverse rules,
for i = 1, .., n, Pi(Xi) : −S(X), where if Xi /∈ X, Xi is
replaced by a function symbol. The key advantages of the

Inverse Rules algorithm are the ability to handle recursive
user queries, functional dependencies, and access pattern
limitations. The inverted rules, any domain rules, and the
user query together form a datalog program that can answer
the user query.

The datalog program generated by the Inverse Rules al-
gorithm often contains many source requests that do not
contribute to the answers of the query. Kambhampati et
al. [13] describe an optimization technique that checks the
constraints in the source descriptions and the constraint in
the user query to remove all sources that have constraints
that conflict with the constraints in the user query. For ex-
ample consider a data source that provides road vector data
for the bounding box ‘[[25,-74],[27,-76]]’. As the coverage of
data source does not intersect with the area specified in the
user query, the optimization technique would remove this
source request from the generated datalog program. Once
the datalog program is optimized, the data integration sys-
tem utilizes a datalog interpreter to evaluate the generated
program and obtain answers to the user queries.

5.2 QGM’s Extensions to Exploit Quality
QGM’s query answering algorithm builds on the query

answering techniques used in the traditional data integration
systems. In particular, QGM allows user to specify a quality
criteria and utilizes the quality information for the sources to
identify sources in the generated plans that do not satisfy
the given criteria. QGM removes the requests to sources
that do not satisfy the quality criteria. The quality criteria
is specified using a logic rule similar to the query for the
content. The logic rule describing the quality restrictions
contains one relation for each type of data retrieved in the
query, any applicable order constraints, and if needed one or
more aggregate or Skyline operations. Skyline queries [3] are
used to find all points in a multi-dimensional space which
are not dominated by any other point. The Skyline queries
are important in describing the quality restrictions as the
users often need to optimize multiple attributes of quality.
In our running example, users have a trade off between the
completeness and the positional accuracy of vector datasets
and the ability to perform a Skyline query frees the user
from having to define a function that combines both the
completeness and the positional accuracy.

For our running example the quality restrictions in the
query, find the most accurate and complete road vector data
set and a satellite image collected at resolution better than 1
meter/pixel for the area covered by the bounding box ‘[[33,-
116][34,-118]]’, are specified using the rule below:

Q1Quality(vtype, vsource, rtype, rsource,

resolution, completeness, featuresinaccbounds):-

RoadsQuality(vtype, vsource, completeness,

accbounds, featuresinaccbounds)^

SatelliteImageQuality(rtype, rsource, date,

resolution)^

resolution < 1 ^

SkylineMax(completeness, featuresinaccbounds)

In our example, the quality query contains the RoadsQual-
ity and the SatelliteImageQuality predicates representing
the quality of the road vector data and the satellite image
retrieved in the query. The order constraint on the original
resolution attribute specifies that all satellite imagery in the
answers to the user query must be collected at a resolution
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better than 1 meter/pixel. We use the SkylineMax opera-
tor to ask QGM to maximize the values of the completeness
and the features within accuracy bounds attributes. The user
also specifies a join between the content (Q1Data) and the
quality (Q1Quality) portion of the queries as shown below:

Q1(vectorobj,imageobj, resolution,

completeness, featuresinaccbounds):-

Q1Quality(vtype, vsource, rtype, rsource,

resolution, completeness, featuresinaccbounds)^

Q1Data(vectorobj, imageobj, vtype, vsource,

rtype, rsource)

Here we have specified a join between the quality and the
content rules using the data source name and the type of
data the source provides for each type of data object re-
trieved in the query. This is due to the fact that we have
modeled quality at the level of type of data provided by
a source. If we need to model quality at a finer granu-
larity, we can specify a different set of attributes for the
quality relations and different join conditions. For example,
if the sources provided different quality data depending on
the area, we would have the bounding box attribute in the
quality relations and in the join condition.

Given the user query and the quality criteria, QGM uti-
lizes the following query answering algorithm.

1. Invert both the content and quality descriptions of the
sources using the Inverse Rules [6] algorithm.

2. Utilize the optimization techniques described in [13] to
remove rules containing unnecessary source requests.

3. Collect source quality facts for all sources that appear
in the relevant rules.

4. Execute the quality query using only the quality facts
gathered in third step.

5. Utilize the results of the quality query to remove rules
containing requests to sources that do not satisfy the
quality criteria.

6. Execute the generated datalog program and return the
high quality answers to the user.

In our running example, the first two steps result in a dat-
alog program containing requests to three road vector data
sources (NavteqRoads, CasilRoads, and TigerRoads) and the
two image sources (TerraServerImages and GoogleMapsIm-
ages). From the quality facts shown in Table 5, QGM col-
lects the facts for the three vector data sources and two
image sources.

Once QGM has the quality facts for all relevant sources,
it evaluates the quality query using the inverted quality def-
initions and the facts for the quality of data. Both im-
age sources provide resolution better than 1 meters/pixel.
Therefore, both image sources satisfy the quality criteria.
Next, QGM performs the SkylineMax operation using the
values of the completeness and the features within accuracy
bounds attributes for the three vector data sources. The
value for both attributes for the TigerRoads data source
is lower compared to the other vector data sources, while
both CasilRoads and NavteqRoads have the highest value
for at least one of the two attributes. Therefore, only the
CasilRoads and the NavteqRoads data sources satisfy the

Roads Image
NavteqRoads TerraServerImages
NavteqRoads GoogleMapsImages
CasilRoads TerraServerImages
CasilRoads GoogleMapsImages

Table 6: Sources that Satisfy Quality Criteria

constraint of the quality of the road vector data specified
using the SkylineMax operation. All possible combinations
of road vector data and image data that satisfy the quality
requirements are shown in Table 6.

As a result of evaluation of the quality query, QGM can
remove the rules containing requests to the TigerRoads data
source as it does not satisfy the quality criteria. The pruning
of the source not only reduces the source request(s), but also
ensures that the answer returned to the user satisfies the
quality criteria.

Finally, QGM executes the datalog program consisting
of the inverted definitions of the NavteqRoads, the Casil-
Roads, the TerraServerImages, and the GoogleMapsImages
data sources and the user query. The result of the query are
four combinations of image and road vector data objects
that satisfy the content and quality requirements specified
in the user query.

6. EXPERIMENTAL EVALUATION
We conducted experiments to show that (1) QGM’s auto-

matic quality estimation technique with sampling provides
accurate estimates of the quality of data provided by sources
and (2) QGM can utilize the quality estimates to provide
high quality data in response to user queries and reduce the
response time of user queries.

We searched the Internet for shapefiles containing the
following types of data covering parts of USA: (1) roads,
(2) rivers, (3) hospitals, (4) schools, and (5) lakes. As a
result of the search we found 1268 shapefiles containing dif-
ferent types of data. We used QGM to estimate the quality
of those data sources using all the data provided by sources
and using three sampling techniques. As a reference set, we
used the vector data provided by Navteq.7 As shown in Ta-
ble 7, QGM can estimate the value for the features within
the accuracy bounds attribute with less than 10% error and
the value for the completeness attribute with about 20% er-
ror by sampling only 20% of the data. The major reason
behind the large error bound for the completeness attribute
is due to the fact that often the density of features is not
strong in the sampled area resulting in a very small sample
size, which is not enough to estimate completeness of the
data source regardless of the sampling pattern. However,
the difference in the true values of completeness between
two data sources that provide the same type of data for the
same region is usually larger than the average error in the
estimation process. Therefore, the estimated quality results
are good enough to determine the relative quality of sources
to answer user queries.

The second set of experiments are to show that QGM
significantly improves the quality of answers for the user
queries. We used the 1268 sources used in the first set of
experiments as available sources and randomly generated 20
bounding boxes where there was at least one type of geospa-

7http://www.navteq.com
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Type %
Data

Avg. Comp. & Acc.
Without Sampling

Avg. % Error with Sampling

Completeness Accuracy Completeness Accuracy
Point 10 91.76 95.6 17.54 12.27
Point 20 91.76 95.6 14.27 7.95
Polyline 10 38.09 80.28 24.69 8.68
Polyline 20 38.09 80.28 20.74 7.95
Polygon 10 68.12 87.15 25.01 11.20
Polygon 20 68.12 87.15 20.51 10.97

Table 7: Results Estimating Quality

Type QGM Average Std. Deviation
% Comp. % Acc. % Comp. % Acc. % Comp. % Acc.

Constraint 59.81 87.61 47.71 83.12 17.36 9.31
Aggregate 68.19 89.97 47.71 83.12 17.36 9.31
Skyline 64.03 87.90 47.71 83.12 17.36 9.31

Table 8: Quality of Data

tial data available. We asked QGM to retrieve one type of
geospatial data available in each bounding box using three
different types of quality restrictions. The first quality re-
striction was on either completeness or features within ac-
curacy bounds attribute. It contained a constraint that the
selected attribute must be greater than 50. The second qual-
ity query asked QGM to find data with the highest value for
completeness or features within accuracy bounds. Finally,
the third quality query asked QGM a skyline query with the
completeness and features within accuracy bounds.

QGM always returned sources with the best quality given
the quality criteria. As shown in Table 8, on average com-
pared to the average of all objects returned, QGM provided
12% more complete results for constraint queries, 20% more
complete results for aggregate queries, and 16% more com-
plete datasets for skyline queries. The data returned by
QGM on average had 5% more features within the accuracy
bounds compared to the average of all relevant sources. For
all queries the improvement in completeness was statistically
significant using a two-tailed t-test with α =0.05, while the
improvement in the accuracy was also statistically signifi-
cant for aggregate queries.

In addition to providing better quality data, QGM was
able to answer queries in 33.7% less time compared to an-
swering queries by returning data from all relevant sources
regardless of quality. The 33.7% less time on average re-
sulted in reduction of 221 seconds. This was due to the fact
that on an average, QGM was able to remove two source
requests out of six due to the quality constraints.

7. RELATED WORK
This paper is related to four major areas of work. The

first area of related research is on integrating geospatial data
using a data integration system. Hermes [1], MIX [12], Vir-
GIS [8], and Geongrid [20] are examples of data integration
systems that have been used to integrate geospatial data.

The Hermes mediator system [1] integrates multimedia
data and spatial data was one type of data it integrated.
The MIX system [12] is an XML-based mediator system that
supports integration of geospatial data and some grouping
and aggregation operations using the Global-As-View ap-
proach. VirGIS [8] is a mediator system that utilizes a lim-
ited form of Local-As-View approach to integrate data from
various geospatial data sources. VirGIS supports one to one
mapping between source and domain relations. The Geon-
grid [20] describes grid-enabled mediation services (GEMS)
architecture for integrating geospatial data. The GEMS ar-

chitecture focuses on providing the best results by selecting
sources with the best quality using a pre-defined ranking of
sources based on the quality metadata. While these systems
address the challenges involved in representing geospatial
sources and answering user queries, they do not allow users
to specify any quality constraints. The key advantages of
QGM are the support for automatic quality estimation to
quickly add quality descriptions for sources, a declarative
specification of the quality information, and the flexibility
for the users to specify their own quality criteria.

The second area of related work includes work on semantic
integration of geospatial sources [4, 9, 18]. Ontology-driven
Geospatial Information System (ODGIS) [9] is an integra-
tion framework that allows users to browse various classes in
the geospatial ontology, reasons based on ontology classes,
and utilizes terms from Wordnet to resolve linkage issues
between the sources. The ODGIS framework assumes that
it has access to a semantic mediator that generates answers
to the user queries by retrieving and integrating geospatial
information from the relevant sources. QGM would be an
ideal choice to work as a semantic mediator within ODGIS.

Arpinar et al. [4] describe the process of manually de-
veloping a geospatial ontology and modeling sources us-
ing the manually developed ontology in a framework titled
Geospatial Semantics and Analytics (GSA). In [18] authors
describe SWING, a semantic framework for geospatial ser-
vices. The SWING framework shows the feasibility of uti-
lizing an ontology-based reasoner to overcome the semantic
heterogeneity in the names of layers and attributes in dif-
ferent geospatial services. Their approach is similar to the
mediator approach as they use a simple form of description
logic to encode the rules. The goal of QGM, GSA, and the
SWING is to provide a unified interface to a large number of
geospatial data sources. However, our work also addresses
the quality of the integrated data and ease of estimating the
quality of a large number of sources.

The third research area related to this paper is the work
on quality-driven data integration [2, 7, 16, 17]. Berti-
Equille and Eckman et al. [2, 7] describe an approach to
ensure maximally complete answers for queries on life sci-
ence data sources by analyzing all possible plans to compute
data. QGM’s representation of quality is more expressive
as it can represent multiple attributes of quality and user-
specified quality criteria. Naumann et al. [16, 17] use the
quality metrics to generate a plan to answer the user query
in three steps: (1) prune based on source specific quality cri-
teria, (2) generate plan based on the logic rules for content,
and (3) plan selection based on the logic rules for content
and attribute-specific criteria. As geospatial datasets often
have limited coverage pruning first based on only the source
specific quality attributes may result in answers that do not
cover the query area. Therefore, QGM’s query answering
algorithm first selects only the relevant sources based on
the content and then explores the search space based on the
quality requirements. As the number of sources that pro-
vide data for the layers and areas in the query tend to be
small in general, the search space is relatively small. More-
over, QGM automatically estimates the quality of sources
to enable integration from a large number of sources.

Finally, GIS researchers have worked on different approaches
and ontologies to model and visualize accuracy in geospa-
tial data [11, 5, 19]. The proposed framework would allow
users to model various concepts and characteristics, such as
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completeness or alignment, as described in [19, 5], and pose
queries to retrieve geospatial data that meets the accuracy
requirements based on the given characteristics. The accu-
racy of data retrieved using our framework can be visualized
using approaches described in [11].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we described a framework to support quality-

driven large-scale geospatial data integration. The key con-
tributions of our framework are: (1) the ability to automat-
ically estimate quality of data provided by a source by using
the information from a source of known quality, (2) declar-
ative representation of both the content and the quality of
geospatial data provided by sources, and (3) a quality-driven
query answering technique for geospatial data. Our exper-
imental evaluation using over 1200 real-world sources show
that QGM not only provides better quality data compared
to the traditional data integration systems, it also has lower
response time.

In the future, we plan to add the capability to automat-
ically generate source descriptions for sources that support
OpenGIS standards. Moreover, we plan to investigate au-
tomatic estimation of other quality attributes, such as date
collected and original resolution. We believe that we can
use information retrieval techniques to search the text or
XML documents for the information about those attributes.
Once QGM can automatically generate source descriptions
and estimate the quality of data provided by the sources,
we can build a truly automatic geospatial data integration
system that can find geospatial sources by searching the In-
ternet, automatically determine the type of data provided
by the source and its coverage, estimate the quality of data
provided by the source, and add the source to the list of
available sources for future user queries.
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