
Centralized, Distributed or Something Else?
Making Timely Decisions in Multi-Agent Systems

Tim Harbers, Rajiv T. Maheswaran and Pedro Szekely
University of Southern California - Information Sciences Institute

4676 Admiralty Way, Suite 1001, Marina Del Rey, CA 90292
{tharbers, maheswar, pszekely}@isi.edu

Abstract
In multi-agent systems, agents need to share information in
order to make good decisions. Who does what in order to
achieve this matters a lot. The assignment of responsibility
influences delay and consequently affects agents’ abilities to
make timely decisions. It is often unclear which approaches
are best. We develop a model where one can easily test the
impact of different assignments and information sharing pro-
tocols by focusing only on the delays caused by computation
and communication. Using the model, we obtain interesting
results that provide insight about the types of assignments that
perform well in various domains and how slight variations in
protocols can make great differences in feasibility.

Introduction
A multi-agent team is a collection of independent entities
that make observations and decisions to achieve or optimize
some common goal. Agents must efficiently share knowl-
edge about the environment, their decisions and the team
goal in order to perform well. Software agents that facilitate
coordination in domains like disaster rescue, joint military
operations, and project management must additionally do so
in a timely manner. Appropriate information should get to
agents before the moments at which decisions need to be
made. The best approach depends on the structure of the
problem and delay due to communication and computation.

Agents may attempt to pull information (“how good is
it if I do this?”) or push information (“I’m going to start
doing...”). This can involve gathering data from multiple
sources and processing it to produce desired or relevant out-
put. Should a single agent be responsible for this? If the
team goal and interactions can be decomposed, should the
processing be distributed to as many agents as possible? Per-
haps a partially-centralized approach is best, but how does
one determine the optimal partition of responsibility?

In order to answer these questions, we need a way to han-
dle diverse assignments and a variety of protocols for pro-
cessing and propagating information for any given task de-
composition and event sequence. In this paper, we propose
a model of an agent and agent interaction based on message
processing to capture the impact of computation and com-
munication delays. We abstract the detailed logic that agents

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

use for decision making into rules that govern the generation
and transmission of messages. We implemented a simulator
based on this model where we could elicit the timing infor-
mation from messages propagated under these rules.

Motivated by a project to build a team of coordinator
agents, we needed to investigate if our protocols for sharing
information were feasible or could be improved with intel-
ligent assignment of responsibility. Our model and simula-
tor allowed us to test various protocols and assignments in
different circumstances which yielded insights into protocol
feasibility. In addition, we discovered that certain types of
partial centralization lead to improved performance with re-
spect to minimizing delay in getting information to agents.

The question of centralization vs. decentralization is
fundamental and has been addressed for problems such as
multi-processor scheduling and distributed constraint opti-
mization. Queueing theory offers insights for many models
for evaluating delay in networks. However, this is the first
attempt to combine agent assignment, information sharing
protocols and delay to analyze performance of multi-agent
systems in time-critical domains. This is an important prob-
lem because in real-time dynamic environments, delayed in-
formation can make the quality of information useless.

Agent Interaction Model
Our model of a multi-agent system (MAS) focuses on as-
pects that effect the timeliness of decision-making. The rea-
soning that contributes to the quality of the decision-making
is abstracted away. Thus, we are concerned with how infor-
mation about events (e.g., observations of the environment,
agents’ actions or queries) are propagated through the sys-
tem where delay is the primary metric.

Single Agent Model
We consider an agent (see Figure 1) to be a processing re-
source. An agent is either busy or free. Processing is trig-
gered by messages that are taken from one of three boxes:
the inbox, todobox, and outbox. The inbox stores messages
received from other agents or events generated at the current
agent. Processing an inbox message is equivalent to dese-
rialization. The result will be the creation of messages that
go to the todobox. Messages in the todobox represent local
computations. Processing a todobox message can lead to the
creation of messages in the todobox or outbox of the same

PROCESSING TIME

AGENT

IN TODO OUT

Figure 1: Agent Model

agent. Messages placed in the todobox model the need for
further processing. Messages placed in the outbox model in-
formation to be passed to other agents. Processing an outbox
message encapsulates the costs of serialization or lookup,
and creates a message in the inbox of the appropriate agent.

Team Goal and Structure
The team goal of a multi-agent system is either to achieve
some state or optimize a common reward function. The
structure that describes how agents actions and observations
affect the team goal can be represented as a graph. Nodes
represent whatever makes sense in the domain (agents’ ac-
tions, reward function components, or environmental infor-
mation). An example of this for a hierarchical task structure
can be seen in Figure 2. Each node has an owner which
is an agent in the system. The nodes are classified as ei-
ther external (the owners are fixed by the domain) or inter-
nal (the owner can be determined by the system designer).
A key investigation in this paper is the best strategy to as-
sign owners to internal nodes. Any two nodes may have
multiple relationships represented as “typed” directed links
in the graph. In Figure 2, relationships include “parent”
and “enabler”. This can model most common MAS for-
malisms (CTAEMS/HTNs, DCOPS/DCSPs, MMDP/Dec-
MDPs, Market/Graphical-Games).

Message Processing Model of a MAS
For a given problem, we have a graph G as a set of exter-
nal nodes N E , internal nodes N I and relationships R. The
message processing model of a multi-agent system is con-
structed as follows. The message abstraction does not con-
tain “data” as we care only about the delay in information
propagation. Each message has a class that categorizes its
processing time requirements and also, how many and what
type of messages are created after processing. Formally, a
message m is a tuple, (c,ns,nd ;a,b, t) where m has class
c ∈ C , with a single source and destination node, ns,nd ∈
N = N I ∪N E that appeared in box b ∈ {bin,btodo,bout}
of agent a ∈ A at time t.

Let p : C → IR represent the computational cycles a mes-
sage requires by class. Let d(a1,a2) be the inter-agent delay
for communicating between agents a1 and a2

1. A message
selection function, s(·) determines how an agent chooses a

1While p and d can be distributions, they are deterministic func-
tions in this paper

ACTIVITIES

TASKS

MILESTONES

PROJECTS

ROOT

Figure 2: Task Hierarchy Graph

message from its three boxes when it is not busy. A mes-
sage creation function, h(·), contains the rules by which new
messages are generated when a message is processed. An
ownership assignment function w : N → A denotes which
agent is responsible for managing a given node. Once G,d,
p,s,h,w are given, we can simulate the multi-agent system
for any event stream E . An event stream is a collection
{(c,a, t)} whose elements denote the class of a message that
arrives in the inbox of a given agent at a given time. While
the designer has control to varying degrees over many of
the parameters discussed above, the focus of our investiga-
tion is the impact of the ownership assignment w over the
internal nodes N I on delay in processing events. Given an
ownership assignment, message creation and processing are
the causes of delay in propagating information. Because the
message creation function, h(·), is responsible for the way
this information is propagated, it plays a key role.

Message Creation
Here, we consider a message creation function based only
on classes and relationships 2. Suppose that a node ns is
related to node nd via a relationship r. The h(·) function
specifies what new messages to create on node nd when the
agent owning node ns processes a message of class c. This
depends on the relationship between ns and nd , namely r.
Thus, the h(·) function takes a class c and a relationship r as
input and can be expresses as h(c|r). The output of h(c|r)
is a collection of classes which is a subset of all possible
classes. The h(c|r) function will create a set of classes for
any node that shares the r relationship with node ns

3.
When an agent chooses a message from its inbox, it con-

tains information from a different agent that affects a node
that it owns. Let us call this the relevant node. It then looks
at the class of the message and puts a message in its own
todobox with same class and relevant node. Let us call this
the relevant class. When an agent chooses a message from
its todobox, the agent looks at the relevant class c, and finds
all relationships r for which h(c|r) is non-empty. For each
of these relationships, we then find all nodes that share that
relationship with the relevant node. Let us call these nodes
the affected nodes. For each affected node, and for each
element c̃ ∈ h(c|r), a message of class c̃ is created. This
message is put in the agent’s own todobox, if the agent owns
the affected node. Otherwise, it is put in the agent’s outbox.
When an agent chooses a message from its outbox, it sends
a message with the same class to the inbox of the agent who

2Rules based on agents can represent heterogeneous reasoning
3Note h(c|r) = /0,∀r ∈ R denotes a terminal message class

owns the affected node.
Once a message is chosen to be processed, it is no longer

considered for selection in the future. Events instigate the
cascade of messages. To make timely decisions, appropri-
ate agents must have the required information as quickly as
possible after an event occurs. Messages are tagged with
an identification of the event that triggered it and the time
they finished processing. Once can then use any desired de-
lay metric based on these parameters to evaluate the per-
formance of the system. Our metric is the time from event
occurrence until the time when the last message tagged with
that event identification is processed.

We do not consider issues such as multithreaded pro-
cessing, heterogeneous agents, memory limitations, multi-
ple ownership of nodes or noisy communication, but the
model can be extended easily to capture those situations.
Nevertheless, the model described above can capture many
multi-agent system protocols and in particular, a diverse set
of approaches that we considered for a coordination problem
discussed forthwith.

The Real-Time Scheduling Problem
We consider a real-time multi-agent system where software
agents re-plan and re-schedule activities in response to dy-
namic events in an uncertain environment such as disaster
rescue or joint military operations. The team goal is rep-
resented by a graph. We begin with a tree where the goal
or objective function (root node) is decomposed recursively
into subtasks (intermediate nodes) until we reach potential
activities (leaf nodes) 4 In addition, there can be other depen-
dencies, such as enabling, between nodes, represented by a
directed link between them. An enabling link means that,
in order to succeed, any descendant of the destination node
must begin after the source node has been accomplished. An
example of this can be seen in Figure 2.

The agents have an initial schedule of activities to per-
form. However, the durations and resulting qualities of these
activities are uncertain. Thus, both the set of activities being
performed and the timing need to be changed dynamically
in order to increase performance or achieve a goal.

The leaf nodes (potential activities) can only be performed
by certain agents. Thus, they are external nodes in our
model, and the owners are fixed. The root and intermedi-
ate nodes (internal nodes in our model) can be assigned to
any agent. These nodes represent some computation that
evaluates the status and projects the future of the task asso-
ciated with the node based on information from directly re-
lated tasks. Assigning all internal nodes to a single agent is
equivalent to having a single manager for the whole project
(centralization).

In a dynamic real-time system, agents will send queries
about potential activities, such as “what if I do this?”, “what
if I don’t do this”, or “what if I delay this?” This information
must be processed through all the relevant nodes to know the
impact on the team reward before an agent can make a deci-
sion. The node assignment question is important because we

4For this paper, the names of the intermediate layers are signif-
icant only to identify the depth of the nodes

want all agent queries to be answered as quickly as possible.
When agents get their queries answered, they will have more
information when they make decisions, which generally re-
sults in better decisions.

Message Processing Model of Problem
Relationships (R): Given a source and destination node
from a graph, they can have a parent or child relationship
(through the tree), or a source or target relationship (through
directed enabling links). Also, all nodes have a relationship
with themselves, labeled self.
Classes (C): Classes are important because they determine
how messages propagate throughout the system, which re-
flect the underlying reasoning being used by the agents. We
have investigated and represented many schemes used in the
real system within this model. Here, we discuss the propa-
gation protocols that result from two of such schemes.

The first, behavior protocol, has one message class, cbeh.
These messages contain information about new behavior
that an agent has or is considering at a certain node. An
agent receiving a behavior-update message will calculate the
new behavior of any affected node it owns. Once new be-
havior is determined, a message is sent to the parent and
target nodes of the affected node as they are affected by this
change.

The second type, cost protocol, adds a second message
class, ccost . These messages capture the resource costs of
all descendant leaf nodes (activities) for any given behavior.
If a new cost message is received (from a child node), an
agent must update its own cost estimates and investigate a
potential change in its behavior. The node then informs its
parent about its new costs and its parent and targets about its
new behavior.
Message Creation Function (h) and Message Se-
lection Function (s): Both protocols above are
captured by the following message creation func-
tion: {h(cbeh|parent) = cbeh, h(cbeh|target) =
cbeh, h(ccost |parent) = ccost , h(ccost |sel f) = cbeh}.
For all other conditions, h(c|r) = /0. The interplay between
cost and behavior messages is that cost messages create
behavior messages, which means that additional behavior
messages are propagated through the graph. The creation of
classes for these protocols are visualized in Figure 3. The
root has no parents or targets by definition, and thus does
not propagate any messages. Because all other nodes have
parents, all message flows terminate at the root for these
propagation protocols. The selection function prioritizes the
boxes as (1)out,(2)todo,(3)in and then chooses the earliest
arriving message within the highest priority box.

Experimental Setup
Delay (d) and Processing Cost (p(c)): The goal of receiv-
ing information as quickly as possible will be hindered by
message processing and message communication. We de-
fined d(a1,a2) as the communication delay: the time it takes
a message to get from agent a1 to agent a2. For all agents
a1,a2 ∈A , d(a1,a2) = d was a constant throughout a given
experiment. Note that these delays are only incurred when

BEHAVIOR PROTOCOL COST PROTOCOL

cbeh
cbeh

cbeh

ccost

PARENT

TARGET

SELFcbeh
cbeh

cbeh

PARENT

TARGET

ccostPARENT

Figure 3: Propagation Protocols

a message is transmitted between nodes owned by different
agents. Otherwise, new messages are put directly into the
todobox of the same agent.

The computational cycles taken to process a message
from the inbox and the outbox was fixed to 1 time unit as
a reference. The cycles taken to process a message from
the todobox (denoted p) was held constant over all classes
for a single experimental trial. This means that p(cbeh) =
p(ccost) = p whenever processing a todo message. We in-
vestigated many combinations of d and p, as we will discuss
later.
Graph (G), Nodes(N) and Agents (A) : Graphs were
generated using the structure shown in Figure 2 with 4 chil-
dren per node at all levels except that the number of mile-
stones per project could vary between 4 and 6. Thus, graphs
had between 85 and 125 internal nodes and between 256 and
386 external nodes. Graphs either had no enabling relation-
ships or “many” enabling relationships. 5 The number of
agents in each trial were chosen such that the ratio of nodes
to agents was approximately 5. Thus, we had between 68
and 102 agents.
Ownership Assignments (w): : This is the main property
we wished to investigate. It is also the property over which
we as designers have the greatest control. While the graph is
constrained by the scenario and the protocol must facilitate
the transfer of useful information, we can employ almost any
arbitrary assignment. At the top of Figure 4, we display the
following 7 assignment classes.
• (C) a single agent owns all nodes.
• (T) a single agent owns the root, all projects and mile-

stones; tasks are distributed among remaining agents.
• (M) a single agent owns the root and all projects; mile-

stone owners also own the tasks below them.
• (MT) a single agent owns the root and all projects; mile-

stones and the tasks are distributed among remaining
agents.

• (P) a single agent owns the root; project owners own the
milestones and tasks below them.

• (PM) a single agent owns the root; the projects and mile-
stones are distributed with milestone owners also owning
the tasks below them.

• (D) all nodes are distributed among all agents.

5In the “many” case, for every node, sequentially, a target was
chosen uniformly from the remaining nodes. An enabling link was
added if it would not create a cycle.

Here, C is centralization, D is full distribution, and the others
are various forms of partial centralization.
Event Stream (E) and Performance Evaluation: Events
represent changes in the environment that agents must ad-
dress. We model events using messages arriving at the exter-
nal nodes (activities). Events arrive at discrete times that we
call pulses. Pulses are generated every 500,000 time units.
We chose this number so that if processing an inbox message
takes 1 microsecond, then pulses arrive every half a second.

We generated an event stream by choosing the number
of events per pulse and the number of empty pulses between
event-arrival pulses from normal distributions rounded to the
nearest non-negative integer. The main experiments used
N(6,4) for both distributions. In our experiments, the class
of all events are ccost when using the cost protocol and cbeh,
under the behavior protocol. Events are deposited uniformly
over the external nodes (activities) in the graph. All mes-
sages that result from this event are tagged with a unique
event identification. The difference between the time when
the final message from a particular event has been processed
and the time this event entered the system is stored as the
event-propagation time. Because the goal is to minimize the
time taken to propagate information, we used the average
event-propagation time as a metric to evaluate performance.

Experimental Results
We focus on three scenarios. The first has no enablers and
uses only the behavior protocol. The second has many “en-
abling” nodes and uses only the behavior protocol. The third
has many “enabling” nodes and uses the cost protocol.

A single experiment consisted of a graph and an event
traffic stream as described earlier with a given assign-
ment, communication delay and todobox message process-
ing cost. For each trial of that experiment, we mea-
sured the average event-propagation time in pulses (in-
stead of time units). An experiment was created for
all 7 assignments, all communication delay values d ∈
{0,5000,10000, · · · ,50000} and all todobox message pro-
cessing costs of p ∈ {0,1000,2000, · · · ,10000} (847 exper-
iments). The step sizes for delay and processing were dou-
bled for the many-enablers cost-protocol scenario, because
the average event-propagation times were very large (252
experiments).

We ran 61 unique trials for each experiment to ensure sta-
tistical significance. Figures 4 shows the combined results
for all three scenarios. For each scenario, the upper-left
“landscape” graph has a symbol for each delay-processing
cost pair. This symbol refers to the set of assignments that
were not dominated by any other assignment. If an assign-
ment is not in the set marked by the symbol for a particular
pair, some other assignment was better, as verified by a t-
test with 99% significance probability. The assignments in
the set can be considered the “winners” for that situation.
In addition, three other bar charts show the average event-
propagation time in pulses for all assignment for three delay-
processing cost pairs. These three instances are shaded with
a grey background in the landscape graph. Our basic expec-
tations are that a centralized scheme will win when process-

ing cost is very low, and a distributed scheme will win when
delay is very low.

In the no-enablers behavior-protocol scenario, our basic
expectations are met. For the majority of the landscape,
partially-centralized schemes tend to be the winners. Look-
ing deeper, we see that assignments that centralize at the
bottom (P, PM) are the ones that dominate the landscape
graph, unless processing costs are very low. We also note
that the delay had to be 15 times the processing cost for cen-
tralization to be dominant. However, in all cases, the aver-
age event-propagation time was less than half a pulse. Thus,
it seems that without “enabling” relationships, the assign-
ments are essentially equivalent.

In the many-enablers behavior-protocol scenario, where
almost every node is a source of an “enabling” relationship,
we expect that all agents and especially the root will be
much busier. Thus, we suspect that assignments which do
not overload the root agent’s responsibility should do best.
Our basic expectations regarding centralization and distri-
bution hold again. However, centralization only wins when
processing costs are zero and distribution is bettered by one
of the partially-centralized schemes (PM). Assignments that
overload the root, such as centralization and T (which gives
a single agent all nodes in the top three levels), tend to per-
form poorly. Assignments that distribute the top two levels
(P, PM, D) tend to the best.

In the many-enablers cost-protocol scenario, we expect
that the root will be loaded even more because the cost mes-
sage create additional behavior messages that travel to the
root. The main result is that for most assignments, the av-
erage event-propagation time is over 100 pulses. This in-
dicates that the protocol is infeasible in most dynamic do-
mains, regardless of the quality of the information it shares.
Agents will not get the information before decisions need to
be made. The only region where it may be feasible is when
the processing cost is extremely low and one uses an assign-
ment that distributes the top two levels (P, PM, D). Even in
these cases, the average event-propagation time is about 10
pulses, which is quite high. Interestingly, in this scenario,
distribution is dominated in many situations where there is
zero inter-agent delay. This goes against our basic expecta-
tions of performance.

Finally, we note that processing cost seems to have a far
greater impact on average event-propagation time than de-
lay, especially in many-enablers scenarios. When compar-
ing the (10000,10000) and (50000,2000) delay-processing-
cost pairs, the former is an order of magnitude worse.

Related Work
This agent assignment problem is similar to the the Multi-
processor Scheduling Problem (Garey & Johnson 1979). In
the latter, given an acyclic graph of nodes, or jobs, each node
has to be assigned to a processor, or agent, and takes a cer-
tain amount of time to be processed. A node can have prede-
cessors (all the nodes pointing to it) that have to be processed
first. A communication delay exists for every pair of nodes.
The goal is to minimize the overall processing time, i.e,. to
minimize the time for the final job to complete. The problem

10000 20000 30000 40000 50000

20
00

40
00

60
00

80
00

10
00

0

DELAY

PR
OC

ES
SI

NG

PM D

PM

P PM

P

C P

C

DELAY 10000, PROCESSING 10000

C T M MT P PM D

AE
PT

DELAY 30000, PROCESSING 6000

C T M MT P PM D

AE
PT

DELAY 50000, PROCESSING 2000

C T M MT P PM D

AE
PT

Pu
ls

es

0

0

10000 20000 30000 40000 50000

20
00

40
00

60
00

80
00

10
00

0

DELAY

PR
OC

ES
SI

NG

PM D

PM

P PM

M P PM

M P

M PM

C

DELAY 10000, PROCESSING 10000

C T M MT P PM D

AE
PT

DELAY 30000, PROCESSING 6000

C T M MT P PM D

AE
PT

DELAY 50000, PROCESSING 2000

C T M MT P PM D

AE
PT

400

12

10000 20000 30000 40000 50000

20
00

40
00

60
00

80
00

10
00

0

DELAY

PR
OC

ES
SI

NG

M P PM D

P PM D

P PM

P

C

DELAY 10000, PROCESSOR 10000

C T M MT P PM D

AE
PT

DELAY 30000, PROCESSING 6000

C T M MT P PM D

AE
PT

DELAY 50000, PROCESSING 2000

C T M MT P PM D

AE
PT

140500

900

ACTIVITIES

TASKS

MILESTONES

PROJECTS

ROOT

C PMT PMMT D

Pu
ls

es
Pu

ls
es

Pu
ls

es
Pu

ls
es

Pu
ls

es

Pu
ls

es

Pu
ls

es

Pu
ls

es
Pu

ls
es

0.5

0.0

0.00.0

0.36 0.2

0

0

1.6

0.0

0

00

MANY-ENABLERS COST-PROTOCOL SCENARIO

MANY-ENABLERS BEHAVIOR-PROTOCOL SCENARIO

NO-ENABLERS BEHAVIOR-PROTOCOL SCENARIO

Figure 4: Ownership Assignments and Results

is NP-hard (Garey & Johnson 1979) and many algorithms to
solve it have been proposed.

However, there are some important differences. In our
model, a node can trigger processing more than once. Fur-
thermore, an agent’s work is determined by message queues
and the processing is dependent on a complex protocol and
dynamic events, whereas in the MSP, the processing order is
fixed. Finally, we assume that some nodes have fixed own-
ers (external nodes), so the choice of assignment is not com-
pletely unrestricted.

Our problem is also similar to the Distributed Constraint
Satisfaction Problem (DCSP) (Yokoo et al. 1998) and Dis-
tributed Constraint Optimization Problem (DCOP) (Petcu &
Faltings 2005). In DCSPs and DCOPs, every agent has its
own nodes (or variables) and has to reach a solution by com-
municating with other agents over inter-agent constraints. A
centralized assignment reduces the problem to a CSP (COP).
In addition, there are distributed (Modi, Shen, & M. Tambe
2005) and partially-centralized (Mailler & Lesser 2004) ap-
proaches and the impact of centralization has been investi-
gated (Davin & Modi 2005). The impact of cluster sizes
for partial-centralization on the number of terminal solu-
tions for approximate DCOP algorithms was also investi-
gated (Pearce, Maheswaran, & Tambe 2006). A significant
difference is that DCOPs are attempting to maximize the
quality of a static problem while we are trying to maximize
the timeliness in a dynamic environment.

Because our model makes use of message processing and
tries to analyze the effect of traffic patterns, our work is also
related to queueing theory.(Gross & Harris 1985) Events
are generated using a particular distribution and propagated
through the network, with the overall goal of minimizing de-
lay. The main difference is the use of agent assignment to
nodes, which is not a critical issue in queueing theory.

Conclusion
In this paper, we propose a model of a multi-agent system
based on message processing to capture the effects of com-
putation and communication in terms of delay. Our primary
interests were to (1) study the impact of agent assignment
on the timeliness of processing events in a dynamic envi-
ronment and (2) evaluate the feasibility of information shar-
ing protocols. We implemented a simulator based on this
model and tested scenarios motivated by a real-time schedul-
ing problem. In the question of centralized vs. distributed,
we found that the best was usually something else. In do-
mains with no enablers, centralization at the lower levels of
a task hierarchy led to better performance. In domains with
many enablers, distributing the top levels of the task hier-
archy was essential to get good performance. While these
may seem intuitive in hindsight, we were unable to predict
exactly which partially-centralized schemes would perform
best and what the landscape graph would look like a pri-
ori. In addition, we found that basic expectations, such as
where distribution should dominate, didn’t always hold true.
A key result was that a small change in protocol can make a
huge difference in feasibility. Thus, even if the protocol led
to very good information, it would be useless in a dynamic
environment.

As a multi-agent system designer, it is useful to have a
method to evaluate protocols in terms of information delay
and optimize with respect to agent responsibility. Our model
and implementation allows one to test a large landscape of
conditions and schemes in a quick and easy manner. Devel-
oping this area of research is valuable because in real-time
dynamic environments, information delay is as important as
information quality. 6

References
Davin, J., and Modi, P. J. 2005. Impact of problem central-
ization in distributed constraint optimization algorithms. In
Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 1057–
1066.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Gross, D., and Harris, C. M. 1985. Fundamentals of queue-
ing theory (2nd ed.). New York, NY, USA: John Wiley &
Sons, Inc.
Mailler, R., and Lesser, V. 2004. Solving distributed
constraint optimization problems using cooperative medi-
ation. In Proceedings of Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2004), 438–445.
Modi, P. J.; Shen, W.; and M. Tambe, M. Y. 2005.
Adopt: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence Journal
(AIJ) 161:149–180,.
Pearce, J. P.; Maheswaran, R. T.; and Tambe, M. 2006. So-
lution sets for dcops and graphical games. In Proceedings
of the fifth international joint conference on Autonomous
agents and multiagent systems, 577–584. New York, NY,
USA: ACM Press.
Petcu, A., and Faltings, B. 2005. Dpop: A scalable method
for multiagent constraint optimization. In Nineteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
05), 266–271.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: for-
malization and algorithms. IEEE Transactions on Knowl-
edge and Data Engineering 10(5):673–685.

6The work presented here is funded by the DARPA COORDI-
NATORS Program under contract FA8750-05-C-0032. The U.S.
Government is authorized to reproduce and distribute reports for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or im-
plied, of any of the above organizations or any person connected
with them. We also thank NASA and ONR for support provided
under the awards NNA05CS29A (CMMD) and N000014-03-C-
0222 (CARTE), respectively.

