

Agent Wizard: Building Information Agents
by Answering Questions

Rattapoom Tuchinda and Craig A. Knoblock
Information Sciences Institute

University of Southern California
Marina Del Rey, CA 90292 USA

+1 310 448 8786
{pipet, knoblock}@isi.edu

ABSTRACT
We present a question-answering approach where a user without
any programming skills can build information agents by simply
answering a series of questions. These resulting agents can
perform fairly complex tasks that involve retrieving,
filtering, integrating and monitoring data from online sources. We
evaluated our approach to building agents, which is implemented
in a system called the Agent Wizard, by re-implementing a set of
agents for monitoring travel that originally took four programmers
roughly four days to implement. Using the Agent Wizard, the
entire set of agents can be implemented in under 35 minutes.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces (GUI),
Interaction styles

General Terms: Algorithms, Design, Human Factors

Keywords
Information Integration, Information Agent, User Interface

1. INTRODUCTION
As more information becomes available and more business
transactions are performed on the Internet, users often need to
compare and monitor information from multiple web sources.
Unfortunately, users are stuck with the interface provided by the
web sites. For users with no programming experience, the option
to view integrated data and monitor information is available on a
very limited set of websites.
Our paper introduces the concept of guiding users with no
programming experience to build an information agent by
answering a set of questions. The original idea of our work comes
from commercial tax preparation software, such as TurboTax,
where users "build" complicated tax forms by answering a list of
questions. To create a tax form, tax software guides users through
a set of questions. As the user provides answers, the information
in the answer is propagating through workflows that compute
taxes based on choices and information given by the user.

2. MOTIVATING EXAMPLE
We consider the example of purchasing an airplane ticket online.
A user wants to build an information agent (we will name it the

PriceMonitor Agent) that monitors the price of the flights that
depart from LAX on 10-10-03 to BOS, and return on 10-13-03.
Assume that the user usually checks prices on Orbitz and Expedia,
so the agent should monitor prices from both sources every three
hours over the period of 10 days. Also, the user wants to view
only flights that belong to the airline that he has frequent mileage
program with; let assume that it is United Airlines. If the price for
a specific flight changes, or if new flights are available, the user
wants the agent to notify him by email with a list of updates.
Assuming that we already have agents that extract information
from Orbitz and Expedia (i.e., flightnumber, airlines, price),
Figure 1 shows the workflow of our new PriceMonitor agent.

Figure 1: The workflow for our PriceMonitor Agent

Copyright is held by the author/owner(s).
IUI’04, Jan. 13–16, 2004, Madeira, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

340

3. BUILDING INFORMATION AGENTS
BY ANSWERING QUESTIONS
The goal of the question-answering approach is to create the
workflow in Figure 1, which can later be converted into an
executable agent, by asking a user some simple questions. The
challenge is to decide what questions to ask and the order of the
questions that we should ask the user. Our approach is to impose a
hierarchical structure on the web sources in a form of a tree as
shown in Figure 2. The lowest level is the agent level where we
have agents that can extract the data from the web site. Domain
level and service level are abstract levels that we introduce so we
can group agents based on domains and services. The output level
can be mapped to the output node in Figure1.
Based on this structure, we can derive the set of questions to ask
on each node based on the level of the tree. To determine the
order of the questions, we use the post order traversal of the node
in the tree.

Figure 2: The hierarchical organization of the web sources

3.1 Building Agents
We have implemented the Agent Wizard, the web interface that
allows users to build information agents by answering questions.
Figure 3 through Figure 6 show the screen shot of the questions
that the Agent Wizard presents to the user. To build agents, we
first ask the user to select domain(s) (shown in Figure 3),
service(s), and agent(s) that the user wants to work on. Based on
these answers, we can build a tree similar to Figure 2, but this tree
will only include selected domain (FlightDomain), service
(FlightInfo Service), and agents (Orbitz and Expedia). This tree
captures the structure of web sources for agents that the user
wants to use to build a new agent. We translate this tree into an
intermediate workflow using post-order traversal. We will traverse
these nodes in the following order: Orbitz, Expedia, FlightInfo
Service, FlightDomain, and Output. Based on the level of the
node as shown in Figure 2, different questions will be asked.

Agent Level (Orbitz, Expedia): the Agent Wizard will ask the
user to specify the required input for each of the agent.

Service Level (FlightInfo): when a node in the service level is
reached, all of its children have already been given input by the
user. In this level, the Agent Wizard will ask users to specify how
to combine the result from each of its children (Figure 4).

Domain Level (FlightDomain): in this level, the Agent Wizard
will ask the user to integrate the result from each service. Since in
our example, we only select one service, no question will be
asked.

Output Level (Output): in this level, the user will have a chance
to filter the data, so that only flights from United Airlines will be
selected (Figure 5).

As the user answers each question, the workflow in the data
gathering part in Figure 1 will be generated incrementally. By the
time we reach the output node of the post order traversal, the
workflow in the data gathering part will be completed. For the
data monitoring part, the user will be asked to select one of the
seven available monitoring conditions (Figure 6). Based on the
user choice, the workflow in the data monitoring part will be
generated automatically, so the user will be sheltered from details
of the query and the configuration of the database.

Figure 3: Selecting domain(s)

Figure 4: Combine the result from Orbitz and Expedia

Figure 5: Specifying filters

341

Figure 6: Specifying a condition that will prompt the

notification.

4. EVALUATION
We evaluate how well the Agent Wizard works by using it to
build a set of agents in the flight travel domain based on the
Travel Elves [1]. The Travel Elves is an application suite that let
users search and monitor for information about flights that most
air travelers find useful. The Travel Elves contains nine agents
and it took four programmers roughly four days to implement the
whole suite. To evaluate the Agent Wizard, we had two users
build nine agents using the Agent Wizard that are functionally
equivalent to the nine agents in Travel Elves. The first user is an
expert user who knows the Agent Wizard well. The second user is
one of the four programmers who implemented the Travel Elves.
Table 1 shows the experimental results. Using the Agent Wizard,
the entire set of agents can be implemented in under 35 minutes.

 Total

time
Average
time per
agent

Total
questions
answered

Average
questions
answered
per agent

Expert 27:00 3:00 164 18
Programmer 33:52 3:45 152 17

Table 1. Experimental results

5. RELATED WORK
Many research projects also address the problem of letting users
who have no programming experience create complicated
programs or agents. Programming by demonstration [2, 4] use
machine learning to help constructing agents, web pages, or teach
robots to perform tasks from users' actions. By learning from user
demonstrations, users have to understand what they are trying to

do, and the systems that implemented the approach have to
understand what users want based on an observation. In our
approach, users do not need to fully understand how to perform
the tasks because the Agent Wizard would guide them through the
task.
Expert systems [3] use knowledge bases compiled from experts
and ask questions to users to help identify problems in specific
areas, such as identifying disease or troubleshooting engineering
problems. Our approach differs from the expert systems because
we exploit what users already know through questions, while the
expert system tries to elicit the knowledge so it can map user’s
knowledge with its internal knowledge base.

6. CONCLUSION
In this paper, we presented an approach to building information
agents by asking questions. The question-answering approach lets
a user who does not know how to program to build agents that
integrate and monitor information from multiple web sources. We
evaluate how well the approach works by using the Agent Wizard
to rebuild the flight travel application in less than 35 minutes.

7. ACKNOWLEDGMENTS
We would like to thank Parag Samdadiya for implementing the
original version of the Agent Wizard.
This material is based upon work supported in part by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Division,
under Contract No. NBCHD030010, and in part by the Air Force
Office of Scientific Research under grant number F49620-01-1-
0053.

8. REFERENCES
1. Ambite, J., Barish, G., Knoblock, C.A., Muslea, M., Oh, J., and

Minton, S. Getting from Here to There: Interactive Planning
and Agent Execution for Optimizing Travel. in The Innovative
Application of Artificial Intelligence Conference (IAAI). 2002.
AAAI Press, Menlo Park, CA.

2. Cypher, A., Watch what I do: Programming by demonstration.
1993: MIT Press.

3. Giarratano, J., Expert Systems: Principles and Programming. 3
ed. 1998: PWS Publishing Company.

4. Tessa, L., Programming by Demonstration: Z Machine
Learning Approach, in Computer Science. 2001, University of
Washington.

342

