
 Building Data Integration Queries by Demonstration
Rattapoom Tuchinda, Pedro Szekely, and Craig A. Knoblock

Information Science Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

pipet@isi.edu, pszekely@isi.edu, and knoblock@isi.edu

ABSTRACT
The magnitude of data available on the web prompts the need
for an easy to use query interface that enables users to
integrate data from multiple web sources in an intelligent
fashion. Past work in the area of databases has resulted in
different query interface systems that simplify query
formulation. While these approaches reduce the user’s effort
to compose queries, the user is still required to pick data
sources to use and the interaction is not guaranteed to yield a
non-empty result set. We introduce a novel approach that
exploits the structure of the relational data source(s) to
formulate a set of constraints. These constraints are used in
conjunction with partial plans to produce an intelligent query
interface that (a) does not require the user to know details
about data sources or existing values (b) suggests valid inputs
to the user (c) creates consistent queries that always return
values.

ACM Classification Keywords
H.5.2 User Interfaces: Theory and Method

General terms: Algorithms, Design, Human Factors.

Keywords
Intelligent query interface, query by example, information
integration.

INTRODUCTION
We need information to make good decisions. With the
proliferation of the Internet, most information can be found
on the Internet today. Examples of such information include
maps, statistics about events around us, and reviews of goods
and services from multiple vendors. Accurately integrating
the information available on the Internet can provide valuable
insights useful in decision-making. However, the
information we need is usually scattered among multiple
websites. It is very time consuming to access, combine,
filter, and make sense of that data manually. For example, a

particular restaurant might receive rave reviews from a
restaurant review website, but has a ‘C’ rating on a
government’s health inspection website. A health conscious
person would require information from both websites to
make a sound decision on whether to dine at this restaurant.

For computer literate users who can comfortably use
computers, but are not trained in programming, their choices
are limited to (a) finding the information on their own by
browsing web sites, or (b) relying on the data integration
providers to supply web interfaces to access the integrated
information. One example of a data integration provider is
Zillow (http://www.zillow.com). Zillow is a website that
helps home buyers/sellers by offering real estate information
(i.e., property tax and historical pricing) by integrating the
information from various web sites. Users can research
houses on this site through an interactive map interface.
However, the inherent problem in any data integration
service is determining its users’ needs; what a service offers
might not satisfy the needs of all of its users. For example,
many areas in southern California previously had oil wells,
and buying a house in such areas may cause problems later.
However, it would be impossible for Zillow to cover every
aspect of the house buying process. In the end, a do-it-
yourself integration interface that can be used by a large
number of users is needed.

We envision a user interface where any computer literate
user could easily build his/her own mashups, a service that
integrates information from multiple data sources.
Accomplishing this goal requires knowledge in multiple
research areas to solve four problems:

• Data retrieval: This problem concerns data extraction
from a website. While the semantic web has received a
lot of attention, websites still require a wrapper, an agent
that uses information extraction techniques [6,12], to
convert the data from HTML into structured form.

• Data cleaning and schema matching: the data retrieved
from multiple sources must be cleaned (i.e., fix
misspellings and resolve format inconsistencies) and
aligned. For example, schema matching techniques [10]
are used to map an attribute “from” from airline websites
to an attribute “city” from hotel websites because both
attributes refer to the same type of entity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’07, January 28–31, 2007, Honolulu, Hawaii, USA.
Copyright 2007 ACM 1-59593-481-2/07/0001...$5.00.

Figure 1: A snapshot of Karma. A user interacts with
Karma by entering a partial value to get valid
possible suggestion. Based on the selection, the
next value or attribute is constrained to a limited set
of values. At any time, the user can select ‘fill,’ and
Karma will fill all the remaining slots.

• Data Integration: Assuming that the data is clean and
aligned, we can treat the problem of combining the data
from multiple sources similar to the way we combine the
data from multiple databases.

• Filtering and visualization: once we combine the data,
we need to present it in a way that is easy to digest.
Depending on the type of the data, we might opt to use
a single widget (i.e., a table, a map, or a graph) or a
combination of widgets. Each widget works well with
different filtering paradigms. For example, drawing a
bounding box to select a subset of points works well for
a map, but the same technique cannot be applied to a
table. As a result, we consider the filtering problem to
be a part of data visualization domain.

Our work in this paper is part of a larger effort that aims to
fulfill the vision above. Specifically, this paper addresses the
data integration aspect by providing an intelligent query
interface that allows a computer literate user to integrate and
easily query multiple sources by entering examples of data
they want to see. Figure 1 shows our intelligent interface
called Karma where a user can enter values in a method
similar to Google Suggest (http:// labs.google.com/suggest);
Google Suggest suggests a list of possible words and search
terms when given a partial keyword search. Once the user
provides some sample data, Karma will translate partially-
filled rows into queries that retrieve data from multiple
sources, and fills in the table. Karma’s novel approach of
using constraints and partial plans allows the user to enter
values without any knowledge about query language or data

sources. Moreover, Karma generates consistent queries that
always return data.

The rest of the paper is organized as follow: we first describe
our goals and requirements, the example scenario, and the
intuition behind our approach. Then we show how to
formulate the approach of exploiting the table structure by
utilizing partial plans. Next, we provide a quantitative
evaluation comparing our system with Query by Example.
We then discuss advantages and limitations of our system.
Next, we cover related work in the database and data
integration disciplines. Finally, we review our contribution
and plans for future work.

APPROACH
It has been mentioned in multiple cognitive psychology
works [14,20] that “people retrieve information from their
own memory by iteratively constructing partial descriptions
of the desired target item” [21]. This concept is also used in
other domains, such as mix-initiative planning [13], where a
user provides partial solutions to the problem and lets the
planner decide how to connect all the links together. Using
the same approach, we propose a paradigm where the user
interactively fills in a few values, and lets the system figure
out the connections between the values, using its knowledge
about available data sources, and fills in the rest.

Goals and Requirements

We have two main goals. The first goal is that a computer
literate user should be able to use Karma without having to
write complicated queries. The second goal is that Karma
should be applicable to web sources. From our two goals, we
create the following requirements for our system:

• Our system will act like a black box where we will
abstract away the details about the data sources and their
linking relationships. All users need to do is enter values
– just like when they enter keywords in a search engine.

• Our system will suggest the matching keywords to the
user in a way that preserves the integrity of the end result
queries; i.e. the queries translated from the interactions
with the user will always return a non-empty set. Once
the user enters a value in a row, our system will
guarantee that each empty cell in any partially-filled
rows can be filled.

The logic behind our requirements results from the
differences between databases and web sources. In
traditional databases, we have a limited set of tables and
database users are somewhat familiar with the schema of the
database. On the other hand, the number of web sources is
huge and users may not know which web sources to use and
what attributes are available in each source.

Example Scenario

Suppose we want to find good French and Vietnamese
restaurants in Los Angeles. The additional criterion is that
these restaurants must have an ‘A’ health rating. In reality,

restaurant review sites do not contain the health rating
information. Thus, combining data from multiple sources is
necessary. With these criteria in mind, we let the user create
a table by interactively filling in values (both attribute names
and/or values) in a table as shown in Table 1.

Restaurant
name

Cuisine Review
Rating

City Health
rating

 French Los
Angeles

A

 Vietnamese Los
Angeles

A

Table 1. An example scenario where the user
constructs a table filling in values that he/she knows.

From the user’s point of view, Karma acts as a two-
dimensional search engine that gathers the information from
multiple data sources that fit the user’s description. Karma
differs from traditional Query by Example (QBE) [22]
systems in the following ways:

(a) Starting from an empty table with no attribute specified,
the user would choose a cell to work on by entering a partial
keyword. As the user types in the attribute name or the
value, Karma will suggest a possible set of candidates. For
example, as the user type “pho” (Vietnamese noodle dish)
in cell (2,0) of Figure 1, Karma might suggest restaurants
that have “pho” as parts of their names.

(b) The user does not have to select the data sources or
specify the join conditions before hand. The planning
component will automatically determine what data sources to
use and how to connect them.

(c) Karma has an invariant: in each stage of the interaction,
Karma guarantees that at least one executable plan will return
a result. For example, if Los Angeles does not have any
Vietnamese restaurant with an A health rating, when the user
tries to select the health rating on the second row, Karma will
suggest a list of available health ratings for Vietnamese
restaurants in Los Angeles and this list is guaranteed to be
non-empty. The reason is that before allowing the user to
select the attribute “health rating,” Karma verifies beforehand
that choosing that attribute will result in queries that return
some possible values.

Once the user is satisfied, Karma will formulate queries in
SQL format and retrieve the data to fill in the rest of the
blank cells. We will provide more in-depth comparisons
between Karma and QBE in the evaluation section.

Intuition

The intuition behind our approach is simple. Each data
structure or process has its own constraints. By exploiting
these constraints, we can narrow the search space of the
solution. When the user selects a particular value, that value
implies specific data sources and attribute names. These
qualified data sources and attributes can be used to constrain
the next value/attribute that the user may select.

Given a set of data sources in the relational form, we can
“index” the data very much like search engines index web
pages. We index all the values to construct a map v
{(a,s)} that maps the value (v) to the source (s) and the
attribute (a) in that source where the value appear. A single
value can be associated with multiple attributes names and
data sources. For example, the mapping

“Los Angeles” {(city, Zagat), (city, LA_health_rating),
(hotel name, Orbitz)}

implies that a keyword value “Los Angeles” exists in a) the
data source Zagat under the attribute “city” b) the data source
LA_health_rating under the attribute “city” and c) the data
source Orbitz under the attribute “hotel name.” We also
index all the attribute names to construct a map of a {s};
for each attribute name, we identify a list of data sources that
contain such an attribute name. Once we index all the
attributes and values, as the user types in a partial keyword,
we can retrieve and suggest the possible set of candidates
using SQL Boolean queries. Each attribute or value selected
and filled by the user introduce global constraints that further
limit the next attribute and value that the user can select. For
example, when the user enters “Los Angeles” as one of the
values, the number of data sources for that particular attribute
are narrowed down to only three sources, and the number of
possible distinct attributes are narrowed down to only two.

PLANNING AND CONSTRAINT FORMULATION

In this section, we first formalize the concept that we
described in the intuition section.

Indexing tables and data source definition

Let:
S: a set of all available web sources .
A: a lookup hashtable with its key and value being a {s}
where, 1) {s}⊆ S and 2) ⊂∀s S : a∈ att(s)
V: a lookup hashtable with its key and value being v
{(a,s)} where ∀ (a,s): v ∈val(a,s) ∧ a ∈ att(s)
att(s): a procedure that returns the set of attributes from the
source s
val(a,s): a procedure that returns the set of values associated
with the attribute a in the source s.

By indexing attributes and values into A and V hashtables,
Karma can deduce the information about possible values and
attributes to suggest to the user. We will walk through the
example scenario and show how we use constraints and
partial plans to formulate complex queries. We will start
from a simple task of building a one column table and then
move on to more complicated cases of building a multi-
column table. We will assume that we have the following
data sources in our scenario:

Zagat($restaurant name, $cuisine, $address, $city, $state,
$zipcode, review rating)
Asian_food_review($restaurant name, $cuisine, $price,
$address, $city, $state, $zipcode, review rating)
LA_health_rating($restaurant name, $address, $city,

$state, $zipcode, inspection date, health rating)
EU_country_info($country name, language, population,
gdp, date, location)

Zagat and Asian Food Review are both restaurant review
sources. However, Asian Food Review only contains Asian
food. EU Country Info is a data source that contains
information about European Union countries. Note that EU
Country Info may not be related to food. However, we
introduce this data source to show how the values from
different attributes and data sources can be overlapped, which
often occurs in a repository of many sources.

Each data source has a set of attributes associated with it.
For example, Zagat is a table with 7 attributes. The “$” sign
determines the primary key constraint, which we will explain
later. Note that we made an assumption earlier that all the
data sources are schematically aligned. As a result, the
attribute names defined here are uniform (e.g., we use
“$address” in all the definitions rather than the possibly
different attribute names that the sources may have had
before alignment).

Building a single column table

With a blank single column table, the user can choose to
enter an attribute or a value. Let us assume that the user

Cuisine

Figure 2: Building a single column table starting by
entering an attribute first

chooses to enter an attribute first as shown in Figure 2. Since
we do not have any constraints to start with, the attributes
that can be suggested are all keys {a} from A. Assume that
the user chooses Cuisine and its associated sources are Zagat
and Asian_food_review. At this point, if the user wants to
enter a value, a possible list of values is constrained by the
attribute selected and its associated data sources. As a result,
the set of possible values that Karma can use to suggest the
user is:

{v} = val(a,s) where s ⊂ {s}

This mathematical expression can be translated into a query
as:

(SELECT Cuisine FROM Zagat) UNION
(SELECT Cuisine FROM Asian_food_review)

Karma also allows the user to start by entering a value
without having to specify any attribute as shown in Figure 3.
Since we do not have any constraint for the first value, the
possible suggest candidate set is simply all {v} from V. Let
us assume that the first value that the user selects is “French”
and that its associated {(a,s)} is {(Cuisine, Zagat),
(Language, EU_country_info)}; this means that the value
“French” exists in two data sources and can be associated to

two attribute names – French can either be a Cuisine or a
Language.

French

Vietnamese

Figure 3: Building a single column table starting by
entering a value first.

The value entered creates a constraint that limits the set of
possible attributes and the set of values in the next move. For
the sake of simplicity, we will postpone describing what the
constraint is and assume that a second value “Vietnamese”
satisfies the constraint.

At this point, we can describe the constraint that dictates the
possible candidate set of the attribute name. If we only have
“French” in the table, the possible candidate set for the
attribute name is {Cuisine, Language}. However, once we
have both values (“French” and “Vietnamese”) in the table,
the possible candidate set for the attribute name must be
attributes shared by both values. We formalize this idea as
the set intersection constraint.

The set intersection constraint

We compute the attribute candidate set using the set
intersection. The set intersection of the possible attribute
name consistent with each row in Figure 3 is simply: Cuisine.

At any point in time, if the attribute name is not defined, the
possible candidate set for attribute names is:

{x} = Set intersection({a}) over all the value rows.

Now, we can revisit the constraint that we ignored when the
user wants to enter a second value after having entered the
first value “French”. To enter a value, the possible value set
is:

{v} = val(a,s) where a ∈{x} ∧
 s is any source where att(s) ∩ {x} ≠ {}

To enter a value, we first compute a set of the set
intersection (which can be more than one attribute) between
all value rows. Then we retrieve a candidate set from any
data source that contains any attribute in the set
intersection. The query to retrieve the candidate set for the
second value (“Vietnamese”) is:

(SELECT Cuisine FROM Zagat) UNION
(SELECT Language FROM EU_country_info)

After the user chooses “Vietnamese” as a second value, if
the user wants the enter the third value, the query to retrieve
the candidate set will be:

{(a,s)} =
{(Cuisine, Zagat), (Language,
EU_country_info)}

{(a,s)} =
{(Cuisine, Zagat), (Cuisine,
Asian_food_review)}

a, {s} =
Cuisine, {Zagat,
Asian_food_review}

(SELECT Cuisine FROM Zagat) UNION
(SELECT Cuisine FROM Asian_food_review)

Note that

1.) The query for the third value does not include the attribute
Language from the source EU_country_info because the
attribute Language does not belong to the updated set
intersection.

2.) As the user enters the attribute or values, the possible
choices are becoming more limited.

3.) Once the choices are narrowed down to only one value
(i.e., the set intersection of the attribute between “French”
and “Vietnamese” = Cuisine), Karma will fill that
attribute/value in the table automatically. In our case, once
the user selects “Vietnamese,” Karma will also update the
unfilled attribute name to be “Cuisine.”

Building a multiple-column table

The multiple-column case is more complex, because a value
entered in one column can affect how Karma suggests
attributes and values in other columns. First, we will
introduce the concept of “reachable” attributes. Then we will
describe partial plans. We will show different examples to
explain each concept.

Computing reachable attributes

In traditional databases, we can link different tables together
using the join operation. Depending on the join condition, it
is possible to create a successive chain of tables. Figure 4
shows an example of how tables in a database can be linked
together. Given an employee ID, we could retrieve the
following attributes using join conditions through foreign
keys: SSN, salary, name, address, phone number, latitude,
and longitude.

We define a “reachable” attribute as an attribute that can be
reached from a particular data source (i.e., longitude is
reachable from S1).

If we have a well-defined database like the one shown in
Figure 4, join conditions between tables can be composed
over foreign keys. Joining two tables using non-foreign key
attributes (i.e., name) is possible, but the result generated
may not make sense. For example, there might be a record

Figure 4: Joining condition through foreign keys in
traditional database

with name “John Smith” in S1 and S2 who are completely
different people with different SSNs. In Karma, we use a
primary key constraint. The set of attributes with the $ in the
data source model acts as primary keys. For example, the
primary key constraint for the LA_health_rating source is:
$restaurant name, $address, $city, $state, and $zipcode

The constraint means is that if we want to retrieve inspection
date, and health rating, the join condition must be over
restaurant name, address, city, state, and zipcode.

In many websites, to retrieve the information, we need to fill
out a web form. For example, to get a health rating for a
particular restaurant, we need to fill out a form (i.e.,
restaurant name, address). For a wrapper to retrieve the data
from these sites, it will also need this information, hence the
input requirement. In Karma, we retain this input
requirement information and use it as the primary key
constraint. The reachable attribute definition allows us to
handle the case when the user wants to enter a new attribute
in a multi-column table.

 Cuisine

 French

 Vietnamese

Set intersection: { restaurant name, cuisine, address, city,
state, zipcode, review rating, inspection date, health rating }

Figure 5: Entering an attribute in the new column
require a computation of the set intersection of
“reachable” attributes between each row.

Continuing from the single column case (Figure 3), if the
user wants to enter the new attribute as shown in Figure 5,
the possible set of valid attributes must be reachable from
each row in the table (i.e., both the “French” row and the
“Vietnamese” row). For example, the attribute price is only
reachable from the “Vietnamese” row, because “price” is the
attribute that belongs to the Asian_food_review data source.
If we allow price to be used as the new attribute, we will not
be able to suggest any value for the “French” row, because
price is not reachable from that row (since the first row does
not contain Asian_food_review).

As a result, the first constraint for entering a new attribute in
the table is:

1.) The set intersection of “reachable” attributes of all
partially filled rows.

However, simply matching the primary key constraint
between data sources does not guarantee that all the attributes
in the set intersection will create a join condition that does
not return the empty value. The second constraint that
Karma imposes is:

2.) Each attribute in the set intersection of the “reachable”
attributes set must produce a non-empty suggested value set.

S2 S1 S3

This can be accomplished by executing multiple queries
through partial plans as if Karma wants to suggest possible
values for each attribute from (1) in each partially-filled row,
and eliminate the ones that produce an empty set from the list
of “reachable” attribute list. This constraint allows Karma to
guarantee that for each empty cell in a non-empty row,
Karma can fill those cells.

Partial Plans

Assuming that the user selects “restaurant name” for the new
attribute in Figure 5, the user might want to (a) have Karma
fill the blank cells in the table. (i.e., find all the restaurants
with Cuisine = French or Cuisine = Vietnamese) or (b) fill in
some cells under the column “restaurant name” by letting
Karma suggest what are the available choices (as in Figure
1). In both instances, Karma uses partial plans to determine
what data should be used to either fill the table or suggest
values to the user.
Each individual row in the Karma table contains a partial
plan in the form of a tree that keeps track of selected values
and attributes. Each row can contain more than one partial
plan depending on the number of data sources. For example,
the second row in Figure 3 would contain two partial plans
(one plan using Zagat, and the other using
Asian_food_review).
The partial plan tree can easily be translated into queries to
retrieve the candidate values to suggest to users. First, we
will show the final tree (Figure 6) that Karma constructs for
the first row from the table in Table 1. Then, we will explain
(1) node types and parent types (2) how we use the tree to
evaluate the set of possible suggestions that can be used to
suggest a value for a cell or to fill the whole table, and (3)
how we construct such a tree.

Figure 6: the partial plan for the first row of the table
in Table 1 that includes joining between two data
sources according to the primary key constraint.

Node types and parent types

Each node represents a cell in a row, except for a root node,
which is used as a starting point. There are three types of
nodes: a value node (blue), a place holder node (white), a
hidden node (black). The value node is the node where the
user has already specified a value in that cell (i.e., “French”,

“Vietnamese”). The place holder node is a node where the
user has not selected any value yet, but the attribute for that
column is already specified. For example, an empty cell on
the first row under the attribute “restaurant name” in Table 1
corresponds to a place holder node. The hidden node is a
node that is required as a part of the joining condition
through the primary key constraint, but is not selected into
the table by the user (nodes b,d,e). Each node will contain a
triplet of attribute, source, and value. For example, node f
will contain f(a,s,v) = (cuisine, Zagat, French). While node a
(a place holder node) will contain a(a,s,v) = (restaurant name,
Zagat, _PLACE_HOLDER). When the user first enters a value,
we designate its corresponding data source as a starting
source. Any node with its s equal to the starting source has
the root as its parent, while a node that is the result of a
joining data source will have multiple parents. Those parent
nodes are essentially nodes with primary key attributes.

Tree evaluation

The partial plan tree can be used to suggest a particular set of
available values by translating it into a query for a particular
node. This process can also be used to determine whether a
particular attribute will produce a non-empty suggest value
set or not. To translate a tree into a query, we use the
following rules:

1. A value node implies a value equal “=” condition.

2. A place holder node can only be included in the SELECT
part of the query

3. A node with multiple parents implies a join condition over
its parents.

For example, a possible candidate set for the attribute
“restaurant name” (a place holder node ‘a’ in Figure 6) in the
first row is:

SELECT DISTINCT Zagat.‘restaurant name’
FROM Zagat, LA_health_rating as L
WHERE Zagat.city = “Los Angeles” AND
Zagat.cuisine = “French” AND
L.‘health rating’ = “A” AND
Zagat.‘restaurant name’=L.‘restaurant name’ AND
Zagat.‘address’ = L.‘address’ AND
Zagat.‘city’ = L.‘city’ AND
Zagat.‘state’ = L.‘state’ AND
Zagat.‘zipcode’ = L.‘zipcode’;

The first three conditions are the constraints imposed by
value nodes (rule 1), while the rest are the constraints
imposed by joining conditions (rule 3).

Note that we can also create a query that fills the whole table
by retrieving the possible set by including: city, cuisine,
review rating, and health rating in the SELECT part of the
query above.

Tree Construction

In our scenario, the user starts in the single column table with
an empty table and selects “French” in a cell. This is when

h

gfe d c b a

root

a: restaurant b: address
c: city d: state
e: zipcode f: cuisine
g: review rating
h: health rating

we add the first value node f into the tree. On the other hand,
if the user starts by selecting an attribute first, we will add a
place holder node instead, because the value for that cell has
not been specified by the user yet.

To add the first node, the set intersection constraint must be
satisfied. Note that it is possible that (a) the size of the set
intersection is more than one (the value selected corresponds
to more than one attribute name), or (b) the corresponding
data sources are more than one. In such cases, we permute to
create multiple partial plan trees for each row. As the user
enters more values Karma eliminates attributes/data sources
according to the set intersection constraints, and removes the
partial plan trees that refer to the eliminated attributes/data
sources. For example, (Language, EU_country_info) is
eliminated when we compute the set intersection constraint in
Figure 3. From the second node on, we are dealing with a
multiple-column table case. For example, to add a second
node (node a) in Figure 7:

Figure 7: The 1st row partial plan generated by
Karma as the user enters attributes and values.

1. Compute the set intersection of the reachable attributes of
all the rows. Then, keep only reachable attributes that return
non-empty suggest value sets.

2. At this point, we have a set of attributes that Karma can
suggest to the user. If the user selects the attribute (as in
Figure 5), create a place holder node (node a in Figure 7). If
the attribute is in the same data source as the starting source,
add the new node as the child of the root. However, if the
attribute is in a different source, create necessary hidden
nodes according to the primary key constraints and set the
new node as the child of those hidden nodes.

3. On the other hand, if the user decides to enter a value
instead of selecting the attribute in Figure 5, permute the
partial plan for the set intersection attribute set in (1). At
this point, we will have multiple partial plans similar to that
of a plan in Figure 7, although the attribute of the node a will
be permuted over all set of reachable attributes. We can
evaluate each plan to retrieve the possible values from node a
of all partial plans. The union of the result will be used as a
suggest set for the user. Once the attribute can be
determined, remove the partial plans that do not correspond
to that attribute.

We have demonstrated how the set intersection and the
reachable constraints can be applied to partial plans. This
approach allows the user to select any cell in the Karma

table, get a list of suggestions, and once satisfied tell the
system to fill the remaining part of the table with the data that
satisfies all the constraints.

EVALUATION
In this section, we perform analysis of the effort that it would
take a user to do a typical query. Our baseline comparison
tool is Microsoft Access, which integrates the QBE approach
into its query design view.

Claim and Hypothesis

Throughout the paper, we have made qualitative claims that
our approach does not require the user to know about the
query formulation, the data sources, or the schema of those
data sources. Based on this claim, we formulate the
hypothesis that any user can finish the task of integrating data
from multiple data sources faster using Karma.

Scenarios

In our experiments, we measure the performance of Karma
using three scenarios:

a.) Retrieving the restaurant health rating: This scenario
only retrieves data from one data source (LA_health_rating).

b.) Retrieving the restaurant information with reviews and
health ratings: This scenario includes the join between two
data sources, but limit the number of sources so there would
be no union operation.

c.) Retrieving the restaurant information with reviews and
health ratings: This is the scenario example that includes
union and join as discussed in the previous section.

Experimental Setup
We record the number of optimal mouse clicks and
keystrokes required to complete the task in each of the
systems. Moreover, we also define the cost for each of the
operations required to complete the task below:
Typing in a value or Selecting a value = 1t unit
Selecting a data source to use = 1d unit
Selecting an attribute = 1a unit

Results reported

 Clicks (c) and Key
Strokes (k)

Cost

QBE A 28c+16k 4a+2t
Karma A 17c+4k 3a+2t
QBE B 39c+28k 5a+3t+2d

Karma B 25c+7k 3a+3t
QBE C 78c+54k 2*(5a+6t+2d)

Karma C 37c+14k 3a+6t
Table 2: the data collected from the experiment. A
and B designate different scenarios as defined
earlier

a

a(a,s,v) = (restaurant name, Zagat, _PLACE_HOLDER)
f(a,s,v) = (cuisine, Zagat, French)

1st

root

f
2nd

From Table 2, the number of clicks in Scenario A and B is
comparable in performance between the two systems. In
general, the clicks are for selecting attributes and specifying
condition in those attributes.

In scenario C, the number of clicks in QBE is high because
the QBE grid cannot represent three kinds of queries: union
query, pass through query, and data definition query1. In
scenario C, we have the overlapping data from both Zagat
and Asian_food_review. Therefore, the union operation is
required. As a result, we need to repeat the whole process
twice to finish the task in MS Access, resulting in roughly
doubling the clicks required. However, even in tasks that do
not require union, the number of clicks in Karma is still less
than that of QBE.

In terms of the number of keystrokes, Karma suggests
possible values when at least three characters are specified.
On the other hand, QBE requires a full value to be typed in.
The more value selection criteria, the more Karma saves in
terms of the number of keystrokes.

In terms of the cost, if we only want to retrieve data from a
single data source (scenario A), the performance of Karma
and QBE are comparable. However, in the case that involves
data integration from multiple data sources, we can clearly
see that Karma costs less in terms of operations to perform
the task. First, a user does not have to perform the same task
twice with Karma when the task involves the union operation
(Scenario C). Secondly, Karma suggests and fills some
attributes automatically. Finally, using Karma does not incur
the cost of selecting the data source (Scenario B-C). The last
advantage is very important. Imagine a database containing
1,000 tables, some of which may be overlapping; it would
take even an expert a lot of time to locate the data sources
he/she needs.

DISCUSSION
We use the Google Web Toolkit to implement our intelligent
query interface, Karma. This toolkit provides easy to use
AJAX and client-server libraries. Also, the code, written in
Java, is automatically translated to Javascript for easy web
deployment.

Our approach is based on a simple idea that every problem
has a structure that dictates the constraints. Once we find the
constraints, we use these constraints to limit the search space
of the solution. Our work is an example of how past
approaches underutilize the information from the structure of
the problem that, once exploited, can reduce the user’s time
and knowledge requirement to perform a task. We describe
the advantages and limitations or our approach below.

Advantages

Consistent Query Generation: The problem in many query
systems is that the user can formulate a query, but that query

1 http://www.fontstuff.com/access/acctut14.htm

is not guaranteed to return a non-empty result set. Our
approach uses the set intersection and reachable constraints
to ensure that if we suggest a new attribute, we can fill every
row in that column with non-empty values. Since we only
allow the user to select attributes/values from the list of
possible attributes/values, there is no way a user can make a
mistake.

True Query by Example: Our approach is a true query by
example. By abstracting away the data sources and their
linking information, the user only needs to enter values to
create a complex query.

Monotonically Decreasing Property: Once every attribute in
the table is defined, the space of the possible solutions
decreases every time the user enters a value. Each value
entered constrains other values through the set intersection
constraint, which results in the reduction of the number of
partial plans and the conversion of a place holder node into a
value node.

Limitations

Primary Keys Requirement: As discussed in the multiple-
column cases, we need primary keys between data sources to
compute reachable attributes. For web sources, we can use
the wrapper input requirement as the primary key constraint.
However, if we want to integrate a data source that is not a
wrapper, we will need an expert to label the primary key of
that particular source.

Filtering: Our approach does not allow comparison
conditions (i.e., < and >) or aggregate conditions (i.e., avg
and max). Without these capabilities, however, the user can
still generate complex queries that retrieve and integrate data
from multiple data sources. The decision not to support these
operations is a strategic one. We believe that filtering and
visualization problems are more closely related (as explained
in the introduction section) and we will address them as a
part of the overall vision in future work.

Scaling: In terms of indexing all the attributes and values into
A and V lookup tables, we believe that it is feasible on the
WWW scale; Google suggest is one such example. Our
limitation in terms of scaling belongs to computing reachable
attributes. Given enough attributes and the right set of
primary key constraints, we can link data sources together in
a very long chain. Since our suggest set relies on evaluating
and verifying partial plans to eliminate the ones that return
empty data, the size and the number of partial plans can be
exponentially high. Currently we limit the length of the
chain to be only two (the partial plan tree can only have a
maximum depth of three).

RELATED WORK

The idea of inferring procedures or queries by example is not
new. The work that is most closely related to our work is
Query by Example [22], which we discuss in the evaluation
section. Aside from using examples, there are a variety of

approaches using different techniques, such as programming
by demonstration, filtering through machine learning,
question-answering, planning, graphical visual query
languages, and retrieval by formulation.

Programming by demonstration [2,7] automatically builds a
program to perform repetitive tasks by observing how the
user interacts with an arbitrary system. While this approach
is highly effective in multiple problem domains [8,9,16], the
assumption of this approach is that the user knows what
he/she is doing. On the other hand, Karma assumes that the
user might not know which data sources are available and
needs help from the system to suggest possible values.
Furthermore, the tasks in Karma are not repetitive, because
every selection requires human judgment.

Query by Browsing (QbB) [3] uses machine learning
approaches like decision trees and genetic algorithms to
deduce the query by letting the user provide positive/negative
sample rows. The user would label some rows of data as
correct or incorrect, and QbB will create a query that fit the
data set. However, QbB is intended to be used as a filtering
tool on one single table and is not useful when integrating the
data from multiple sources.

Agent wizard [19] and Artermis [18] use the question-
answering technique to build a plan that integrates multiple
data sources. The user would answer a set of questions and
these systems will incrementally build a plan from each
answer. These systems also provide simple filtering
conditions and monitoring capabilities (since the data from
the web sources can change their values). However, the user
has to answer many questions. In Agent Wizard, the
minimum number of questions for a task that integrates two
data sources is 17, including questions for selecting
attributes, data sources, and filtering conditions. In Karma,
the user does not have to know about the data sources
available and can build the plan by entering values.

Prometheus [17] is an example of a mediator system that uses
planning techniques. The user needs to formulate a query
according to the domain models defined by experts. The
mediator will analyze the query and automatically determine
which data sources will be used to retrieve the data. This
approach is powerful because it uses planning techniques to
determine an optimal set of data sources with minimum data
overlapping. However, extensive knowledge about the
domain model is required and the system is not guaranteed to
return a non-empty result from a query.

Graphical visual query languages [1,5,15] use graphs to build
a query. A graph contains nodes that represent attribute
names and data source names, and links that represent the
relationship between nodes. The relationship can be a source
condition (from), source operations (union and join), or
aggregate conditions (i.e., avg, max). While in these systems
the user needs to specify nodes and links in these systems,
Karma induces the graph automatically from the values that
the user enters.

RABBIT[21] and HELGON[4] are query interface systems
that use the retrieval by formulation technique. The user
would supply a partial description of the data he/she wants.
These systems will retrieve matching data, which the user
can criticize. Based on the user criticism, the system will
reformulate the query to retrieve different data that may
satisfy the user’s goal. While these systems can suggest
values to the user like Karma, the user needs to know which
concept to use to form a partial description and navigate
through the hierarchy of the database to select the value
needed.

CONCLUSION AND FUTURE WORK

Our contribution in this paper is an approach to data
integration with the following characteristics (a) does not
require the user to know details about data sources or existing
values (b) suggests valid possible values to the user (c)
creates consistent queries that always return values. While
past work addresses the same vision of allowing the user to
complete a task without programming, Karma is the only
system that contains these three characteristics.

In terms of future work, we plan to address other problems in
our unified vision outlined in the introduction. Our next
priority is to formulate a general framework for filtering and
visualization. Depending on the type of data, different
visualization and filtering techniques should be used. Using
the same concept that a structure implies constraints, we
believe that we can use an ontology to help us simplify the
framework for filtering and visualization.

ACKNOWLEDGMENTS

This research is based upon work supported in part by the
National Science Foundation under Award No. IIS-0324955,
in part by the Air Force Office of Scientific Research under
grant number FA9550-04-1-0105, and in part by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010.

The U.S. Government is authorized to reproduce and
distribute reports for Governmental purposes notwithstanding
any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of any of the above organizations or any person connected
with them.

REFERENCES
1. Benzi, F. , Maio, D., and Rizi, S.,. VisTool: a visual tool

for querying relational databases. In Proc. Of Advanced
Visual Interface, ACM Press, 1998

2. Cypher, A., Watch what I do: Programming by
demonstration, 1993. MIT Press

3. Dix, A., Interactive Querying - locating and discovering
information, Second Workshop on Information Retrieval
and Human Computer Interaction 1998.

4. Fischer, O. and Nieper-Lemke, H., HELGON: Extending
the retrieval by reformulation paradigm. In Proc. of ACM
CHI'89. 1989.

5. Haw, D., Goble, H., and Rector, A., GUIDANCE:
making it easy for the user to be an expert. In Proc. of
International Workshop on Interfaces to Database 1994.
Springer-Verlag. 19–43.

6. Knoblock, C.A., Lerman, K., Minton, S. and Muslea, I..
Accurately and reliably extracting data from the web: A
machine learning approach, Intelligent Exploration of the
Web. Springer-Verlag, 2003.

7. Lau, T., Programming by Demonstration: a Machine
Learning Approach, PhD thesis, University of
Washington, 2001.

8. Lau, T., Bergman., L., Castelli, V., Oblinger, D.,
Programming shell scripts by demonstration, Workshop
on Supervisory Control of Learning and Adaptive
Systems, AAAI 2004.

9. Lau, T., Bergman., L. Castelli, V., Oblinger, D.,
Sheepdog: Learning Procedures for Technical Support, In
Proc. IUI 2004.

10. Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A., eTuner:
Tuning Schema Matching Software Using Synthetic
Scenarios, To appear in VLDB Journal Special Issue
2006.

11. Michalowski, M., Ambite, J. L., Knoblock, C., Minton,S.,
Thakkar, S., and Tuchinda, R. 2004. Retrieving and
semantically integrating heterogeneous data from the
web. IEEE Intelligent Systems 19(3):72–79.

12. Michelson, M. and Knoblock, C.A., Phoebus: A System
for Extracting and Integrating Data from Unstructured
and Ungrammatical Sources, In Proc AAAI-2006.

13. Myers, K. L., Jarvis, P. Tyson, W. M., and Wolverton, M.
J. 2003. A Mixed-initiative Framework for Robust Plan
Sketching. In Proc ICAPS 2003.

14. Norman, D.A., and Bobrow, D.G. “Descriptions: An
Intermediate Stage in Memory Retrieval,” Cognitive
Psychology 11 (1979).

15. Papantonakis, A. and King, P. J. H., Syntax and semantics
of Gql: a graphical query language. Journal of Visual
Languages, 6:3–25.

16. Sugiura, A., and Koseki Y. 1998. Internet Scrapbook:
Automating Web browsing tasks by demonstration. In
Proceedings of UIST’98.

17. Thakkar, S., Ambite, J.S., and Knoblock, C.A.,
Composing, optimizing, and executing plans for
bioinformatics web services, VLDB Journal, Special Issue
on Data Management, Analysis and Mining for Life
Sciences 14,3(2005), 330-353.

18. Tuchinda, R., Thakkar, S., Yolanda, G., and Deelman, E.
Artemis: Integrating Scientific Data on the Grid, In Proc.
IAAI 2004.

19. Tuchinda, R. and Knoblock, C.A., Agent Wizard:
Building Information Agents by Answering Questions, In
Proc. IUI 2004.

20. Williams, M.D., and Hollan, J.D. “The Process of
Retrieval from Very Long Term Memory,” Cognitive
Science 5 (1981), 87-119

21. Williams, M.D., and Tou, F.N., RABBIT: An interface
for database access, In Proc. ACM '82 conference (1982),
83-87

22. Zloof, M.M. Query by example, In Proc. National
Computer Conference, AFIPS Press. 1975

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

