Building Mashups by Demonstration

RATTAPOOM TUCHINDA

National Electronics and Computer Technology Center (Thailand)
CRAIG A. KNOBLOCK

University of Southern California

and

PEDRO SZEKELY

University of Southern California

The latest generation of WWW tools and services enables Web users to generate applications
that combine content from multiple sources. This type of Web application is referred to as a
mashup. Many of the tools for constructing mashups rely on a widget paradigm, where users must
select, customize, and connect widgets to build the desired application. While this approach does
not require programming, the users must still understand programming concepts to successfully
create a mashup. As a result, they are put off by the time, effort, and expertise needed to build
a mashup. In this article, we describe our programming-by-demonstration approach to building
mashup by example. Instead of requiring a user to select and customize a set of widgets, the
user simply demonstrates the integration task by example. Our approach addresses the problems
of extracting data from Web sources, cleaning and modeling the extracted data, and integrating
the data across sources. We implemented these ideas in a system called Karma, and evaluated
Karma on a set of 23 users. The results show that compared to other mashup construction tools,
Karma allows more of the users to successfully build mashups and makes it possible to build these
mashups significantly faster compared to using a widget-based approach.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
Interfaces— User-centered design; Evaluation/methodology
General Terms: Algorithms, Design, Human Factors, Performance

Additional Key Words and Phrases: Mashups, Information Integration, Programming by Demon-
stration

1. INTRODUCTION

We need information to make good decisions. In the past, access to needed in-
formation was limited to traditional printed media or word of mouth. The Inter-
net, however, has changed the information landscape. Nowadays information can

This article is an extended version of [Tuchinda et al. 2008], which appears in the Proceedings of
the 13th international conference on Intelligent user interfaces, 139-148. Parts of this article also
incorporate material from [Tuchinda et al. 2007], which appears in the Proceedings of the 12th
international conference on Intelligent user interfaces, 170-179.

Author’s address: R. Tuchinda, National Electronics and Computer Technology Center, 112
Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, Pathumthani 12120,
Thailand.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2011 ACM 0004-5411/2011/0100-0001 $5.00

ACM Transactions on the Web, Vol. 5, No. 3, July 2011, Pages 1-50.

2 . Rattapoom Tuchinda et al.

Resort \
OnTheSNOWewm~ |« § | Esslecrest G
: 3 Lifts:3 of 4 open TRAIL MAP

Trails:9 of 31 open
Terrain:® 10 W10 #10

Snow Base: 109-231" New: 18"
Weather: »forecast

P ﬂ Conditions: Packed powder Grooming:
J Yes
e »detailed condition:
] »view comments/ photo blogs

chliee Fogo- o, Fired A freen G/ find local ski vacation rentals
[SNQCOUNTRY I (1A
BN © |Localweather
!‘fin‘ﬂii Maps | Video | Werld

Fig. 1. An example Mashup called Skibonk. Skibonk helps users decide where to go skiing by
combining resort listing Web sources with snow report sources

be accessed with a click of a mouse. Examples of such information include pric-
ing/reviews of products from multiple vendors, maps, and statistics. Accurately
integrating the information available on the Internet can provide valuable insights
useful in decision-making. However, the information one needs is usually scattered
among multiple Web sites. It can be time-consuming to access, clean, combine, and
try to make sense of the available data manually.

A Mashup is a term used to describe a Web application that integrates informa-
tion from multiple data sources. Figure 1 shows an example Mashup called Skibonk
(http://www.skibonk.com). Skibonk integrates resort listings and snow reports to-
gether to help users decide where to go skiing. A green icon means that a ski resort
at that location is open.

To create Mashups, integration systems must help users solve five separate prob-
lems:

(1) Data retrieval: This problem concerns data extraction from Web sites. While
the concept of the Semantic Web has received significant attention recently,
most Web sites still require a wrapper, which uses extraction techniques to
convert the data from HTML into a structured form.

(2) Source modeling: After extracting data, we need to determine the mapping
between a new data source and an existing data sources. The mapping can be
done by assigning an existing attribute name to a new data column when the
semantics are the same.

(3) Data cleaning: Data from multiple sources must be normalized to have the

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 3

same format. For example, the extracted data, 37 MAIN STREET might need
to be transformed into 37 Main St. to match the naming convention of existing
data sources.

(4) Data integration: Assuming that the data is normalized, we can treat the
problem of combining the data from multiple sources similar to the way we
combine the data from multiple databases. This process is accomplished by
formulating queries by example to access and integrate data across sources.

(5) Data display: Once we combine the data, we need to present it in a way that
is easy to understand. Depending on the type of the data, we might opt to use
a table or display the information on a map using a tool such as Google Maps.

While there exist attempts to facilitate the process of building information inte-
gration applications, none is sufficiently easy to use to enable a Web user to build
an end-to-end information integration application. As a result, a casual user is put
off by the time, effort, and expertise needed to build a Mashup.

Most existing Mashup tools use what we define as the widget paradigm. Figure 2
shows Yahoo’s Pipes, a Mashup tool that incorporates this paradigm. In the widget
paradigm, a user is presented with an array of widgets to choose from, where each
one represents a specific programming operation. To build a Mashup, the user
needs to drag widgets onto a canvas, customize each widget, and connect them to
form a work flow that generates the output data. This output data can then be
exported as XML, published as an RSS feed, or displayed on a map.

There are three inherent problems with the widget paradigm. First, locating the
appropriate widget to perform a specific operation can be time consuming. For
example, Yahoo’s Pipes has 43 widgets, while Microsoft’s Popfly has around 300
widgets. Second, while there is no code to write when using widgets, the funda-
mental approach behind this paradigm is to abstract a particular programming
operation into a widget. As a result, customizing some widgets may require knowl-
edge of programming. The regex widget in figure 2 is one such example. Third,
most Mashup tools only address some Mashup building problems while ignoring
others. For example, Dapper (www.dapper.net) mainly addresses data retrieval,
while Yahoo’s Pipes completely ignores data retrieval, but focuses on data cleaning
and data integration; walking their users through all five Mashup building problems
seems to be too difficult and time consuming. One of the reasons might be the lack
of a paradigm that can encapsulate all these problems into one simple interaction
framework. As a result, building Mashups is complicated and the range of Mashups
that can be built by naive users is limited.

There also exist many advanced systems that provide in-depth solutions to each
separate Mashup building problem. For example, Potter’s Wheel [Raman and
Hellerstein 2001] and Spider [Koudas et al. 2005] support sophisticated cleaning
and schema matching operations. However, these systems excel at one thing and
may not integrate well with other systems to provide an end-to-end information
integration solution.

The goal of our work is to demonstrate a conceptual framework that allows
any Web user without programming knowledge to build Mashups. We use and
build upon existing research, where applicable. However, the difference between
Karma and other research work is that it provides users with a uniform interaction

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

4 . Rattapoom Tuchinda et al.

paradigm to tackle each mashups building subproblems in an intuitive way. We
created the Karma framework based on the following three key ideas:

(1) Focus on the data, not the operation: For a user with no programming
knowledge, interacting with data is more natural. For example, the user might
not know which operations/widgets to use to clean Jones, Norah, but the user
can specify the end result that he/she wants to see in the data form (i.e., Norah
Jones); the operation is then induced indirectly based on what the user supplies
during the interaction by using data and some predefined transformations.

(2) Leverage existing databases: Instead of trying to solve every problem from
scratch, which requires feedback and expertise from the user, we can use existing
databases to help simplify the problem. For example, if a data point extracted
from a Web page is misspelled (e.g., “wahington” instead of “washington”),
it would be time consuming for the user to manually locate the misspelled
data point. We can simplify this problem by comparing new data points with
existing data points and alert the user when we find any irregularities with a
list of suggestions for replacements.

(3) Consolidate rather than divide-and-conquer: Divide-and-conquer is of-
ten regarded as the golden rule to solve many computer science problems. How-
ever, many Mashup building issues are interrelated. It is possible to exploit the
structure such that solving a problem in one area can help simplify the process
of solving a problem in another area. In addition, all the interactions can occur
on a spreadsheet platform where the user solves all the problems by manipulat-
ing data in a single table instead of trying to create a work flow by connecting
widgets.

The rest of this article is organized as follows. Section 2 discusses Mashup types
supported by our approach. Section 3 introduces an example scenario. Section 4

* Sources -~
Fetch CSW EiE
duchdi g —
(Feed Auto-Disco < | Fetch Feed)= kg
Felch Feed URL
‘Fetch Data feed:www.dapper.nettransform.p
(Fetch Page - i
[Fetch Site Feed <;
Flickr . p L
Google Base heoop HE
I1em'Bu||der o For each item.description ¥ ininputfeed
[] _
('Yahoo! Local ['String Replace 0=
‘Yahoo! Search Seplace }
» User inputs) [firse 3], ¥ O with »
b Operators =
: () emit results
» Url =
» String (=) assign results to item loopstrreplace
» Date : @
presen T
Use regular expression patterns here:
Rules
In item.loop:strreplace ¥ replace (ws)(w"} with $2 §1 g Cs Om O

A 4

| Pipe Gutput : :

Fig. 2. An example of the widget approach to building Mashups. The user needs to locate,
customize, and connect widgets to create a Mashup.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 5

through section 7 show how to combine and solve each Mashup building problem
(i.e., data retrieval, source modeling, data integration, and data display) respec-
tively under a unified table paradigm. Section 8 reviews the related work in each
problem area. Section 9 describes our evaluation and result. Finally, section 10
summarizes our contributions and lists possible directions for future work.

2. CATEGORIZING MASHUPS

One way to categorize Mashups is by functionality. Figure 3 categorizes Mashups
based on functionality.

Top Mashup Tags Last 14 Days

O mapping (29%)
W photo (15%)

O shopping (9%)
[l search (7%)
Otravel (7%)

[widgets (7%

O video (6%)

O slideshow (6%)
[messaging (4%
[social (4%)

Programmableweb.com 02/06/08

Fig. 3. The composition of all Mashups displayed by functionality from Programmableweb

In this article, we categorize Mashups by their work flow structures ranging from
the easiest to the hardest to implement. To generate this categorization, we look at
the top 50 popular Mashups on the Programmableweb.com site and divides them
into four types of Mashups. While 50 Mashups is a small number, the distribution in
terms of functionality is similar to that of Figure 3. As a result, we believe this is a
good approximation of the overall Mashup population. The Mashup categorization
based on the structure is shown below:

(1) One simple source: This Mashup type is constructed by extracting data from
a single source and placing them on a map. There is minimal data cleaning
and no source modeling or data integration. An example for this mashup type
is Berkeley Crime Log (http://berkeleyca.crimelog.org/), a mashup that shows
the various types of crimes on Google Maps.

(2) Combining data points from two or more separate sources: While this
Mashup type incorporates two or more sources, the data does not need to be
modeled, cleaned, or integrated. A map is used as a bucket to show the data
from each different data source. An example for this mashup type is Hotspotr
(hotspotr.com/), a mashup that shows wi-fi hotspots.

(3) One source with a form: To extract data the source requires a user to
supply the information through a HTTP form before the data can be retrieved.
An example for this mashup type is LA Housing Map (http://www.housingm-
aps.com/), a mashup that extracts data from Craigslist and presents it in a
searchable form on Google Maps.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

6 : Rattapoom Tuchinda et al.

(4) Combining two or more sources using a database join: The data from
one source needs to be joined with data from another source. The data cleaning
and source modeling are more important in this case. An example for this
mashup type is Skibonk as shown in Figure 1 (www.skibonk.com/), a mashup
that combines snow condition with resorts to help skiers find a vacation spot.

Among these four Mashup types, some of them require specialized operations
and knowledge, such as a customized display or complex user interactions. These
specialized Mashups cannot be implemented by casual users and account for about
53 percent of the total Mashup population. Our goal is to allow casual users to build
the nonspecialized Mashups (i.e., the other 47 percent) easily. With Karma, users
will be able to build Mashups that have similar functions to real-world Mashups
coded by programmers. For example, simpler versions of each real world Mashup
mentioned above could be implemented using Karma.

3. AN EXAMPLE SCENARIO

This section shows how a user would interact with Karma to build a useful mashup.
For example, a particular restaurant might receive rave reviews from a restaurant
review website, but has a C rating on a government health inspection website. A
health conscious person would require information from both websites to make a
sound decision on whether to dine at this restaurant.

To build this Mashup, the user needs to combine data from two Web sources:
LA City Guide (http://losangeles-.citysearch.com) and the LA department of public
health (http://ph.locountry.gov /r-ating), and then display the final result on a map.
Note that this mashup is a type 4 mashup where a) two data sources are used and
b) a database join is required. To simplify the building step, we will assume that
the data from the LA department of public health is already extracted, modeled,
cleaned, and saved into the database.

We will break the Mashup building process into four steps: data retrieval, source
modeling, data cleaning, and data integration. In practice, however, the user may
switch freely back and forth between each step. Also, the user can preview the
Mashup display (i.e., map) at any time. Details of the inner workings will be
elaborated in the next section.

Figure 4 shows the interface for Karma. The left area is an embedded Web
browser, where the user can navigate through Web pages. The upper right area
is a blank table where the data is populated based on the user’s interaction with
Karma. The lower right area shows multiple modes and their options from which
the user can select.

3.1 Data Retrieval

First the user will extract the data from the sushi page on the left into a table
on the right side, as shown in Figure 4. The end result will look like the table in
Figure 6, which contains restaurant names, addresses, descriptions, and number of
reviews. Karma’s goal is to let the user do this by providing only a small set of
examples.

Once the user navigates to the best sushi restaurants page, he extracts the data
by highlighting a segment of the text Japon Bistro on the page and then drags and

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 7

@beck shFowerd (DRsfesh @Stop | URL: | 'bsangeles.cltysearch,comjbestaf fwinnersf | o co |

~

7‘\-_ & Best Sushi 2007 £J
k- BRI ouvoled for the best Sushiin Los Angeles, and we couned

Ny

Check out the resuits belaw

Send to a friend
Audience Winner Editorial Winner |
1
1. .Japon Bistro Sushi Dokoro Ki Ra La :
927 E Colorado Bivd , Pasadena , CA, 91106 4777 8 Banta Monica Blvd , Beverly Hills, G,
Upscale yet affordable Japanese eatery offers the 80211
city s largest sake selection Intimate and charming Japanese restaurant
offers wide range of hand-selected sushi and
sashimi.

Table | Attributes | Clean Data | ntegration | Save

2. Hokusai s :
2400 wilshire Bid | Beverty Hills | A, 80211 Clean column | | Start deaning Firich
Chic elegance and modern Zen shyle surround Japanege Franch this paean to haute culsineg and stilze
sushi.

3. Sushi Sasabune
1z400wilshire Blvd St2 150, Los Angeles | CA, 90025
Authentic Japanese sushi restaurant featuring a varisty of rawfish served 3t your table or the sushi har.

Finl result is:

4, SushiRoku k) et vates

0446 W Ird B, Los Angeles, GA, 20040 [s user defined values (override the fiest bwo options)

High fashion, rock and roll and Hollywood buzz converge over innovative sushl. 3 ’UPT
< 2

Fig. 4. The interface of Karma

select orie . . |select ane address select ane select ane
fJapon Bistro Japon Bistro (927 E Calor,, [Upscale yet... [31 Reviews
\Sushi Dakar,, Sushi Dokaor,, (3777 5 Sank., [Intimake an... |3 Reviews
Hokusai Hokusai 3400 Wilshir... (Chic eleganc. .. [30 Reviews
|Sushi Sasab. Sushi Sasab.. |12400 Wilshi. .. \Authentic Ja. .. |66 Revisws
|Sushi Roku Sushi Roku 3445 W 3rd,.. [High Fashion... |62 Reviews
Hide Fushi \Hide Sushi 2040 Sawkel, .. Mo fuss, jus,,. [25 Reviews
[Fat Fish Fat Fish 616 M Rober. .. [Inventive ro... |38 Reviews
\Sushi Katsu-va Sushi Katsu-ya [L1680 Yent,.. [The MOCA 0., [49 Reviews
Gindi Thai /.. Gindi Thai /.. [4017 W Riv... [Burbankres.., [29 Reviews
[Katana Katana 3439 W Sun. .. [Rustic Japa... [96 Reviews
[Echiga [Echiga 11217 Sank... |Stellar sushii.. |49 Reviews

Fig. 5. By dragging Japon Bistro into the first Fig. 6. The user extracts the whole list by
row, Karma automatically fills the rest of the dragging only four values into the first row of
column the table

drops the highlighted text into a cell in the table on the right. Recognizing that
the data element is a list on the Web page, Karma proceeds to extract the rest of
the restaurants from the page and fills the first column of the table in Figure 5.

The user can proceed to extract the address and the restaurant description of
Japon Bistro, and Karma will automatically fill in the rest of the table. Note
that the user can also click the http link of Japon Bistro to go to its separate
detail page and extract the number of reviews. Recognizing that the detail page
belongs to Japon Bistro, which in turn is a part of the restaurant list in the original
page, Karma then iterates through each restaurant in the list and extracts the
corresponding data from each detail page.

Figure 6 shows the result table where the user has extracted the restaurant name,
address, description, and the number of reviews. Note that the user only has to
drag in the four values in the first row to populate the entire table.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

8 : Rattapoom Tuchinda et al.

3.2 Source Modeling

In the source modeling mode, Karma will help the user assign the right attribute
name to each data column. While the user is busy extracting data from the page,
Karma compares extracted data with existing data in its repository to identify
possible attribute names. For a column where Karma is confident, it fills in the
attribute name automatically (i.e., address in Figure 6). For a column that Karma
cannot identify or for which it is not confident, the attribute name is entered as select
one, as shown in Figure 6. The user can select the source modeling mode by clicking
the Attributes tab in Figure 4 and specifying the correct attribute by entering his
own or searching from the list of existing attributes in the data repository. In
the example, we will assume that the following attributes are assigned (by Karma
and the user) to the table: restaurant name, address, description, and number of
reviews.

3.3 Data Cleaning

Frequently, the extracted data needs to be cleaned because of misspellings and/or
formatting. Karma lets the user clean the data by specifying the end result of what
the clean data should look like. In this case, the user wants to remove the string
Reviews in the fourth column of Figure 6.

description rumber of r... suggest user defined | final
. Mpscale wet.. |31 Reviews 31
. [Intimate an... |3 Reviews
... [Chic leganc. .. [30 Reviews
o uthentic Ja, .. |66 Reviews
. High fashion. .. |62 Reviews
. flofuss, jus... |25 Reviews
o Inventive ro... |38 Reviews
o [The MOCa o, 49 Reviews
.. Burbankres.., 29 Reviews
.o Fustic Japa. .. |96 Reviews
. frellar sushic., (49 Reviews

Fig. 7. Karma in the cleaning mode. The user can specify the cleaned result and Karma will try
to induce the cleaning transformation.

To enter the cleaning mode, the user selects the Clean data tab in Figure 4.
The user can then select the column to be cleaned from the menu under the tab.
Let us assume that the user selects the column Number of reviews. The table
will be in the cleaning mode as shown in Figure 7. In the cleaning mode, three
extra columns (suggested, user-defined, and final) will be populated next to the
column that the user wants to clean. The suggest column shows suggestions for
replacement by Karma if available. The replacement comes from comparing new
data with existing data in the database for possible misspelling. The user-defined
column allows the user to enter the end result, and Karma will try to deduce the
cleaning transformation from the user’s examples. For example, if the user enters
81 in the first row, Karma will deduce the transformation between 31 reviews and
31, and apply the same transformation to the rest of the data under the same
column.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 9

3.4 Data Integration

In the data integration mode, Karma will analyze attributes and data in the table
to determine possible joins between the data in the table and the data in the
repository. Based on the analysis, Karma can suggest existing data sources in the
repository that can be linked to the new data in the table. For example, let us
assume that the LA Health Rating source has been extracted and stored in the
repository through a similar process, perhaps by a different user.

Based on the restaurant data in the user’s table, Karma might suggest Health
Rating as a new attribute that can be added to expand the table. If the user chooses
Health Rating as the attribute for the new column (shown in Figure 8), Karma will
generate a query to retrieve the health rating data from the repository and fill the
new Health Rating column (shown in Figure 9).

The final result is the data table that contains restaurant data integrated with
health rating information. During the process, Karma helped automate some of the
subtasks to help the user build this Mashup in a short time frame. While, Karma
did not offer explanations of its automated choices, the user can immediately see
the results of each process and can evaluate the quality of the resulting data.

Although Karma does not focus on the data visualization problem, Karma still
provides a basic Google Map display if the table contains address information. The
user can display the final restaurant Mashup on a Google Map by selecting a map
option from the save tab in Figure 4. The map display is shown in Figure 10. While
this example is about restaurants, the structure of the problem (i.e., extracting a
list from a page, cleaning and integrating with other sources) is the same in general
Mashup building tasks.

In the next four sections, we will show the technical details, organized by each
problem area underlying the interaction between the user and Karma. In addition,
we will also point out how we use each of the three key ideas mentioned in Section 1
in our framework.

4. DATA RETRIEVAL

A large body of research considers data retrieval as a problem of extracting data
from a Web page. However, in practice, data retrieval is composed of two subprob-
lems: data extraction and page navigation. The problem of data extraction focuses
on figuring out how to extract data out of HTML from a specific page or set of

restaurant ... |address description rumber of r... health rating restaurant ... address description rumber of r... = health rating
Japon Bistro 927 E Color.. |Upscale yet... 31 Japon Bistro |927 E Color.. |Upscale yet... 31 a1
Sushi Dokar,, 9777 5 Sant.. [Intimate an... |3 Sushi Dokar,, |9777 5 Sant.. [Inkimate an... |3 92
Hokusai 3400 Wilshir. .. |Chic eleganc...|30 Hokusai 3400 Wilshir. .. |Chic eleganc...|30 a0
Sushi Sasab.. 12400 Wilshi... |Authentic Ja... |66 Sushi Sasab.. |12400 Wilshi... |uthentic Ja... |66 97
Sushi Roku 8445 W Srd... |High Fashion... |62 Sushi Roku 3445 W Srd... |High Fashion... |62 93
Hide Sushi 2040 Sawtel... Mo Fuss, jus... [25 Hide Sushi 2040 Sawtel. .. Mo Fuss, jus... [25 96
Fat Fish 616 M Rober... [Inventive ro... [38 Fat Fish 616 M Rober... [Inventive ro.., (33 96
Sushi Katsu-ya 11680 vent... |The MOCA o0...|49 Sushi Katsu-ya 11680 vent.., |The MOCA o...|49 a1
Gindi Thai /.. 4017 W Riv... [Burbankres... |29 Gindi Thai /.. |4017 W Riv... [Burbankres... |29 a4
Katana 5439 W Sun. .. |Rustic Japa... |96 Katana 5439 W Sun. .. |Rustic Japa... |96 935
Echigo 11217 Sant... |Stellar sushi... [42 Echigo 11217 Sant... |Stellar sushi... [42 91

Fig. 8. The user selects the attribute health Fig. 9. Karma automatically computes query
rating from the list suggested by Karma and fills blank cells with values

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

10 : Rattapoom Tuchinda et al.

&3 Back w Forward @ Refresh o Stop URL: | "losangeles.citysearch.comfbestof winnersfsushi?init_s

restaurant_name | j address: |
descnption

\
number_of_reviews 7| health_rating =l El

M Ti lall - Hiils
U %‘5.. [map | satelite | Hybrid
?-L';J - Terrace
i ik eanorama restaurant_name Helwusai e = C'eiwg
] address:2400 Wikshire Blvd | B,
C@a Reseda { Beverly Hills , CA |, 80211 Montrase [
ctory Wl Van Nuys description:Chic elegance and
T Sepuiveda Dam modem Zen style surround
Wﬁﬁ‘:’.““ ; RN Tapanese French this paean to Glendale
ENcing '_- haute cusme and styhzed susht |
number_of_reviews:30
@ =2 4 health rating 90
Glenview 405] .
’ MTNS NTL
Sytvia Park Recreation Area
y 1 Bevery,
Topanga Glen
Topanga Slale Fark 4

sod " A w0 I }
%! BelAir B k> Echo Park
R f /
Pacific stwood
F'EIISJIEIES E'E" g Los'Angeles
POVIERED BY T F 1
2> Rancho

Castellammare -
m“Sie) — 3 B3 poricalfap data S2007 Tele Azh;—;;s‘_

Fig. 10. A map display of the Mashup

similar pages. Page navigation deals with cases where the data we want to extract
requires us to go through multiple pages to get to it. Page navigation is rarely
addressed in research because it is considered more or less an engineering issue
from the information retrieval point of view. However, from the Mashup building
perspective, if we want to make building Mashups easy, we need an approach to
do page navigation easily and effectively. In this section, we first show how Karma
extracts data from a Web page. Then, we describe how Karma handles the issue of
page navigation. Finally, we explain how Karma lets users reinvoke all extractions
steps on a new similarly structured page by exploiting the table structure.

4.1 Extracting Data using DOM

In Karma, we use a Document Object Model (DOM) tree as the basic structure for
the extraction process. The DOM tree is constructed based on the organization of
HTML tags in the Web page. Figure 11 shows the simplified DOM tree of the best
sushi restaurant page from our scenario.

DOM trees are used to identify lists. For example, when the user drags the value
Japon Bistro into the table (Figure 5), we can (a) identify an XPath from the root
to that value, and (b) compute parallel Xpaths in different branches to extract other
nodes that store restaurant names. An XPath is an expression language that is used
to access and manipulate information in XML documents. For example, the XPath
for Japon Bistro (i.e., /tbody/tr[1]/td[2]/a) specifies the following path: tbody,
the first tr tag, the second td tag, and retrieve all the a tag nodes. To find parallel
paths, we can generalize the path by discarding the node number and opting for

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 11

970 E Colora.. 8400 Wilshir,

[Upscale vet affordab] [Chic elegance...]

Fig. 11. A simplified DOM tree that represents the restaurant page in the motivating example. The
shaded nodes represent the HTML tags, while the unshaded nodes represent the data embedded
within those tags.

wild cards. For example /tbody/tr*/td*/a will return any node where its XPath
matches such a structure without taking the branch number into account. In this
case, the relaxation using wild cards will return two nodes: /tbody/tr[1]/td[2]/a
and /tbody/tr[2]/td[2]/a.

After extracting the first column of data, Karma handles extraction in other
columns based on the position of the nodes in the first column. For example,
suppose the user wants to extract the address of the restaurants. To do so, he/she
drags the text 970 E Colora ... from the web page to an empty cell next to the cell
containing the restaurant name Japon Bistro. We call the first extracted data (the
restaurant name) item the marker, as it serves as a reference point for interpreting
the second example (the restaurant address), which we call the value. Karma uses
the DOM tree to generalize the examples, and to compose a general procedure for
extracting the values to fill in the cells next to the previously extracted marker
cells. In our example, this procedure extracts from the DOM tree the addresses of
all the restaurants.

The basic idea is to identify the relationship between the marker and value nodes
in the DOM tree. Using this relationship, Karma can compute the value nodes
corresponding to a collection of previously extracted marker nodes.

Let p! = (pY1,...,p,,) be the path of nodes from the root of the DOM tree
to the node containing the example marker node, and let p§ = (p%l, . ,pgm) be
the path of nodes from the root to the example value node (see table I, rows 1 and
2). We use the superscript 0 to designate the examples the user provides. In our
scenario, pJ designates the path to the Japon Bistro restaurant, and pj designates
the path to its address. The extraction algorithm produces a set of pairs (pi,ps)
that specify how to fill in the values of the other rows by mapping each of the
extracted marker nodes to a corresponding value node. In our example, the result
consists of pairs of paths that identify a restaurant name and its corresponding
address.

The algorithm first computes the common path ¢ between p{ and p§ (table I, row

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

12 . Rattapoom Tuchinda et al.

3) defined as

C:(Cla"'vck)

where ¢; = p} ;, and k is the largest value for which p{; = pJ; fori =1,...k

The next step is to generalize the common path to identify similar structures
in the DOM tree. This is done by substituting the order number of the nodes by
wildcards (e.g., substitute td[2] with td* as shown in table I, row 4). We denote
the generalized common path as ¢* = (cf,...,c}).

The output of the algorithm consists of pairs of paths (pt, pb):

i (i i 0 0
P = (Cla s '7ck’p1,k+17 ce ’pl,m)
i (g i 0 0
by = (Clv'"7ck>p2,k+17"'>p2,n)
where ¢f, ..., ¢, are the DOM tree paths that match (cf,...,c5, pY ji1,---20),0)-

In our example DOM tree, the algorithm extracts the address of the Hokusai
restaurant (table I, row 5).

Table I. Formalization of the restaurant example.

1. p9 = (tbody,tr[1],td[2],a) marker path identifying Japon Bistro
2. pJ = (tbody,tr[1],td[2],br[1]) value path identifying 970 E Colora ...
3. c= (tbody,tr[1], td[2]) common path
4. c¢* = (tbody,tr¥* td*) generalized path
5. pl=(tbody,tr[2],td[2],a) output: marker path identifying Hokusai
pl = (tbody,tr[2],td[2],br[1]) output: value path identifying Hokusai’s address

It is crucial to append the path suffixes that identify the marker and value nodes
relative to the common path. For example, unless the marker suffix is appended to
the common path, the algorithm would match spurious nodes such as the leftmost
td node in Figure 11; the correct td node is the second one, which is identified by
its child a node. Similarly, the suffix on the value path helps address ambiguities
caused by nested lists (list of br nodes nested in a list of td nodes). In this case, the
suffix br[1] correctly identifies the restaurant address, which is in the first br child.

4.2 Page Navigation

In our example each restaurant has a link to its detailed page, which contains
more information about the restaurant (e.g., number of reviews). This kind of
web page structure is quite common in the deep web, where pages are generated
from databases based on HTML form input values. The first page contains a list
of results, where each result has a link to its detailed page. Note that the result
page and the detailed page usually have different page structures. Examples of this
structure is often seen in product search result pages (e.g., Amazon and eBay).
Often times, we want to extract data from both the result page and each detailed
product page. However, the extraction process cannot occur separately because
detailed pages are reached through the result page. One way to do the extraction
is to extract the result page first, then navigate from the result page to the detail

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 13

pages, and finally join them together. For naive users, understanding and specifying
database joins can be confusing. Karma supports this process in a natural way
by inducing join operations from user interactions, so the user does not need to
explicitly specify a database join operation.

In the example, when the user extracts Japon Bistro, Karma can already induce
that the first column is a list. Next, when the user navigates to the Japon Bistro
detail page and drags the number of reviews from the detailed page into the first
row of the table (Figure 12), the user indirectly specifies: (a) that a particular
detail page is linked to the data of the first three columns in the first row, (b) the
extraction rule (XPath) for this new data element, and (c) where the new data
element from a new page should be in the table with respect to the data from the
first page.

Japon Bistro
927 E Colorado Bivd
Pasadena, CA91106
Phone: (626) 744-1751

TBODY
tr tr . . S
Japon Bistro |927 E Color.. |Upscale yet... |31 Reviews
td td td td Sushi Dokor.. (9777 S Sant.. [Intimate an...
Hokusai {8400 Wilshir... [Chic eleganc...
Sushi Sasab., (12400 Wilshi... Authentic Ja...
1 2 a br br - - .
1 SushiRoku [8445 W 3rd... High fashion...
apan Bistro Hokusai Hide Sushi 12040 Sawtel... No fuss, jus...
- Fat Fish 1616 N Rober... Inventive ro...
570 E Colora 8400 Wilshir ~
Sushi Katsu-ya 11680 Vent... |The MOCA o...
Chic elegance Gindi Thai /.. 4017 W Riv... Burbankres...
Katana /8439 W Sun... [Rustic Japa...
Echigo 111217 Sant... (Stellar sushi...

Fig. 12. When the user navigates to the Japon Bistro detail page and extracts the number of
reviews into the table, Karma deduces the relationship between the new data element and existing
data elements in the same row to help extract data for other rows.

The general problem of extracting information from detail pages can be modeled
as a three step process. First, the user has already extracted a list of items (e.g., the
restaurant names) from a results page. Using the same notation as in the previous
section, we call this list p{, pi,...,p}. The subscript 1 indicates that this is a list of
markers; p! represents the path to the example from which the user will navigate
to the detail page; the pi for i > 0 represent the paths to the other elements in the
list for which Karma needs to extract information from the corresponding detail
pages (e.g., all the other restaurants in Figure 12).

Second, the user clicks on a link in the results page to navigate to the detail page.
Let pJ represent the path in the DOM tree from the root to the element containing
the link. This configuration is identical to the marker/value configuration described

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

14 . Rattapoom Tuchinda et al.

on section 4.1, so the same procedure can be used to compute pi, ..., p4, the paths
to each of the link elements. In our example, the p} are the DOM paths to the
links to the detail restaurant pages of all the restaurants. Note that Karma does not
insert these links in the table, but uses them internally to retrieve all the relevant
detail pages.

Third, once the detail page loads, the user drags a new piece of information, into
the Karma workspace and drops it on an empty cell, in the same row as the marker.
In our example, the user dragged the number of reviews element from the details
page and dropped it next to the restaurant name in the Karma workspace. Let
d=d,...,d, be the DOM path from the root of the details page to the element
the user extracted. We assume that the desired information in the details page is
in the same location in all the detail pages, so the same path d can be used to
extract the detail information from each of the details pages. This is a reasonable
assumption given that these detailed pages are usually generated from databases
using the same template format.

In summary, the procedure has three steps:

(1) Compute the DOM paths (p3, ..., p5) of the links to the detail pages from the
paths of the markers (pi,...,p7), using the algorithm described in section 4.1.

(2) Retrieve the detail pages using the links identified by the p} paths.

(3) In the retrieved detailed pages, use the path d to retrieve the desired information
from the detailed page, and store this information in the corresponding cells in
the Karma workspace.

Using this procedure, Karma allows users to navigate deep into multiple levels
of detail pages on the same subnet and extract data while retaining the whole view
of the overall extracted data in one table.

4.3 Reinvoking a Wrapper

After extracting restaurant name, address, description, and number of reviews,
Karma can reuse existing extraction rules to extract pages with the same structure.
For example, if the user navigates to a new page with similar structure (e.g., Best
Thai Food from the same Web site) as shown in Figure 13, she can drag and drop
another restaurant (i.e., Palms Thai) into a new empty row. When the user drops
a data element from a new page into an empty row, Karma checks the XPath of
this new data element. If (a) the XPath is similar to previous XPaths from the
same column and (b) the URL of the new XPath is different, then Karma proceeds
to repeat all the extraction steps including page navigation extraction from just
one example provided by the user. The end result is effectively a database union
between the best sushi restaurant data and the best Thai restaurant data with just
a single drag and drop.

The data retrieval approach shown in this section follows the Karma framework
by primarily focusing on the data, not the operations. Instead of writing complex
extraction and navigation rules, the user retrieves data by moving data from Web
pages in the embedded browser to the table. The user is able to extract data from
multiple levels of Web pages and to combine them by indirectly giving positional
context. The data retrieval process is based on enhancing the DOM and exploiting
positional context in the table.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 15

a4 Best Thai Food 2007 E3 restaurant ... address description number of r...

You voted for the best Thai Food in Los Angeles, and we ’5"”?‘ Bt jper EGors . [pecae yel. 531
counted. Check out the results below. SushiDokor.. |9777 5 5ant.. [Intimate an... |3

Hokusai 8400 Wilshir, .. |Chic eleganc. .. 30
Send to a friend Sushi Sasab,. {12400 Wilshi... |Authentic Ja... |66
SushiRoku (8445 W 3rd... High Fashion... 62
Hide Sushi 2040 Sawtel,.. Mo fuss, jus... 52_5

Audience Winner Editorial Winner Fat Fish 616 N Rober. .. [nventive ro,.. 36
1 | Paims hai Jitlada Thai Cuisine Sushi Katsu-ya 11680 Vent,., The MOCA o.., 49

U0 Hollywood Brrd=kas.Angeles , CA, 90028- 5233 1/2 W Sunset B Gindi Thai /.. |4017 W Riv... Burbankres... 29
5410 90027-5709 Katana 8439 W Sun, .. Rustic Japa... 96
Exotic game and an Elvis impersonator—how cool Hprewa] Echigo 11217 Sant... (Stellar sushi... |49
can Thai food get? Town eatery.

2_ Rambutan Thai
2835 W Sunset Bivd , Los Angeles , CA, 80026
Trendy, friendly Thai restaurant enlivens the staid Silver Lake dining scene

3_ Kinaree Thai Bistro
1253 N La Brea Ave , West Hollywood , CA , 90038

Fig. 13. The user can extract pages with similar structures by dragging a data element into an
empty row

Each table has two obvious but often neglected constraints, which define the
positional context technique. The first constraint is the horizontal constraint. When
a user puts a new data element in a new column on a particular row, the user
indirectly associates the new element with other elements in the same row. It
means the new element has different semantics because it is in a different column,
but all elements in that row belong to the same tuple. The second constraint is
the vertical constraint. When the user puts a new data element in a particular
column, the user indirectly associates the new element with other elements in the
same column. It means the new element has the same semantic as other elements
in that column. The horizontal constraint helps Karma identify markers in order to
connect and combine data from multiple page levels, while the vertical constraint
signals Karma that the user wants to invoke the rules and steps learned previously
on a new, but similar source. The idea of positional context will be revisited in
section 7.

Karma can also extract data from Web forms. Karma captures the HTTP form
parameters and values as the user fills out a Web form to get to the result page.
When the user starts dragging the data from the result page onto the table, Karma
also populates form parameters (as column attributes) and values alongside the
data extracted. The user could modify or enter new form values in the table and
Karma will query a form, extract the new data using the same XPath rule, and
show the updated result in the table. Basically, Karma relies on users to supply
input for each instance of form extraction. A more advanced technique in form
extraction can be found in HiWe [Raghavan and Garcia-Molina 2001], where user
input is used to further build a form’s internal representation model to extract more
data.

The data extraction techniques used by Karma will work on well-structured web-
sites containing lists and tables. While our extraction technique will not work on
ill-formed web pages, most deep web pages are well-structured because they are typ-
ically generated from relational databases. Besides Karma, Dapper and Yahoo’s

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

16 : Rattapoom Tuchinda et al.

Pipes also have similar problems with data extraction on ill-formed web pages.
Even with a limited pool of extractable web pages, it is still possible to create
many interesting data integration applications as shown on Dapper and Yahoo’s
Pipes pages.

Many of the data fields extracted from the Web are unstructured and ungram-
matical. Further processing of this data can yield important information (i.e.,
locations, names, etc.). Systems like Phoebus [Michelson and Knoblock 2007b] and
Gate [Cunningham et al. 2002] support this kind of extraction. Karma does not
address this problem, but could be extended to support unstructured text extrac-
tion.

5. SOURCE MODELING

In Karma, we keep a repository of data that can be used for bootstrapping processes
in source modeling, data cleaning, and data integration.

As soon as the user puts the data into the table in the data retrieval step, the
new data elements are pipelined into the source modeling step. Karma analyzes
those new entries by comparing them with data elements that exist in databases to
generate a possible candidate set for each column’s attribute.

Data repository

LA Health Ratin

restaurant | Address | ...| Health
Newly extracted data name Rating
Hokusai 8400..]
Japon Bistro
Katana 8439.. .| 99
Hokusai
Japon 927 E.. | 95
Sushi Bistro
Sasabune
Artist Info
artist nationality | ... | ...
name
Hokusal | Japanese
Renoir French

Zagat
restaurant | zagat
name Rating
Sushi 27
Sasabune
Sushi 25
Roku
Katana 23

Fig. 14. A view of the overlap between newly extracted data and existing data in the repository

Figure 14 shows the mapping according to the constraint formulated for the first
data column that contains restaurant names in Figure 6. After the user extracts the

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 17

first value and Karma fills the rest of the column, Karma then uses all the values
in that column as a starting set to determine possible attribute mappings. For
each value in the starting set, Karma queries the repository to determine whether
that value exists in any table. If it exists, Karma extracts the attribute to which
a value corresponds. For example, there exist Sushi Sasabune and Japon Bistro
under the attribute restaurant name. However, Hokusai can be associated with
multiple attributes: restaurant name, artist name.

In order to formally specify how Karma computes this candidate set, we will first
introduce a formalization of sources. Let S be the set of all sources, A the set of all
attributes (column headings) in all sources, V' the set of all values that can appear
in any source, and N the set of natural numbers, which identify the rows. The
contents of sources are defined using the functions shown in Table II. We use the
shorthand v(s,a) = |J;cn ¥(5,a,1) to represent all the values defined for attribute
a in source s (all the values in a column).

Table II. Formal definition of sources

a: S - A
s a(s) the attributes defined in source s
K S - 24
s - k(s) the attributes that define a key for source s

v: SXAXN
(570’71)

v
v(s,a,i) the value in source s identified
by attribute a and row i

Ll

To compute a candidate set to suggest the attributes for a column with no at-
tribute defined, we define a value overlap function w as follows:

w: 2V x8 = 24xN
(X,s) = w(X,s)={(a,n):n=|v(s,a)NX],v(s,a) N X # 0}

The input to w is a set of values X and a source s. The output is a set of pairs.
The first element in the pair is an attribute in source s whose range overlaps with
X; the second element in the pair records the number of values in the range of the
attribute that overlap with X.

To produce the menu of suggested attributes, Karma computes Usesw(X7),
where X is the collection of values that appear in the column. It replaces sets
of pairs (a;,n;) that have the same a; with (a;,), n;), thus removing duplicate
appearances of an attribute, and recording the total amount of overlap across all
sources. Then it sorts the remaining set by the amount of overlap, and shows the
attributes and their overlap in a menu.

In the example shown in Figure 14, X is the set of newly extracted restaurant
names. Karma computes w for each source, producing a singleton set for each of
the sources shown, given that in this example, the elements in X only overlap one
attribute in each source. The resulting menu will contain two elements, correspond-
ing to restaurant name and artist name. The overlap for restaurant name is

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

18 : Rattapoom Tuchinda et al.

3 given that the overlap with source LA Health Rating is 2 and the overlap for
Zagat is only 1; the overlap for artist name is 1.

In the case where all new values can be associated to only one attribute, Karma
sets the attribute name of that particular column in the user table automatically.
When there is an ambiguity, Karma sets the attribute name for that column to
select one. Then, the user can select the attribute from a ranked candidate list.

Our method assumes that there is an overlap between newly extracted data and
existing data in the repository. If there is no overlap, then Karma will output
“select one” as the attribute name for that column (Figure 6), and let the user
select from the list of existing attribute names from the repository, or allow him
to specify the attribute name himself. The seed data in our repository is obtained
from a) importing data tables from existing databases, and b) storing and reusing
data from previous Mashup building tasks; the more users create Mashups using
Karma, the better Karma performs in the source modeling step.

6. DATA CLEANING

Data cleaning is tedious and time consuming because it involves (a) detecting dis-
crepancies in the data, (b) figuring out the transformation to fix them, and (c)
finally applying the transformation to the dataset [Raman and Hellerstein 2001].
In Karma, we support two kinds of data cleaning: misspelling detection and trans-
formation by example.

6.1 Misspelling Detection

When the user enters the data cleaning mode, if Karma detects any possible mis-
spelling in the new data, Karma will suggest possible replacements, if any, in the
suggest column in Figure 7. For example, let us assume that there is a possible
misspelling for data in the restaurant name column. Figure 15 shows intuitively
how Karma figures out the possible replacement.

As soon as the source modeling problem is solved (e.g., the attribute is restaurant
name), Karma locates data in the database in any table (e.g., LA Health Rating
and Zagat) that is associated with the attribute restaurant name. Then, Karma
executes pairwise comparisons between newly extracted data and existing data in
the database to determine if there are any close matches. The algorithm to suggest
spelling corrections is defined by the following function o that takes as arguments an
arbitrary value v and an attribute name a, and returns a set of suggested corrections
paired with their similarity score.

c: VxA — 2VXRE
(v,a) = ov,a) ={(z,y) :x € Useg¥(s,a), f(v,2) > 0.6,y = f(v,2)}

Function f is a string similarity metric. In Karma, we use the unsmoothed
Jacard similarity [Cohen et al. 2003] for its fast computation and performance.
The threshold is chosen empirically based on experimental results in [Michelson
and Knoblock 2007a]. The function o considers as candidates values in any source
that appear under the specified attribute.

If v € o(v,a), i.e., the value exists in a the database under the desired attribute,
then no suggestions are given. Otherwise, Karma colors the value red in the table.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 19

Data repository

LA Heatth Rating
restaurant | Address | .. | Health
name Rating
Newly extracted data | Jiiokysai 8400. |. |90
Japon Bistro i [xatana 8439. | . |99
Hokusai ¢ Juapon 927E. |. |95
H Bistro
Sushi H
Sasabune Zagat
— \ restaurant | zagat
Roka N i name Rating
Sushi 27
Sasabune
Restaurant name Sushi 25
Roku
Katana 23

Fig. 15. The diagram showing how Karma uses the database to help identify possible misspelling
replacements

When the user chooses to clean the data, Karma presents the user with suggestions
for replacement for each red element. If |o(v, a)| = 1, the single suggestion is shown
to the user. If |o(v,a)| > 1, the user can click on the suggestion cell to see the drop
down list of available suggestions.

The performance of this approach is tied to how well the source modeling problem
is addressed. If the user selects an incorrect attribute type for a newly extracted
data column, then Karma will not be able to use the correct set of data to compute
the suggestion set for replacement. However, even if the user selects the wrong
attribute, Karma does no worse than other Mashup tools as they do not provide
any support to detect misspellings in the extracted data.

6.2 Transformation by Example

Transformation by example lets users specify the format of the cleaned data by
example. Karma then uses the example to induce the cleaning transformation
rules. Figure 16 shows what happens when the user types in an cleaning example
in Figure 7. The original data element “31 reviews” is sent to a set of predefined
transformations to generate the output. If the output generated by a transformation
is equal to the user defined input (i.e., 31), then that transformation rule is selected.
The selected transformation rule is then used to apply to the rest of the data in
the original column (number of reviews).

By allowing the user to specify the end result, the user does not need to know how
to specify the transformation rule, which can be challenging. For example, the regex
widget in Figure 2 specifies the regular expression (i.e., replace (\w*\s)(\w*) with
$2 $1) that transform “Lastname Firstname” to “Firstname Lastname”. While our
approach does not require a user to understand programming, it does have three

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

20 : Rattapoom Tuchinda et al.

description number of r... | suggest user defined final
Upscale ver.., |31 Reviews 31]
[I]' tinate an... |3 Reviaws ‘\
I fic eleganc., |30 Reviews [r |
fuithertic 1a.. |66 Reviews
|62 Reviews
|25 Reviews
38 Reviews
49 Revigws
129 Reviews
|96 Reviews

—
st A0 icviows \-

31 Reviews — 31

Subset Rule:

(51555, = (dyds. . d) ~

(k= 1) A

5 € {d;.dy.... d} . Predefined
Rules

Fig. 16. Karma induces a transformation rule by instantiating predefined transformations in its
library

limitations:

(1) There may be no predefined transformation match: The user would need to
type in the cleaned values manually. Table III lists an initial preliminary set of
transformations supported by Karma. Each transformation is implemented as
a JAVA class and can be created and added as a modular unit to cover more
sophisticated cleaning operations.

(2) More than one rule could be applied: Currently, Karma selects the first rule
that matches. In the future work, the user can use more than one example to
help Karma determine the correct rule.

(3) More than one transformation may be needed: There may be some cases where a
data column contains data in a mixed format. For example, the first row might
contain the data “12/03/2008”, while the second row might contain the data
“March 15, 2006”. To clean a column of mixed format data, more than one
transformation rule is required. However, the current version of Karma, while
it can be extended to support multiple transformation rules, only supports one
transformation rule for each column.

Our two data cleaning approaches fit the Karma framework by using all three
key ideas mentioned in section 1. First, the user focuses on the data. By specifying
the cleaning result that the user wants to see, she indirectly induces the cleaning
transformation function. Second, Karma leverages existing databases to detect
misspellings, so the user does not have to spend time locating these errors. Third,
as soon as the source modeling problem is solved (e.g., attribute is specified), Karma
uses the information about that attribute to help determine which existing data set
should be used to detect misspellings.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 21

Table III. Predefined transformations supported by Karma

[Name [Function
Symbol Substitution | Allow a single symbol replacement
i.e., 12-30-2008 — 12/30/2008
Name Reverse Lastname, Firstname
i.e., Obama, Barack — Barack Obama
Name Reverse2 Firstname, Lastname
i.e., Barack Obama — Obama, Barack
All Uppercase Change every character to uppercase
i.e., Hillary — HILLARY
All Lowercase Change every character to lowercase
i.e., Hillary — hillary
Word Capital Capitalize the first character of each token
i.e., barack obama — Barack Obama
Substitution Allow a single token replacement
i.e., 3 Ames St. — 3 Ames Street
SubstringEqLength Similar to Java substring
i.e., 28 reviews — 28

7. DATA INTEGRATION

Our goal in data integration is to find an easy way to combine a new data source
(that we extract, model, and clean) with existing data sources. The general prob-
lems are (a) locating the related sources from the repository that can be combined
with a new source, and (b) figuring out the query to combine the new source and
existing valid sources. Karma solves these problems by utilizing table constraints
with programming by demonstration. The user fills an empty cell in the table by
picking values or attributes from a suggestion list, provided by Karma. Once the
user picks a value, Karma calculates the constraint that narrows down the set of
sources and data and uses that constraint to fill in the other cells.

7.1 Intuition

To demonstrate how Karma handles data integration, let us assume that the user
first extracts the list of restaurant names and addresses and then invokes the data
integration mode. We will assume that our data repository only contains the three
data sources from Figure 14.

Figure 17a shows a table with the newly extracted data, where the empty cells
that can be expanded are labeled with numbers (1-7). Based on the existing data
repository, there is a limited set of values that can fill each cell. For example, the
value set that Karma will suggest to the user for cell 1 would be {Katana, Sushi
Roku}. The reason is that to preserve the integrity of this column, each suggestion
for cell 1 must be associated with the attribute Restaurant name; the values under
the same column must be associated with the same attribute name. Currently,
there are only two sources with column Restaurant name, so Karma formulates the
query based on this constraint to generate the suggestion list. In Figure 17b, we
assume that the user picks Katana to fill cell 1. To fill cell 7, we need to ensure
that the values Karma suggests (a) must come from a row in the source that has
the value Katana associated with Restaurant Name, and (b) must be values under
the attribute Address. These two constraints narrow down possible choices to only

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

22 . Rattapoom Tuchinda et al.

one value. If only one choice exists, Karma will fill it in automatically (as shown
in Figure 17c).

To fill cell 6 in Figure 17b, we need to find one or more sources that (a) can be
linked with the data cell Katana, and (b) contain new attributes (i.e., health rating
and zagat rating) not already in the table. As a result, the possible values that
can be suggested in cell 6 would be {99, 23}. The reason is that since Katana is a
restaurant, there are only two valid rows that have Katana as a restaurant in the
repository as shown in Figure 18 (row 2 from the LA Health Rating source and row
3 from the Zagat source).

Likewise, cell 2 is also limited to two attributes (as shown by the shaded examples
in the attribute rows in Figure 18) since these attributes come from sources that
have Restaurant name and Address in their list of attributes. If the user picks cell
2 to be Health rating in Figure 17c, Karma can narrow down the choices through
constraints and automatically fill the rest of the column (cell 3,4,5,6) with the health
rating value for each restaurant.

By choosing to fill an empty cell from values suggested by Karma, the user (a)
does not need to search for data sources to integrate, (b) picks values that are
guaranteed to exist in the repository, yielding a query that will return results, (c)
indirectly formulates a query through Karma, so the user does not need to know
about complicated database operations, and (d) narrows possible choices in other
empty cells.

Restaurant | Address 2 Restaurant | Address 2 .
{Health Rating,
name name “Tzagat Rating}
Japon 927E 3 Japon 927 E 3
Bistro Colorado.. Bistro Colorado..
Hokusai 8400 Wils.. 4 Hokusai 8400 Wils.. 4
Sushi 12400 Wil.. 5 Sushi 12400 Wil.. 2
Sasabune Sasabune
! 7] ¢ [Katana R TS
a b N\
{8439 W Sun..}

Restaurant Address Health

name Rating

Japon Bistro | 927 E Colo.. 3

Hokusai 8400 Wils.. 4

Sushi 12400 Wil.. 3

Sasabune

Katana 8439 W Su.. & (09

Cc

Fig. 17. Illustration of how the user can integrate new data with existing data through examples.
When the user selects more examples, the table becomes more constrained. The value 1-7 designate
empty cells.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 23

LA Health Rating

Restaurant | Address ... | Health
Name Rating
Restaurant Address Hokusai 8400... 0
Name
: Katana 8439... B I
Japon Bistro 927E... [:E
Hokusai 8400 ... i Japon 97E. | .. 95
Sushi 12400 W.. Bistro
Sasabune
Katana 8439 W... Zagat
Restaurant | Address || ... | Zagat
Name Ratin
Sushi 12400W | ... 27
Sasabune
Sushi 8445W.. | ... 25
Roku
Katana 8439 W.. . @
Newly extracted data Data repository

Fig. 18. Selecting Katana in cell 1 limits the choices in other cells, such as cell 6 and cell 2,
through the horizontal constraint

7.2 Formalization

We formalize the constraints described in the previous subsection, using the formal
definition of sources given in Table II. First, we introduce the concept of reachable
attributes. In traditional databases, we can link different tables together using the
join operation. Depending on the join condition, it is possible to create a successive
chain of tables. Figure 19 shows an example of how tables in a database can be
linked together. Given an employee ID, we could retrieve the following attributes
using join conditions through foreign keys: SSN, name, address, phone number,
latitude, and longitude. We define a reachable attribute as an attribute that can be
reached from a particular data source through a sequence of joins via foreign keys
(i.e., longitude is reachable from S1).

SSN T SSN
Employee name address
ID address —|_ Latitude
name Phone Longitude
S1 number S3
S2

Fig. 19. Join paths through foreign keys in a traditional database

If we have a well-defined database like the one shown in Figure 19, join conditions
between tables can be composed over foreign keys. Joining two tables using non-

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

24 . Rattapoom Tuchinda et al.

foreign key attributes (i.e., name) is possible, but the result generated may not
make sense. For example, there might be a record with name John Smith in S1
and S2 who are completely different people with different SSNs.

We use a similar concept for Web sources. In many Web sites, to retrieve the
information, we need to fill out a Web form. This Web form requires some key input
to produce one or more output. Specifically, the output results make sense only in
the context of specific key input values; there is a functional relationship between
the input and the output in a Web form. Karma exploits this relationship and uses
the Web form input requirement as a special primary key constraint. This primary
key constraint allows Karma to link two tables over attributes, so that the join
result makes sense. For example, the primary key constraint for the LA health
rating source might be: restaurant name and address. The constraint means is
that if we want to retrieve the rest of the attributes (e.g., health rating, inspection
date), the join condition must be over restaurant name, and address.

Suppose we have two sources s,t € S. Source t is reachable in one step from
source s if k(t) C a(s), i.e., if s and ¢ have a key/foreign key relationship. We
define the function p,, to represent the set of sources that are reachable from a
source s as follows:

Pn: S = 25'U-US™ get of sequences of sources of length up to n

s = pa(s) the sources reachable from source s

The function p, records the complete sequence of sources used to reach every
reachable source. We define two sequences of sources (s1,...,s,) and (t1,...,tm,)
to be compatible if they have the same length and for each i : k(s;) = k(t;), i.e.,
the keys are the same. This is important because we do not want to put in the
same column values from incompatible sources. For example, consider the rating
attribute used in the example in Figure 20. The rating is a number between 0
and 100, and both restaurants and artists have ratings, but we do not want to mix
ratings of restaurants and artists in the same column. A column can only contain
values from compatible sources according to our definition. In our example, it is
valid to include in the same column ratings from the two restaurant sources, as
they may have complementary data. Suppose Karma had access to a source that
provides information about the restaurants where artists may be seen. In this
case, the artist rating would be reachable from the restaurant source, but using the
compatibility definition, Karma would prevent including the two types of rating in
the same column: the two rating attributes are incompatible because one uses the
new restaurant-to-artist source that the other does not use.

The reachable attributes from a source s are the attributes a(s;) of the reachable
sources s;. Similarly to the definition of reachable sources, it is important to record
the full path of sources so that Karma can reason about the compatibility of values
to be included in a column. Even though our examples suggest that the attributes
in the columns are simply their names, internally, Karma stores the full paths so
that it can apply the compatibility tests.

Karma can compute the n-step reachable attributes for any n, but we found that
for n > 2 the results become less intuitive and computation of the suggested values
for cells becomes a bottleneck.

Our algorithms for computing suggested values for a cell fall into four cases as

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 25

Karma Workspace Sources

Case 1:
empty attribute cell

LA Health Rating

name address date rating

'
'
'
|
|
|
|
|
~~ |~ name address Zzipcode - - agency : Hokusai | 8400 W... | 12/2009 90
~~ | ~~ | Hokusai | 8400W... 90210 city ! Japon 927 E.. |09/2010 95
~~| ~~] Japon | 927E.. | 90245 date 1 — ~ s [
e | ~~ ~~ ~~ phone ! ~~ g fadad ~~
i |
~ | s~ ~~ ~~ ~~ rating | s = ot e
zagat rating : A
d Newspaper Health Rating
: name address date rating
Case2:) . ! Hokusai | 8400W... [12/2008 | 90
non-empty row with column attribute defined i Japon | 927E.. |06/2009 80
we || e name address Zipcode] rating | : indad inind iniad -~
~~ | ~~ | Hokusai | 8400W... 90210 90 80 : i - g il
~~ | ~~{ Japon 927FE ... 90245 > 95 | i adad il el
1
e I = = — ! Zagat Rating
I - - - - ! name address |zagat rati.. | agency
: Hokusai | 8400 W... |Very Good| Zagat
: Japon 927E... Good Zagat
Case 3: ! e ndad ndad inind
empty row with column attribute defined ' i it i S
s || e name address zipcode | rating :
~~ | ~~ | Hokusai | 8400W... 90210 90 : Directory Zipcode to city
e [~ Japon 927E.. 90245 80 i = =
v - - > - % i name | address phone zipcode city
-~ 95 1 Hokusai | 8400 W... |310.987.6543 90210 Beverly H...
- > — : Japon 927E.. |213.123.4567 90245 El Segundo
| . . = ~— —~
|
{ —~ —~ —~ —~ —~
I — — — — —
Case 4: i
non-empty row & empty column attribute 06/2009 i .
rame et i | 09/2010 1 Los Angeles Sports Teams Artist Info
o || wm |
~~ | ~~ | Hokusai | 8400 W... 90210 213.123.4567 : team sport city artist nationality | rating
~~ | ~~| Japon 927E .. 90245 = gz | |_LA Lakers |Basketball | Los Angeles Hokusai Japan 45
o | ~m — o —— I [Mighty D...| Hockey Anaheim Renoir France 97
|
o — — — El Segundo | - - - . - -
Good | - o o - o o
il Maind il it inind Zagat ' — — — — — —
|

Fig. 20. Examples of computation of suggested values of cells

illustrated in Figure 20. The cell highlighted in dark grey represents the cell for
which users request suggestions. The menus next to the Karma tables show the
suggested values drawn from the sources shown in the figure.

Case 1: empty attribute cell.. In this case, the user selected the column heading
for a column where no attribute has been specified (a = ().

If all the rows in that column are empty (Vi : v(s,a,i) = 0)), then the suggested
attributes are all the attributes of the reachable sources p,(s). If there are cells in
that column with values, the set of attributes is trimmed to include only those with
compatible values. Formally, if row ¢ contains value x, then the set of attributes are
trimmed to include only those that satisfy v(tm;,a;,4) = , where each suggested
attribute a; is defined by a sequence of sources (t1,...,tm,;)-

The menus only show the attribute names even if there are multiple source paths
that lead to attributes with the same name. When users select such an ambiguously
defined attribute, Karma records the set of ambiguous definitions. Karma will
automatically trim this set when users provide examples in the value cells below
the attribute.

In the example in Figure 20, the menu includes all the attributes reachable via

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

26 : Rattapoom Tuchinda et al.

name and address (shown in bold to indicate they are the keys). In this example,
there are two reachable definitions of the rating attribute, one via Newspaper
Health Rating, and the other via LA Health Rating. However, the rating
attribute only appears once in the menu.

The rating attribute from Artist Info is not included in the ambiguous defini-
tions because it is not reachable. If it was reachable, it would be included, and
either it or the restaurant rating attributes would get trimmed once users fill in
values for the cells

As soon as the user chooses a value from the menu, Karma will attempt to
automatically populate the value cells. It will do so for all cells where the set
of suggested values includes only one value. The next case specifies how these
suggestions are computed.

Case 2: non-empty row with column attribute defined. In this case, the user
selected an empty cell in a column where the attribute has already been defined.
Note that the attribute could be ambiguous, as described in case 1. Furthermore,
there are values in other cells in the row. Formally, a # 0, 3x € a(s): v(s, z,1) # 0,
where i designates a row in the table.

The computation of the suggested values simply involves doing a sequence of
joins along the sequence of sources that lead to the attribute. If the attribute
definition is ambiguous, the result is the union of the set of values computed from
each of the ambiguous definitions. Suppose the attribute is defined by a sequence
of sources (t1,-..,tm). In the first step, Karma performs a join between the Karma
table s and ¢; using the keys (¢1) with the constraint that for each k € k(t1) :
v(ty,k,j) = v(s,k,i) for some row j in t1. If v(s, k, i) = () then no join is attempted
and no values are suggested. This join produces a set of values V;. The procedure is
repeated for the rest of the ¢ sources in the sequence. The constraint is generalized
so that for each k € k(tp) : v(th, k,j) = « for some row j in t; and some x € Vj_;.

Karma automatically applies the case 2 computation on every empty cell where
the column attribute or any value in the same row are defined. If the set of suggested
values contains a single value then Karma automatically fills in the cell. In the
example in Figure 20 we show a case where Karma had automatically entered the
values for all the rating rows except the one where the user clicks. The menu shows
two choices because the values from the different health rating sources are different.
Had they been the same, Karma would have automatically filled in the cell.

When the user selects a value, Karma uses the path that led to it to trim the
possibly ambiguous set of definitions of the column attribute to include only those
that are compatible with the sequence of sources that led to the value. This is how
eventually, Karma would automatically disambiguate the incompatible definitions
of rating. In some cases the value provided may be consistent with multiple in-
compatible definitions of the attribute. In that case the ambiguous set of attribute
definitions is not trimmed.

The automatic fill-in of cells with unambiguous values is an important part of
the user interaction. Users are directed to focus on the empty cells where a user
decision is required, either to resolve a discrepancy between compatible sources, or
to enter a value when no suggestions are available.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 27

Case 3: empty row with column attribute defined.. In this case the user selected
an empty cell in the location defined by attribute a and row 4 in source s. The
other cells in the row are still empty, but the user has already assigned an attribute
to the column. Formally, a # 0,Vz € a(s): v(s,z,1) = 0.

This case arises when users want to append new rows corresponding to new
sources containing relevant information. For example, suppose that in our scenario
users had not yet extracted data for the Newspaper Health Rating, and had
already integrated the LA Health Rating with the other sources shown in Fig-
ure 20. After extracting the data for Newspaper Health Rating, users may
want to integrate data from this new source.

This case is similar to case 2 except that all the cells in the row are empty, so
the joins that would be performed in case 2 would fail, producing no suggestions.
Producing no suggestions is undesirable, so we use a different algorithm.

If the attribute is defined unambiguously by a sequence of sources (t1,...,tm),
then the set of suggested values is v(t,,,a), i.e., all the values that the attribute
can take in the last source of the chain. If the attribute definition is ambiguous,
the result is the union of v(¢,,,, a) for each of the source sequences in the definition
of the attribute. In Figure 20, these are all the values for the rating attribute in
sources Newspaper Health Rating and LA Health Rating. The suggestions
do not include the values of the rating attribute in source Artist Info because this
source is not reachable from the Karma table that the user is working on.

When users provide examples in columns that belong to the key of an integrated
source, then Karma uses the algorithms defined for case 2 to propagate values to
other cells in the same row. However, when users provide an example in other
columns, no propagation is done, as it is computationally expensive to infer the
keys that produce the given example via a sequence of joins.

Case 4: non-empty row and empty column attribute.. In this case, the user
wants to enter examples of values that he/she wants included in the table, but
perhaps has not been able to identify the column attribute yet, and is expect-
ing that Karma will identify the column attribute from the examples. Formally,
a="0,3x € afs): v(s,x,i) # 0.

The computation of suggested values is similar to the one used in case 2 where the
attribute value is defined. The set of suggested values is the union of the suggested
values produced in case 2 for all reachable attributes.

In the example in Figure 20, the menu includes a mixture of values including the
inspection dates, the restaurant phone number, the health and zagat ratings, and
the name of the city where the restaurant is located.

Once the user chooses a value, Karma trims the set of suggestions for the attribute
to include only those attributes that could have yielded the selected value. No
additional computation is needed because the value suggestions were computed
from the reachable attributes in the first place, so it is only necessary to record
them when the suggestion set is computed. If the set of suggested attributes is
reduced to attributes with the same name, Karma automatically fills in the column
heading.

Our data integration approach is based on the idea that every problem has a
structure that dictates the constraints. Once we find the constraints, we use them

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

28 : Rattapoom Tuchinda et al.

to limit the search space of the solution. Our work illustrates how past approaches
[Zloof 1975] underutilized the information from the structure of the problem that,
once exploited, can reduce the user’s time and knowledge requirement to perform
a task.

8. RELATED WORK

This section surveys previous work related to Mashups. We divide the related work
into two parts. In the first part, we discuss existing Mashup building tools from
both academia and industry. We selected and compared tools that have a target
audiences similar to Karma — naive users with no programming background who
might build Mashups casually. Then, we discuss related research fields including
data extraction, source modeling, data cleaning, and data integration.

8.1 Mashup building tools

We divide Mashup building tools into two categories: the widget approach and
other approaches. We also show how Mashup tools that aim to support naive users
address each Mashup building issue.

8.1.1 Widget Approach. The Mashup tools in this category use a widget paradigm
as their basis. This approach probably originates from a merger between visual pro-
gramming language [Burnett and Baker 1994] and dataflow programming [Suther-
land 1966]. In the widget paradigm, a user selects a widget, drops a widget onto
a canvas, customizes the widget, and specifies how to connect that widget to other
widgets, creating a connected graph.

The following systems use the widget paradigm: Yahoo’s Pipes, Microsoft’s
Popfly, Marmite [Wong and Hong 2007], JackBe (http://www.jackbe.com), Bungee
Labs (http://www.bungeelabs.com), Proto Software (http://www.protosw.com),
and IBM QED Wiki (http://www.ibm.com). Yahoo'’s Pipes, Microsoft’s Popfly,
and CMU’s Marmite [Wong and Hong 2007] are similar structurally in terms of
their approach. They rely on the widget paradigm where users select a widget,
drop a widget onto a canvas, customize the widget, and specify how to connect
widgets. The difference between each system is the number of widgets (e.g., 43 for
Pipes and around 300 for Popfly), the type of widgets supported, and the ease of
use. For example, Marmite and Popfly will suggest possible widgets that can be
connected to existing ones on the canvas, while Pipes will rely on users to select the
correct widgets. Compared to these systems, Karma uses a unified paradigm that
does not require users to locate widgets or understand how each widget works.

Bungee Labs (www.bungeelabs.com), IBM’s QED wiki (www.ibm.com), and
Proto Software (www.protosw.com) are example Mashup tools for enterprise appli-
cations. These tools also use widgets to support most Mashup building functional-
ity. As a result, experts are required to use them because configuring these widgets
to handle industry strength applications is difficult.

While it would be interesting to report detailed comparison between each system
that uses the widget approach and Karma, it is impossible to obtain and test each
software since a) some are commercial applications that require purchasing and b)
some are research prototypes that cannot be obtained. However, we can compare
Karma with these systems based on their approach paradigm. Karma differs from

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 29

the widget paradigm in two different aspects:

—Interface: In the widget paradigm, a user builds a Mashup by composing a con-
nected graph of widgets on a canvas. Except for Marmite, users of these systems
have to re-execute all the widgets while debugging a Mashup to see any inter-
mediate result. Also, as the Mashup becomes more complicated, the user has
to navigate through a complex graph to debug or add new widgets. In Karma,
the user builds a Mashup by trying to populate one table with data. By letting
the user sees the result in every step and interact in a familiar workspace (e.g.,
spreadsheet), Karma is less confusing and easier to use compared to the widget
based approach.

—Interaction: In the widget paradigm, the user needs to customize a widget and
specifies how to connect widgets. This can be challenging and confusing to naive
users [Wong and Hong 2007], and it requires the user to understand how each
widget works. In Karma, the user specifies an example in the form of data and
then Karma indirectly infers operations from the sample data. As a result, the
user learning curve is low and the time required to build Mashups is smaller.

8.1.2 Other approaches. Besides the widget approach, there are other approaches
to building Mashups. These approaches are covered below:

Simile [Huynh et al. 2007], the earliest system developed at MIT, focuses mainly
on retrieving the data from Web pages using a DOM tree. Simile works as a Firefox
plugin where users can click on a particular text on a Web site and save it in the
repository. If that data element belongs to a list, the rest of the elements are
also highlighted and extracted. After extracting data from Web pages, users can
also tag sources with keywords that can be searched and published later. Dapper
improves over Simile by providing an end-to-end system to build a Mashup. In
Dapper, users are led step by step linearly through an interaction screen, where they
address data extraction, source modeling, and data integration problems. However,
the users still have to do most of the work manually. Dapper also provides only
one cleaning operation that enables users to extract a segment of text (similar to
Java’s substring). Compared to Simile and Dapper, Karma extends the DOM tree
approach to support more data structures and extraction from detail pages.

Potluck [Huynh et al. 2008] is a recent Mashup tool developed at MIT. Potluck
assumes that Web sources already have RDF descriptions that enable easy extrac-
tion and provide infrastructure that addresses source modeling, data cleaning, and
data integration. One could use Simile (e.g., for data extraction) in conjunction
with Potluck to build Mashups. Potluck does provide suggestions to users during
data cleaning. Compared to Karma, however, Potluck lacks many automated fea-
tures that enable users to address Mashup building problems quickly. For example,
Potluck’s users need to manually map attributes between sources and specify data
integration without any system suggestions.

Intel’s MashMaker [Ennals and Gay 2007] takes a different approach where its
platform supports multiple levels of users. In MashMaker, expert users do all the
work in each area. A normal user would use the system by browsing a page (e.g.,
Craigslist’s apartment), and MashMaker will suggest data from other sources that
can be retrieved and combined (e.g., movie theaters nearby) with data on the user’s
current page. Note that MashMaker supports only Web pages that are already

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

30 : Rattapoom Tuchinda et al.

extracted through Dapper. Compared to Karma, MashMaker limits choices for
normal users to pages that exist in Dapper and data integration plans that have
already been specified by experts.

Mario [Riabov et al. 2008] casts the problem of Mashup building as search and
refinement in the planning domain. The search and refinement are done through a
tag, a short keyword describing an operation or a previously built Mashup. There
are two types of users: naive and expert. To build a Mashup, a naive user selects
and combines tags to refine the output of the Mashup. The task of defining tags is
left to expert users. Mario models their operators after Yahoo’s Pipes. As a result,
its coverage is limited to Pipe’s widgets and existing Pipes. Mario’s approach has
two limitation compared to Karma. First, naive users are limited to tags already
defined by experts. Using a tag might not be descriptive enough to convey existing
complex Mashups. Second, while naive users are able to set input parameters for
a tag representing a Mashup, they are not able to fine tune widgets residing in
that Mashup. For example, it would not be possible for users to customize regular
expression (like in Figure 2) to change the way the data is cleaned.

Cards [Dontcheva et al. 2007] views a Mashup as a collection of cards; a different
way to define a tuple of data. Its users extract data from a Web site and store
it in a card. Users can model relationships between sources and indirectly specify
a way to integrate them by drawing a link between attributes, between cards, or
between a card and a Web site. To build a Mashup in Cards, its users would have to
search and manually connect different cards together. Karma, however, provides a
spreadsheet platform where a) users can work on an individual data cell which offers
finer-grained manipulation than Cards, and b) Karma automatically picks sources
and deduces join conditions based on existing data in the table and databases.

D.Mix [Hartmann et al. 2007] and OpenKapow (openkapow.com) allow users to
cut and paste data from Web pages to be used later. However, both systems assume
some level of expertise in programming in HTML and Javascript. In contrast,
Karma does not require users to understand any programming language.

Google MyMaps allows users to create and import map points from limited
sources. However, the process of adding a map point is often done manually. Google
also has its own Mashup Editor (editor.googleMashups.com). However, it is aimed
at programmers.

Agent Wizard [Tuchinda and Knoblock 2004] lets users create a Mashup by an-
swering a series of questions. A users builds a Mashup incrementally in a bottom
up manner. As a user answers more questions, more operations are added to an
overall plan that extracts, filters, and integrates data. However, agent wizard has
two disadvantages compared to Karma. First, as a Mashup gets more complicated,
Agent Wizard’s users need to answer many more questions. Second, they also need
to understand how to specify filter and join conditions. In Karma, those steps are
done indirectly through data samples given by users.

The systems app2you [Kowalczykowski et al. 2009] and AppForge [Yang et al.
2008] share similar goals of allowing users to create a complex form-based applica-
tion without programming. By analyzing the user-directed placement of forms and
attributes, app2you and AppForge can construct database schema automatically.
The similarity between these two works and Karma is that all systems try to learn

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 31

and create a database schema through user interactions. However, Karma differs
from these systems in two aspects. First, app2you and AppForge are form-driven,
an application in these systems revolves around creating web forms. On the other
hand, Karma is data-driven, an application in Karma is created by combining data
from multiple web sources and databases. Second, compared to Karma, app2you
and AppForge lack supports for data extraction and data cleaning.

CopyCat [Ives et al. 2009] uses Karma’s paradigm as a basis to explore a best-
effort data integration tool that provides an explanation behind each choice pre-
sented. It lets users integrate data by copying data from different sources and
pasting it into a spreadsheet-like workspace to answer an ad-hoc question. The
system deduces user actions and provides them with auto-completion choices, each
with an explanation in the form of provenance [Cui 2001]. The user can give feed-
back on these suggestions and the system learns from this feedback to improve
future choices.

8.1.3 Mashup Building Problem Coverage. Table IV shows a comparison, based
on their coverages, of only the Mashup tools that a) can extract data from a Web
page, and b) aim to support casual users, and c) integrate data from multiple
sources. The terminology of how each tool handles each problem area is shown
below in Table V

Table IV. Approach comparison between different Mashup tools segmented by problem areas

System Data Source Data Data Mashup Type
Retrieval | Modeling | Cleaning | Integration Supported
MIT’s Simile DOM Manual N/A N/A 1
MIT’s Pot Luck RDF Manual PBD Manual 1,3,4
Dapper DOM Manual Manual Join only 1,24
Yahoo’s Pipes Widgets Manual Widgets | Union only 1,2,3
Mario Tag Tag Tag Union only 1,2,3
MS’s Popfly Widgets Manual Widgets Widgets 1,2,4
CMU’s Marmite Widgets Manual Widgets Widgets 1,2,4
Intel’s Mashmaker Dapper Manual Widgets Expert 1,2,34
Google MyMap Widgets Manual N/A Union only 1,2
Agent Wizard Q/A Q/A Q/A Q/A 1,3,4
Cards DOM Manual N/A Manual 1,2,4
CopyCat DOM Database PBD PBD 1,2,3,4
Karma DOM Database PBD PBD 1,2,3,4

Note that the only Mashup building tools that support all four types of Mashups
beside Karma and CopyCat (which is based on Karma) is Intel Mashmaker. How-
ever, Mashmaker requires an expert user to customize at least Mashups of type 3
and type 4. Most systems support up to three types of Mashups, where type 3
seems to be ignored because of the complexity of capturing HTML forms.

In conclusion, Karma serves its target group better than similar systems by
having all of the following advantages:

—an end-to-end approach: Karma allows users to build a more complete Mashup
by letting users tackle important Mashup building subproblems, when needed.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

32 : Rattapoom Tuchinda et al.

Table V. Definition of terminologies used

Term Explanation
Database Databases are leveraged to help generate suggestions to assist users
DOM A document object model approach is used to handle extraction. However, there is

also varying degrees of how each system utilizes the DOM. For example, Simile
might only uses the DOM as is. However, Karma might build on DOM to enhance
data extraction.

Experts An expert is required to solve that specific problem area

N/A The specific problem area is not addressed or supported or the information
about it cannot be found.

Join only Only database join is supported in the data integration step.

Manual The specific problem area is supported, but a user needs to do it manually.

For example, a manual approach in source modeling means that the user has
to specify the relationship between data sources.

PBD The Programming by Demonstration approach is used.

Q/A The user has to answer one or more questions to solve a specific problem area.
The answer might also involve specifying a join condition between sources.

RDF The data extraction step assumes that a Web source has an RDF representation
which allows easy retrieval of data.

Tag The user selects the operation abstractly by choosing from a tag cloud.
Fine grain customization of selected operations may not be available.

Widgets A widget must be selected and customized to tackle that specific problem area.

Union only | Only database union is supported in the data integration step.

—a consistent paradigm: Karma exploits user familiarity with the tabular platform
and provides an easy to understand, learn, and use interaction platform.

—wide coverage: Karma lets users build all four Mashup types.

8.2 Related Research Fields

For the data retrieval problem, earlier work focuses on a) automatic extraction of
lists and table [Crescenzi and Mecca 2004; Lerman et al. 2004; Gatterbauer et al.
2007] or b) using Al techniques (i.e., machine learning) to capture the extraction
rules or models from user’s labeled examples [Muslea et al. 2003; Cohen et al. 2002;
Raghavan and Garcia-Molina 2001]. Automatic extraction only works when it is
possible to identify lists and tables, and machine learning techniques require users
to provide more examples as the structure of Web sources are getting more com-
plicated. Simile [Huynh et al. 2007], Dapper, PLOW [Allen et al. 2007], and Cards
[Dontcheva et al. 2007] employ the DOM approach, which requires less labeling.
While this approach makes data retrieval easier, the DOM alone does not provide
a mechanism to handle Web pages with multiple embedded lists or detail page ex-
traction. Karma fills these gaps by extending the DOM approach with the use of
marker and table constraints.

Extracting data from unstructured text can yield more information. A survey
paper of this field can be found at [Reeve and Han 2005]. Phoebus [Michelson
and Knoblock 2007b; 2007a] extracts this kind of information in an unsupervised
manner using reference sets. Gate [Cunningham et al. 2002] provides the framework
for writing an application that supports natural language extraction. The current
version of Karma did not allow users to extract information from unstructured text.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 33

However, Karma could be extended to support extraction of unstructured data in
the form of suggestions what is shown in section 6.

In the schema matching domain, there are several good surveys [Rahm and Bern-
stein 2001; Halevy et al. 2006]. Initially, researchers focused their efforts on 1:1
matching (i.e., matching one attribute to another attribute). Early work such as
TranScm [Milo and Zohar 1998] and Artemis [Bergamaschi et al. 2001], use a rule-
based approach to determine how to map attributes together. Later on, Semint [Li
et al. 2000] and ILA [Perkowitz and Etzioni 1995] employed machine learning tech-
niques to learn matching attributes from training samples. LSD [Doan et al. 2000]
provides the framework to support multiple learners to achieve better matching ac-
curacy. Currently, the n:m matching problem, where one or more attribute can be
mapped to multiple attributes, is addressed in [Xu and Embley 2003; Dhamankar
et al. 2004]. Spider [Koudas et al. 2005] addresses the schema matching in a trans-
parent manner, where users have access to and can customize matching criteria. We
do not present a new technique to solve the problems of source modeling and schema
matching. Karma uses simple techniques, such as string similarity comparison, and
relies on users to interactively narrow the candidate matches.

In the data cleaning domain, most commercial tools [Chaudhuri and Dayal 1997]
focus on the process of Extract-Transform-Load (ETL) through a scripting lan-
guage; only trained experts can use these tools. Potter’'s Wheel [Raman and
Hellerstein 2001] takes an interactive approach to data cleaning by letting users
specify the clean data and then inducing transformation language adaptation tech-
niques described in [Abiteboul et al. 1999; Chen et al. 1993; Lakshmanan et al.
1996]. Karma’s cleaning by example approach is based on Potter’s wheel. How-
ever, Karma also suggests cleaning values based on the overlapping of new data
and existing data in the databases.

The goal of the data integration research is to allow casual users to access, locate,
and integrate data using a uniform query interface. A general survey of the data
integration field in the past twenty years can be found in [Halevy et al. 2006]. Our
data integration framework is a combination of programming by demonstration
[Cypher et al. 1993; Lau 2001; Lieberman 2001] and query by example (QBE) [Zloof
1975]. In programming by demonstration, methods and procedures are induced
from users’ examples and interaction. This approach can be effective in various
domains [Sugiura and Koseki 1998; Lau et al. 2004; Gibson et al. 2007] where users
understand and know how to do such tasks. In Karma, however, users may not
know how to formulate queries and only interact with the system through data.
The interaction is in a table similar to QBE. However, QBE requires users to
manually select data sources. On the other hand, Karma induces the sources to
use automatically and guides users to fill in only valid values. As a result, users do
not need to know about data sources.

There has also been recent related work on integrating large data sets using a
spreadsheet paradigm in a project called Google Fusion Tables [Gonzalez et al.
2010; Gonzalez et al. 2010]. In this effort they developed an online service that
allows users to integrate large datasets, annotate and collaborate on the data, and
visualize the integrated results. The focus of the work is primarily on the scalability
and visualization of the integrated data instead of on the problems of extracting,

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

34 : Rattapoom Tuchinda et al.

modeling, cleaning, and integrating the data. The ideas in Google Fusion Tables
are relevant to Karma and would apply directly to deal with the problems of scaling
up to large datasets and visualizing the integrated results.

A more in depth survey of related research fields can be found in [Tuchinda 2008].

9. EVALUATION

This section presents a formal user evaluation of Karma. The overall evaluation
plan follows the evaluation methodology outlined in [Tallis et al. 2001]. We have
selected a combination of Dapper/Pipes as a baseline comparison. Yahoo'’s Pipes is
a state-of-the-art Mashup building system that employs the widget approach and is
readily available. However, since Pipes does not have enough capability to do data
extraction, we chose Dapper to fill that role; a subject has to extract data from a
Web page using Dapper, then process it using Pipes. This combination approach
to building Mashups is often used by programmers who build Mashups.

9.1 Claims

In this section, we evaluate the following three claims:

(1) Users with no programming experiences can build all four Mashup types spec-
ified in section 2.

(2) Karma takes less time to complete each subtask (e.g., data extraction, source
modeling, data cleaning, and data integration) and scales better as the tasks
get more difficult.

(3) The user takes less time to build the same Mashup in Karma compared to
Dapper/Pipes.

9.2 Users

While the approach in this article is designed for users with no programming expe-
rience, given the time required to teach users how to use each of the systems, it was
not possible to find nonprogrammer subjects to commit to the full evaluation. As a
trade off, there are two types of users in our evaluations: users with programming
experience and users with no programming experience.

Programmer users are M.S. and Ph.D. students from a graduate-level class fo-
cusing on the problem of information integration on the Web. The total number
of students who participated in the evaluation is 20. They are prime candidates as
subjects for the evaluation. Since they were given one assignment on Dapper and
two assignments on Pipes in the course, they spent a significant amount of time
learning and practicing with Dapper/Pipes.

For non programmers, we have recruited three users with no programming ex-
perience. One of the users is an M.S. student in accounting and the others are
administrative assistants. They had no prior programming experience, but they
are familiar with Web technology and Excel.

9.3 Tasks

There are three tasks in the evaluation. These tasks are designed to capture the
structure of the four Mashup types discussed in Section 2. The first task involves
building a Mashup from one simple source. The second task is building a Mashup

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 35

that combined multiple query results using a database union from Web pages with
an HTML form. Finally, the third task is building a Mashup that combines data
from multiple sources using a database join.

The Web sources used in these tasks are well-structured websites (e.g., tables,
lists, and forms), such as UPS, Google, and Craigslist. Our selected web sources
are representative of different types of websites (e.g., corporate, shopping, and web
board) that Karma should be capable of extracting data from.

Note that these tasks are designed in a hit-or-miss fashion. As a result, if they
are done correctly, the quality of the resulting Mashup, whether it is done using
Dapper/Pipes or Karma, should be the same.

Table VI shows how difficult it is to solve each Mashup building subtask in
each task. Differentiating how hard each subtask is allows us to do fine-grained
comparisons for each subtask as well as do an overall comparison.

Table VI. Difficulty breakdown for each Mashup building subtask in each task. Task 1 has no
data integration subtask, while task 3 has no data cleaning subtask.

[[Data Extraction [Source Modeling [Data Cleaning [Data Integration]

Task 1 | Moderate Simple Hard N/A
Task 2 | Hard Simple Simple Union (Simple)
Task 3 | Simple Simple N/A Join (Hard)

To put things in perspective, if these tasks were to be implemented using a
normal programming language like Java, it can take an hour or more depending on
the expertise of a programmer because it involves writing a parser, manipulating
data, and customizing the display. Mashup building tools, such as Dapper/Pipes,
were created to alleviate this problem by reducing the time to implement these tasks
to around 10 minutes. Karma uses Dapper/Pipes as a baseline and we compare
our performance to these systems.

The users with programming experience were asked to do each task outlined
twice: once using Dapper/Pipes and once using Karma. The users with no pro-
gramming experience were asked to do each task once using Karma. The evaluation
results for non-programmers are used to suport claim 1, while the result from the
programmers are used to support claims 2 and 3.

9.4 Procedure

The experimental procedure is divided into three phrases: familiarization, practice,
and test.

—PFamiliarization: The tutorials and videos for each system were sent out two
days before the evaluation. On the day of the experiment, each subject was
given a quick 30 minute tutorial that covered all required systems to refresh their
memory.

—Practice: After finishing the quick tutorial, both type of subjects were given two
practice tasks in Karma. Note that nonprogrammer did not have to implement
Mashup tasks using Dapper/Pipes and programmers were already familiar with
Dapper/Pipes through their assignments. As a result, we decided that no practice
was necessary for Dapper/Pipes.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

36 : Rattapoom Tuchinda et al.

—Test: The test phrase lasted about one hour. We used a cross-over trial [Hills
and Armitage 1979], where each subject was asked to do each task twice: using
Karma and Dapper/Pipes. There are many ways to configure a cross-over trial
depending on how to segment subjects into groups and how to set periods of
different tests (e.g., two-period two-treatment). However, any cross-over trial
has a carry-over effect; doing the same task the second time will always be easier
since users gain knowledge about the task and there is no easy way to discount
this knowledge. As a result, we decided to let the subject implement each task in
Karma first and then do the same task using Dapper/Pipes. This setup gives an
advantage to Dapper/Pipes because the subject would familiarize herself/herself
with the Web sources and requirements while performing the task using Karma.
This approach allows us to provide a lower bound on the use of Karma compared
to Dapper/Pipes. In addition, hints and advice were given when asked. When a
subject got stuck in a particular subtask (e.g., cleaning and integration) for more
than 5 minutes, the cutoff time was enforced and the task would be marked as
fail.

9.5 Data Collection

The computer screen was recorded while subjects were completing the three eval-
uation tasks. These video records allowed us to see how long each subject took
to complete each task and what kind of choices and options each subject made.
All the videos recorded were segmented into multiple time slots based on the four
subtasks (i.e., data extraction, source modeling, data cleaning, and data integra-
tion) and other miscellaneous operations. To ensure fairness in the evaluation, we
discarded unrelated time segments, such as page loading time, and interfacing time
between Dapper and Pipes (when applicable). To enable a comparison when a sub-
ject failed on a task, we substituted the Fuail slot with the cut off time of 5 minutes.
The normalized data, segmented by each subproblem is shown in appendix A.

9.6 Results

The results will be segmented and discussed based on each of the claims made
earlier. For claim 2 and claim 3, we compute statistical significance tests to support
our results. Note that [Segre et al. 1991] argued that time bound experiment can
bias the result of the evaluation and Etzioni [Etzioni and Etzioni 1994] extensively
discussed some possible solutions. In our case, the time bound is applied to both
the Dapper/Pipe and Karma results. However, every subject finished his/her task
under the time limit using Karma. As a result, the scenario introduced in [Segre
et al. 1991] that shows a possible bias in time bound experiments does not apply
to our experimental results.

Note that the evaluation results for nonprogrammer are used to satisfy claim
1, while the result from programmers is used to satisfy claim 2 and claim 3. We
believe that if programmer subjects, who are familiar with work flows and widget
paradigms in general, spend more time to implement a task using Dapper/Pipes
compared to Karma, then non-programmer subjects would also spend more time
to implement the same task using Dapper/Pipes (if they were to learn how to use
these systems) compared to Karma.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 37

9.6.1 Claim 1: Users with no programming experiences can build all four Mashup
types. Figure 21 shows the result measured in minutes for non programmers. On
average, it takes non programmers 3:47 minutes to build a single Mashup. Each
subject was able to complete all three tasks (designed to be representative of four
Mashup types in section 2) without failing, which validates our claim that user with
no programming experiences can build all four Mashup types.

The Result from Non-Programmer Subjects

9:00
Ti B0 O Subjectt
ime .

{minute) B Subject2
3:00 ~ O Subject3

0:00 - . I I

Task 1 Task 2 Task 3

Task

Fig. 21. The result for non programmers using Karma to build three Mashup tasks.

9.6.2 Claim 2: Karma takes less time to complete each subtask and scales better
as the tasks get more difficult. To validate this claim, we will show the performance
comparison segmented by each subtask: data extraction, source modeling, data
cleaning, and data integration. Note that since there are two subjects (i.e., No.3
and No.17) who did not have time to finish task 1, the result from these two subjects
will be excluded from results that involve task 1 to ensure a fair comparison.

Data Extraction

Figure 22 shows the performance measurements for Karma and Dapper/Pipes
for the data extraction subtask. In each graph, the x-axis is the time spent to
complete the data extraction subtask, while the y-axis is the number of subjects
that fall into each time segment.

In task 3, the extraction task is very simple as it involves extracting only one field
of data. The result indicates that most subjects can finish the extraction task using
Karma in less than 30 seconds, while most of them finish the extraction task using
Dapper in around 30 seconds to one minute. In task 1, the extraction task is of
medium difficulty because of the irregular DOM structure of the Web source. The
graph shows that Karma performs better as more subjects finish the subtask faster
using Karma. In task 2, the extraction task is hard because it involves extracting
data from a data source with an HTML form. The graph indicates that Karma
performs better than Dapper/Pipes as all subjects finish the subtask using Karma
in less than 3 minutes, while 9 subjects take 3 minutes and longer and 14 subject
fail to finish the same subtask using Dapper/Pipes.

Table VII shows the T-test for the hypothesis that Karma is faster on average
than Dapper/Pipes for data extraction in each of the tasks and the overall subtask.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

38 : Rattapoom Tuchinda et al.

simple (Task 3) Moderate (Task 1)
i 18
e 16
14
i H
) =)
12
3 12 H
5 5
T 5 10
E 8 E 2
= =
6 6
4 4
: . : -H:
0 T T 0 .
0-30 sec 31-60sec 61-80sec = 1min 1-Zmin 2-3min 3-5min Fail
Time Spent Time Spent

Difficult (Task 2)

O Dapper/Pipes

B Karma

Number of subjects
=

ol i

< 1min 1-2min 2-3min 3-5min Fail

Time Spent

Fig. 22. The performance comparison (programmers) between Karma and Dapper/Pipes for the
data extraction subtask in each task ranging from simple to difficult

Table VII. The statistical significance test result for data extraction subtask

Task No [T-test

Task 3 (Simple) t=4.69, degree of freedom=38, and p < 0.01
Task 1 (Moderate) t=3.58, degree of freedom=34, and p < 0.01
Task 2 (Hard) t=7.05, degree of freedom=38, and p < 0.01
Overall data extraction | t=5.35, degree of freedom=114, and p < 0.01

Source Modeling

Figure 23 shows the performance measurements for Karma and Dapper/Pipes for
the source modeling subtask. The result suggests that Dapper/Pipes is faster than
Karma in task 1 and task 2. Karma does perform better in task 3 where attributes
are set automatically because of value overlapping in the database. However, Karma
performs worse than Dapper/Pipes overall, because of two factors:

—The table implementation of Java in Karma does not allow a user to set the at-
tribute directly by clicking at the attribute cell. Users need to go to the attribute
tab to select an attribute name for each column.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 39

Task 1 Task 2

Number of subjects
=
Number of subjects

0 sec 1-30sec 31-60sec 1 - 1:20min 0sec 1-30sec 31-60sec 1 - 1:20min

Time Spent Time Spent

Task 3

O Dapper/Pipes 18 4

B Karma 15

Number of subjects

—

0 sec 1-30sec 31-60sec 1 - 1:20min

Time Spent

Fig. 23. The performance comparison (programmers) between Karma and Dapper/Pipes for the
source modeling subtask

—Wohen using Karma, subjects also look to see what kind of attributes are suggested
by Karma, while they can just type in any attribute value for Dapper.

While Karma performs worse than Dapper/Pipes in this subtask, notice that the
time spent doing source modeling compared to the overall Mashup building task is
small. Furthermore, by assigning the right attribute using Karma, users save more
time during the data integration subtask, which involves a database join (task 3).

Data Cleaning

Figure 24 shows the performance comparison between Karma and Dapper/Pipes
for the data cleaning subtask. The performance comparison difference between
Karma and Dapper/Pipes is more obvious in the data cleaning subtask compared
to the earlier two subtasks. Furthermore, only about 40 percents of subjects can
complete the data cleaning subtask in task 2 using Pipes, while all subjects can
complete the same subtask using Karma.

By allowing a subject to enter the cleaned result and having Karma try to infer
the cleaning rule, he/she does not have to spend time customizing a cleaning widget.
Customizing a cleaning operation in Pipes can be difficult as it requires its users
to understand regular expressions; even students who know how to program had

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

40 : Rattapoom Tuchinda et al.

Simple (Task 2) Hard [Task 1)

Number of subjects
@
Number of subjects
o

-

0 - . . [

< min 1-3min 3-5min Fail < 1min 1-3min 3-5min Fai

Time Spent Time Spent

Fig. 24. The performance comparison (programmers) between Karma and Dapper/Pipes for the
data cleaning subtask

difficulty trying to use it.

Karma’s cleaning by example does have a limitation. While it is easier to use,
it is less expressive than regular expressions; if Karma cannot match the user’s
example with its predefined rules, then the user would have to manually clean each
result. However, for casual Mashup building, providing a predefined set of rules
that are most used is a logical trade off compared to spending a long time writing
a regular expression to clean the data.

Table VIII shows the T-test for the hypothesis that Karma is faster than Dap-
per/Pipes for data cleaning in each of the task and the overall subtask.

Table VIII. The statistical significance test result for data cleaning subtask

[Task No [T-test
Task 2 (Simple) t=7.68, degree of freedom=38, and p < 0.01
Task 1 (Hard) t=12.76, degree of freedom=34, and p < 0.01
Overall data cleaning | t=13.54, degree of freedom=74, and p < 0.01

Data Integration

Figure 25 shows the performance comparison between Karma and Dapper/Pipes
for the data integration subtask. In the database union case, Karma does not
require any time to customize the database union because the spreadsheet structure
allows a Karma user to indirectly specify the union by dragging the data from a new
similar source into a new row. While it takes more time in Pipes to specify union,
the time taken is small compared to the overall time required to build Mashups.

In the database join case shown, Karma performs much better than Dapper /Pipes;
all subjects completed this subtask in less than three minutes, while the majority
of the subjects cannot complete the task using Dapper/Pipes. This result shows
promise for Karma because one of the main advantages in Mashups is that once
built, a Mashup can be reused as a module in another Mashup. However, given the
number of existing Mashups, it would be time consuming for a casual user to locate

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 41

Union (Task 2) Join (Task 3)

Number of subjects
=
Number of subjects

(=T N
|

<1 min 1-3mins 3-Smins Fail <1 min 1-3mins 3-Smins Fail

Time Spent Time Spent

Fig. 25. The performance comparison (programmers) between Karma and Dapper/Pipes for the
data integration subtask

and figure out how to integrate a Mashup built by other people on their own. This
is apparent in task 3, where a Dapper/Pipes subject needs to join her own Mashup
with another one created by someone else. Karma’s approach to data integration
allows the subject to bypass the search step and instead focuses on selecting what
kind of data (suggested by Karma) to integrate into a newly extracted data source.
Table IX shows the T-test for the hypothesis that Karma is faster than Dap-
per/Pipes for data integration in each of the task and the overall subtask.

Table IX. The statistical significance test result for data integration subtask
[Task No [T-test

Task 2 Union (Simple) t=3.15, degree of freedom=38, and p < 0.01
Task 3 Join (Hard) t=20.51, degree of freedom=38, and p < 0.01
Overall data integration | t=7.05, degree of freedom=78, and p < 0.01

We also want to show that as the subtasks gets progressively harder, Karma
performs better in terms of time spent to finish the subtask. For each program-
mer subject, we compute the following values where i designates the subtask type
(i.e., data extraction, source modeling, data cleaning, and data integration) and j
designates the subject id:

(1) DiffD(i,j): time spent using Dapper/Pipes in difficult subtask; - time spent
using Dapper/Pipes in easy subtask;

(2) DiffK(i,j): time spent using Karma in difficult subtask; - time spent using
Karma in easy subtask;

For example, DiffD for the extraction subtask for subject No.l are:
DiffD(extraction, 1) = time that subject No.1 spent using Dapper/Pipes in the

extraction subtask of task 2 (difficult) - time that subject No.1 spent using Dap-
per/Pipes in the extraction subtask of task 3 (easy)

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

42 . Rattapoom Tuchinda et al.

We repeat this computation on every subtask for each subject. Table X shows
the average of DiffD and DiffK in each of the subtask and the T-test under the
hypothesis that DiffK < DiffD.

Table X. The average value of DiffD and DiffK in seconds for each subtask
| Avg DiffD | Avg DiffK | T-test for p < 0.05

Data extraction 170 62 | t=5.87 and DF=34
Data cleaning 72 -10 | t=1.96 and DF=24
Data integration 261 57 | t=4.90 and DF=30

As seen in table X, the average time increment for using Dapper /Pipes going from
an easy subtask to a difficult subtask is higher compared to that of Karma and the
result is statistically significant. For example, the subjects spent, on average, 170
seconds more to finish the difficult extraction subtask in task 2 compared to the
easy extraction subtask in task 3, when using Dapper/Pipes. On the other hand,
the same group spent 62 seconds, on average, more to finish the difficult extraction
subtask in task 2 compared to the easy extraction subtask in task 3, when using
Karma. We omit the result from the source modeling because we already know that
Karma performs worse than Dapper/Pipes in the source modeling subtask. The
negative number indicate for average DiffK in the data cleaning subtask means
that users take even less time doing a more difficult cleaning subtask compared to
the easy cleaning subtask.

Note that computing DiffD and DiffK for some data points generate doubly
censored data [Etzioni and Etzioni 1994]. In the case of doubly censored data,
where it is expensive to obtain more sample points, the standard statistical practice
is to throw away such data and consider the data that has a) singly censored pairs
or b) uncensored pairs [Woolson and Lachencruch 1980]. As a result, the total
number of subject for each subtask comparison might vary.

Table XTI shows a more quantitative comparison between Karma and Dapper/Pipes.
The value is computed by averaging the time spent for each subtask over three sce-
nario tasks from results using programmers. The overall result indicates Karma per-
forms better in each of the subtasks (except source modeling) and overall. Among
the four subtasks, Karma performs extremely well in data cleaning and data inte-
gration due to the reasons explained earlier.

Table XI. Overall comparison (programmers) between Dapper/Pipes and Karma average over
three tasks

Task | Avg time for Dapper/Pipes | Avg time for Karma Factor of

in minutes in minutes | improvement

Data Extraction 2:09 0:58 2.22
Source Modeling 0:19 0:28 -0.67
Data Cleaning 4:07 1:00 4.16
Data Integration 3:06 0:29 6.49
Overall 9:41 2:55 3.32

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 43

While Karma performs worse than Dapper/Pipes for source modeling, the mean
difference is only 10 seconds. In addition, this shortcoming is compensated for
during the data integration step where Karma took about 2.5 minutes less on
average to complete the subtask.

Task 1: Overall Task Z: Overall
16 20
16 18
14 gl
14
12
5 5 . 12
s €10 58
£2 1
53 8 53
= 29 5
8
5
4 4] —
. il N]
0 T T T T 04
1-4min 4-7min 7-10min - 10-13min 13-18min 1-4min 4-Tmin 7-10min 10-13min 13-16min
Time Spent Time Spent
Task 3: Overall
20 q
18 4 O Dapper
16
B Karma
14 4
I
5§
£ 5 10
2@ g
6 4
5]
24
04 . - - -
1-4min 4-Tmin 7-10min 10-13min 13-18min
Time Spent

Fig. 26. The performance comparison (programmers) between Karma and Dapper/Pipes for all
three tasks

9.6.3 Claim 3: A user takes less time to build the same Mashup in Karma com-
pared to Dapper/Pipes. Figures 26 shows the overall comparison between Karma
and Dapper/Pipes in each task. Each graph combines the time spent for each sub-
task (i.e., data extraction, source modeling, data cleaning, and data integration).
For each task, Karma performs noticeably better than Dapper/Pipes; most sub-
jects spent less than 4 minutes to complete each of the tasks using Karma. Also,
this result is statistically significant as shown in table XII using the hypothesis that
Karma is faster than Dapper/Pipes for each task.

As shown in table XI, it takes our subjects 9:41 minutes on average to build a
Mashup using Dapper/Pipes, while it takes our programmer subjects only 2:55 min-
utes (3:47 minutes for non-programmers) to build the same Mashup using Karma.
As a result, Karma performs better than Dapper/Pipes by at least a factor of 3.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

44 . Rattapoom Tuchinda et al.

Table XII. The statistical significance test result for each task

[Task No T-test
Task 1 t=9.93, degree of freedom=34, and p < 0.01
Task 2 t=7.37, degree of freedom=38, and p < 0.01
Task 3 t=23.45, degree of freedom=38, and p < 0.01
Overall (combining 3 tasks) | t=13.24, degree of freedom=114, and p < 0.01

In addition, Karma also allows users to build Mashups that they fail to build using
Dapper/Pipes.

Note that we underestimate the actual time spent in Dapper/Pipes by using
only 5 minute cutoff time. The actual time spent could be longer depending on
how many failures and the type of failure in a task. Table XIII shows the failure rate
in Dapper/Pipes. Note that both programmer and nonprogrammer subjects were
able to complete all three tasks using Karma without failing. However, subjects
who use Dapper/Pipe sometimes fail in a particular subtask. The Overall row in
Table XIIT shows the percentage of users who fail on least one subtask in each
respective task.

Table XIII. Individual and overall failure rates in Dapper/Pipes.
[Task [Task 1 [Task 2 [Task 3]

Data Extraction | 5.5%(1/18) | 25%(5/20) 0%(0/20)
Source Modeling 0%(0/18) 0%(0/20) 0%(0/20)
Data Cleaning | 83%(15/18) | 35%(7/20) n/a
Data Integration n/a | 30%(6/20) | 95%(19/20)
Overall | 83%(15/18) | 45%(9/20) | 95%(19/20)

Besides the difficulty of customizing widgets, there are three additional factors
that contribute to failures in Dapper/Pipes. These factors are described below:

(1) Cutoff Failure: In our evaluation, we use the cutoff time of 5 minutes; users who
spend more time than 5 minutes in a particular subtask is marked as failing.
However, of all 53 instances of failures, there are 11 instances (i.e. 20% of all
failure instances) where users were able to complete the subtask using more
than 5 minutes. We did not take this extra time into the calculation to ensure
a uniform result.

(2) Cascading Failure: In task 2, failing to complete the data cleaning subtask can
lead to failing to complete the integration subtask. Five out of nine overall
failures in task 2 can be attributed to this type of failures. However, task
2 is designed such that users could complete the integration subtask before
doing the data cleaning subtask; users had cascading failures because of their
decisions to solve a harder subtask first.

(3) Minimal Support Failure: In task 3, we have a failure rate of 95% for Dap-
per/Pipes. This failure can be attributed to the length it takes users to cus-
tomize the database join operation. As mentioned in Chapter 1, most Mashup
tools choose to focus on particular subtasks while ignoring others. However,

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 45

the breakdown of Mashup types show that the database join is one of the im-
portant features. Karma’s support of the database join operation allows users
to build Mashups that combine two sources through a join. The other Mashup
tool that fully supports database join is Intel’s Mashmaker [Ennals and Gay
2007]. However, Mashmaker requires experts to customize predefined join op-
erations between sources; casual users cannot customize database join between
data sources by themselves.

10. CONCLUSION AND FUTURE WORK

To address the four problems of building Mashups (i.e., data extraction, source
modeling, data cleaning, and data integration), we have introduced the Karma
framework for building Mashups based on three key ideas. The first idea is to fo-
cus on the data, not the operations. By using the programming-by-demonstration
paradigm, Karma can learn the operation that the user wants to perform indirectly
by looking at the data provided by the user. The second idea is to leverage existing
databases. By comparing the value that the user enters with the data in the ex-
isting database, it is possible to deduce some relationships between new data and
existing data. These relationships allow Karma to be able to assist users in the
problems of source modeling, data cleaning, and data integration. The third idea is
to consolidate the Mashup building problems. Since many Mashup building issues
are interrelated, it is possible to exploit the structure such that solving a problem
in one area can help simplify the process of solving a problem in another area.

We have demonstrated effectiveness of Karma through a user evaluation that
compared the approach with the widget approach of Dapper/Pipes. The experi-
ments show that:

—Users can finish the three tasks designed to capture the structure of the four
Mashup types using Karma. In contrast, users have trouble finishing some of the
tasks using Dapper /Pipes.

—Users took less time to finish the same task using Karma compared to Dap-
per/Pipes. The average time used in Karma to build Mashups is 2:55 minutes,
while the average time used in Dapper/Pipes is 9:41 minutes.

—Opverall, Karma is faster by a factor of 3.3. The key saving areas are data clean-
ing and data integration. In the data cleaning phrase, Karma allows users to
specify the result by example and automatically deduces the cleaning operation,
while Dapper/Pipes requires users to customize complicated widgets. In data
integration phrase, Karma leverages databases to help users decide what data is
available to add, while Dapper/Pipes requires users to manually search through
existing sources to link with the newly extracted data source.

There are a number of interesting directions for future work:

—Customize Display by Examples: While Karma provides a means to display
the data in the table on the Map, users cannot fine tune how the display should
look like and how the display should behave. We believe that we can apply the
ideas used in Karma framework to address the data display problem too. For
example, programming by demonstration can be used to help Karma learn from
examples the kind of display that users might want to specify.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

46 : Rattapoom Tuchinda et al.

—Recovering From Errors: One of the limitations in Karma is recovering from
errors. Karma uses heuristics to capture Mashup building operations, but these
heuristics can be wrong. Recovering from errors is an active area of research in
the programming-by-demonstration domain. However, in existing systems, users
often need to trace through a concept tree induced by PBD’s heuristic to fix these
errors. As a result, it will be difficult for casual users to trace and recover from
errors using existing frameworks. A new interaction framework that allows casual
users to browse through different result scenarios instead of searching through an
error tree might be a possible approach to solve this problem.

—Source Quality: Not all data sources are created equal. Some data sources
might be useful or pertinent to users in one task, but not in another task.
Currently, Karma’s seed data comes from existing databases and user-generated
Mashups. There is no integrated view of this data and thus there could be a lot
of duplication. In the future, we could build an internal model of data sources
similar to what is done in MadWiki [DeRose et al. 2008] to ensure integrity and
uniformity of Karma’s internal data.

—Support For Advanced Users: The current version of Karma has one level of
users — naive users. We plan to extend Karma to support multiple tiers of users
from naives to advanced users like Intel’s Mashmaker[Ennals and Gay 2007]. In
an advanced mode, Karma could provide more transparency and allow users to
do a complex fine-tune like Spider [Koudas et al. 2005]. We have already started
experimenting with the idea of providing system transparency in CopyCat [Ives
et al. 2009] by letting users access the explanation of how the system generates
auto-completion choices.

—Data Cleaning Transformations: The current preliminary transformation
supported by Karma were implemented for casual users. We could extended
Karma to support more sophisticated transformations like Potter’s Wheel [Ra-
man and Hellerstein 2001] while maintaining the same interaction paradigm.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/acmtw/2011-5-3/p1-URLend.

ACKNOWLEDGMENTS

This research is based upon work supported in part by the National Science Foun-
dation under award number 11S-0324955, in part by the Air Force Office of Scien-
tific Research under grant number FA9550-07-1-0416, and in part by the Defense
Advanced Research Projects Agency (DARPA) under Contract No. FA8750-07-D-
0185,/0004.

The U.S. Government is authorized to reproduce and distribute reports for Gov-
ernmental purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of any of the above organizations or any person connected
with them.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . 47

REFERENCES

ABITEBOUL, S., CLUET, S., MiLo, T., MOGILEVSKY, P., SIMEON, J., AND ZOHAR, S. 1999. Tools
for Data Translation and Integration. IEEE Data Engineering Bulletin 22, 1, 3-8.

ALLEN, J., CHAMBERS, N., FERGUSON, G., GALEscU, L., JunG, H., SwirT, M., AND TAYysom, W.
2007. PLOW: A Collaborative Task Learning Agent. In AAAI’07: Proceedings of the 22nd
national conference on Artificial intelligence. AAAI Press, 1514-1519.

BERGAMASCHI, S., CASTANO, S., VINCINI, M., AND BENEVENTANO, D. 2001. Semantic integration
of heterogeneous information sources. Data & Knowledge Engineering 36, 3, 215-249.

BURNETT, M. M. AND BAKER, M. J. 1994. Classification System For Visual Programming Lan-
guages. Journal of Visual Languages and Computing 5, 3, 287-300.

CHAUDHURI, S. AND DAYAL, U. 1997. An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record 26, 1, 65-74.

CHEN, W., KIFER, M., AND WARREN, D. S. 1993. HILOG: a foundation for higher-order logic
programming. Journal of Logic Programming 15, 3, 187-230.

CoHEN, W. W., HURST, M., AND JENSEN, L. S. 2002. A flexible learning system for wrapping tables
and lists in html documents. In WWW °02: Proceedings of the 11th international conference
on World Wide Web. ACM, New York, NY, USA, 232-241.

CoOHEN, W. W., RAVIKUMAR, P., AND FIENBERG, S. E. 2003. A comparison of string distance
metrics for name-matching tasks. In Proceedings of the International Joint Conferences on
Artificial Intelligence Workshop on Information Integration. 73—78.

CRESCENZI, V. AND MEcCCA, G. 2004. Automatic information extraction from large websites.
Journal of the ACM 51, 5, 731-779.

Cui, Y. 2001. Lineage Tracing in Data Warehouses. Ph.D. thesis, Stanford University.

CUNNINGHAM, H., MAYNARD, D., BONTCHEVA, K., AND TABLAN, V. 2002. GATE: an architecture
for development of robust HLT applications. In ACL ’02: Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics. Association for Computational Linguistics,
Morristown, NJ, USA, 168-175.

CYPHER, A., HALBERT, D. C., KURLANDER, D., LIEBERMAN, H., MAULsBY, D., MYERs, B. A,
AND TURRANSKY, A., Eds. 1993. Watch what I do: programming by demonstration. MIT Press,
Cambridge, MA, USA.

DEROSE, P., Cual X., GAo, B. J., SHEN, W., DOAN, A., BOHANNON, P., AND ZHU, X. 2008. Build-
ing Community Wikipedias: A Machine-Human Partnership Approach. In ICDE ’08: Proceed-
ings of the 2008 IEEE 24th International Conference on Data Engineering. IEEE Computer
Society, Washington, DC, USA, 646—655.

DHAMANKAR, R.; LEE, Y., DOAN, A., HALEVY, A., AND DOMINGOS, P. 2004. iMAP: discovering
complex semantic matches between database schemas. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management of data. ACM, 383-394.

DoaN, A., DoMINGOS, P., AND LEVY, A. 2000. Learning source descriptions for data integration.
In Proceedings of the International Workshop on The Web and Databases (WebDB). Springer-
Verlag, 60-71.

DoONTCHEVA, M., DRUCKER, S. M., SALESIN, D.; AND COHEN, M. F. 2007. Relations, cards, and
search templates: user-guided web data integration and layout. In UIST ’07: Proceedings of
the 20th annual ACM symposium on User interface software and technology. ACM, 61-70.

ENnNaLs, R. AND GaAy, D. 2007. User-friendly functional programming for web mashups. In
ICFP ’07: Proceedings of the 2007 ACM SIGPLAN international conference on Functional
programming. ACM, 223-234.

ETzioni, O. AND ETzIONI, R. 1994. Statistical Methods for Analyzing Speedup Learning Experi-
ments. Machine Learning 14, 3, 333-347.

GATTERBAUER, W., BOHUNSKY, P., HERzOG, M., KRUPL, B., AND PoLLAK, B. 2007. Towards
domain-independent information extraction from web tables. In WWW ’07: Proceedings of the
16th international conference on World Wide Web. ACM, New York, NY, USA, 71-80.

GIBSON, A., GAMBLE, M., WOLSTENCROFT, K., OINN, T., AND GOBLE, C. 2007. The Data Play-
ground: An Intuitive Workflow Specification Environment. In E-SCIENCE ’07: Proceedings of

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

48 : Rattapoom Tuchinda et al.

the Third IEEE International Conference on e-Science and Grid Computing. IEEE Computer
Society, 59—68.

GoNzALEZ, H., HALEVY, A. Y., JENSEN, C. S., LANGEN, A., MADHAVAN, J., SHAPLEY, R., AND
SHEN, W. 2010. Google fusion tables: data management, integration and collaboration in the
cloud. In Proceedings of the First Symposium on Cloud Computing, Industrial Track. 175—180.

GoONzALEZ, H., HALEVY, A. Y., JENSEN, C. S., LANGEN, A., MADHAVAN, J., SHAPLEY, R., SHEN,
W., AND GOLDBERG-KIDON, J. 2010. Google fusion tables: web-centered data management and
collaboration. In Proceedings of SIGMOD, Industrial Track. 1061-1066.

HALEVY, A., RAJARAMAN, A., AND ORDILLE, J. 2006. Data integration: the teenage years. In
VLDB ’06: Proceedings of the 32nd international conference on Very large data bases. VLDB
Endowment, 9-16.

HARTMANN, B., Wu, L., CoLLINs, K., AND KLEMMER, S. R. 2007. Programming by a sample:
rapidly creating web applications with d.mix. In UIST ’07: Proceedings of the 20th annual
ACM symposium on User interface software and technology. ACM, 241-250.

HiLLs, M. AND ARMITAGE, P. 1979. The two-period cross-over clinical trial. British Journal of
Clinical Pharmacology 8, 7-20.

HuvnNH, D., MaAzzoccHl, S., AND KARGER, D. 2007. Piggy Bank: Experience the Semantic Web
inside your web browser. Web Semantics 5, 1, 16-27.

Huynn, D. F., MILLER, R. C., AND KARGER, D. R. 2008. Potluck: Data mash-up tool for casual
users. Web Semantics 6, 4, 274-282.

Ives, Z. G., KNOBLOCK, C. A., MINTON, S., JACOB, M., TALUKDAR, P. P., TUCHINDA, R., AMBITE,
J. L., MUSLEA, M., AND GAZEN, C. 2009. Interactive data integration through smart copy &
paste. In CIDR 2009, Fourth Biennial Conference on Innovative Data Systems Research,
Online Proceedings.

Koupas, N.;, MARATHE, A., AND SRIVASTAVA, D. 2005. Spider: flexible matching in databases. In
SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on Manage-
ment of data. ACM, New York, NY, USA, 876-878.

KowaLczykowskl, K., OnGg, K. W., Zuao, K. K., DEUTSCH, A., PAPAKONSTANTINOU, Y., AND
PETROPOULOS, M. 2009. Do-It-Yourself custom forms-driven workflow applications. In CIDR
2009, Fourth Biennial Conference on Innovative Data Systems Research, Online Proceedings.

LAKSHMANAN, V., SAFRIS, F., AND SUBRAMANIANT, 1. 1996. Schemasql: A language for intereoper-
ability in relational multi-database systems. In VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases. Morgan Kaufmann, 239-250.

Lau, T. 2001. Programming by demonstration: a machine learning approach. Ph.D. thesis,
University of Washington.

Lau, T., BERGMAN, L., CASTELLI, V., AND OBLINGER, D. 2004. Sheepdog: learning procedures
for technical support. In TUI ’04: Proceedings of the 9th international conference on Intelligent
user interfaces. ACM, 109-116.

LErRMAN, K., GETOOR, L., MINTON, S., AND KNOBLOCK, C. 2004. Using the structure of web sites
for automatic segmentation of tables. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. ACM, New York, NY, USA, 119-130.

L1, W.-S., CrirToN, C., AND Liu, S.-Y. 2000. Database Integration Using Neural Networks:
Implementation and Experiences. Knowledge and Information Systems 2, 1, 73-96.

LIEBERMAN, H. 2001. Your wish is my command: programming by example. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

MICHELSON, M. AND KNOBLOCK, C. A. 2007a. An Automatic Approach to Semantic Annotation
of Unstructured, Ungrammatical Sources: A First Look. In Proceedings of the International
Joint Conferences on Artificial Intelligence Workshop on Analytics for Noisy Unstructured
Text. 123-130.

MICHELSON, M. AND KNOBLOCK, C. A. 2007b. Unsupervised information extraction from unstruc-
tured, ungrammatical data sources on the world wide web. International Journal of Document
Analysis and Recognition (IJDAR), Special Issue on Noisy Text Analytics 10, 3, 211-226.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration : 49

Miro, T. AND ZOHAR, S. 1998. Using Schema Matching to Simplify Heterogeneous Data Trans-
lation. In VLDB ’98: Proceedings of the 24rd International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 122-133.

MusLEA, 1., MINTON, S. N., AND KNOBLOCK, C. A. 2003. Active learning with strong and weak
views: a case study on wrapper induction. In IJCAI’03: Proceedings of the 18th international
joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 415-420.

PErRkKOWITZ, M. AND ETZIONI, O. 1995. Category translation: learning to understand information
on the internet. In IJCAI’95: Proceedings of the 14th international joint conference on Artificial
intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 930-936.

RAGHAVAN, S. AND GARCIA-MOLINA, H. 2001. Crawling the hidden web. In VLDB ’01: Proceedings
of the 27th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 129-138.

RaAHM, E. AND BERNSTEIN, P. A. 2001. A survey of approaches to automatic schema matching.
The VLDB Journal 10, 4, 334-350.

RAMAN, V. AND HELLERSTEIN, J. M. 2001. Potter’s Wheel: An Interactive Data Cleaning System.
In VLDB ’01: Proceedings of the 27th International Conference on Very Large Data Bases.
Morgan Kaufmann Publishers Inc., 381-390.

REEVE, L. AND HAN, H. 2005. Survey of semantic annotation platforms. In SAC ’05: Proceedings
of the 2005 ACM symposium on Applied computing. ACM, New York, NY, USA, 1634-1638.
RiaBov, A. V., BouiLLET, E., FEBLOWITZ, M. D., Lul, Z., AND RANGANATHAM, A. 2008. Wishful
Search: Interactive Composition of Data Mashups. In WWW ’08: Proceeding of the 17th

international conference on World Wide Web. ACM, New York, NY, USA, 775-784.

SEGRE, A., ELKAN, C., AND RUSSELL, A. 1991. A Critical Look at Experimental Evaluations of
EBL. Machine Learning 6, 2, 183—195.

SUGIURA, A. AND KOsSEKI, Y. 1998. Internet scrapbook: automating Web browsing tasks by
demonstration. In UIST ’98: Proceedings of the 11th annual ACM symposium on User interface
software and technology. ACM, 9-18.

SUTHERLAND, W. R. 1966. The On-Line Graphical Specification of Computer Procedures. Ph.D.
thesis, Massachusetts Institute of Technology.

Tavris, M., Kim, J., AND GIL, Y. 2001. User studies of knowledge acquisition tools: Methodol-
ogy and lessons learned. Journal of Experimental & Theoretical Artificial Intelligence 13, 4
(October), 359-378.

TucHINDA, R. 2008. Building Mashups by Example. Ph.D. thesis, University of Southern Cali-
fornia.

TucHINDA, R. AND KNOBLOCK, C. A. 2004. Agent Wizard: Building Information Agents by
Answering Questions. In IUI ’04: Proceedings of the 9th international conference on Intelligent
user interfaces. ACM, 340-342.

TucHINDA, R., SZEKELY, P., AND KNOBLOCK, C. A. 2007. Building Data Integration Queries by
Demonstration. In TUI ’07: Proceedings of the 12th international conference on Intelligent user
interfaces. ACM, 170-179.

TucHINDA, R., SZEKELY, P., AND KNOBLOCK, C. A. 2008. Building Mashups by Example. In IUT
’08: Proceedings of the 13th international conference on Intelligent user interfaces. ACM, New
York, NY, USA, 139-148.

WonNg, J. AND HoNg, J. 1. 2007. Making mashups with marmite: towards end-user programming
for the web. In CHI ’07: Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, New York, NY, USA, 1435-1444.

WooLsoN, R. AND LACHENCRUCH, P. 1980. Rank tests for censored matched pairs.
Biometrika 67, 3, 597-606.

Xu, L. AND EMBLEY, D. 2003. Using domain ontologies to discover direct and indirect matches
for schema elements. In ISWC ’03: Proceedings of the 2nd International Semantic Integration
Workshop. 105-110.

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

50 : Rattapoom Tuchinda et al.

Yang, F., Gupta, N., BoTEv, C., CHURCHILL, E. F., LEVCHENKO, G., AND SHANMUGASUNDARAM,

J. 2008. Wysiwyg development of data driven web applications. Proceedings of the Very Large
Data Bases Endowment 1, 1, 163-175.

ZLOOF, M. M. 1975. Query-by-example: the invocation and definition of tables and forms. In

VLDB ’75: Proceedings of the 1st International Conference on Very Large Data Bases. ACM,
1-24.

Received October 2008; Revised October 2010; Accepted December 2010

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration . App-1

THIS DOCUMENT IS THE ONLINE-ONLY APPENDIX TO:

Building Mashups by Demonstration

RATTAPOOM TUCHINDA

National Electronics and Computer Technology Center (Thailand)
CRAIG A. KNOBLOCK

University of Southern California

and

PEDRO SZEKELY

University of Southern California

ACM Transactions on the Web, Vol. 5, No. 3, July 2011, Pages 1-50.

A. NORMALIZED DATA

After normalizing the data, the final results in terms of minutes spent, segmented
by subtasks, in each task are shown in table XIV, XV, and XVI. Note that since
there are two subjects (i.e., No.3 and No.17) who did not have time to finish task
1, the result from these two subjects are be excluded from results that involve task
1 to ensure a fair comparison.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2011 ACM 0004-5411/2011/0100-0001 $5.00

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

App—2 . Rattapoom Tuchinda et al.

Table XIV. Normalized data for task 1. E stands for data extraction, M stands for source modeling,
and C stands for data cleaning. The asterisk indicates time substitution when failures happen.
The data is reported in minutes. The first twenty subjects have programming background, while
the last three subjects have no programming background.

Taskl Dapper/Pipes Karma

Subject E M C [Total E M C [Total
No.1 *5:00 0:20 *5:00 | 10:20 | 2:19 1:08 1:00 4:27
No.2 1:43 0:30 *5:00 7:13 | 1:00 0:40 0:29 2:09
No.3 n/a n/a n/a n/a | n/a n/a n/a n/a
No.4 0:52 0:48 *5:00 6:40 | 1:12 1:00 0:50 3:02
No.5 5:00 0:35 *5:00 | 10:35 | 1:15 1:18 1:20 3:53
No.6 2:30 0:15 *5:00 7:45 | 1:00 0:54 0:28 2:22
No.7 1:20 0:22 *5:00 6:42 | 0:51 0:51 0:46 2:28
No.8 1:40 0:14 *5:00 6:54 | 1:04 0:41 0:33 2:19
No.9 1:26 0:16 *5:00 6:42 | 1:14 1:00 1:10 3:24
No.10 1:39 0:10 *5:00 6:49 | 0:53 0:42 0:50 2:26
No.11 2:00 0:19 *5:00 7:19 | 1:04 1:00 0:53 2:57
No.12 2:00 0:49 2:00 4:49 | 1:07 1:00 0:40 2:47
No.13 2:00 0:05 *5:00 7:05 | 0:58 0:50 0:56 1:44
No.14 2:46 0:15 *5:00 8:01 | 1:12 0:45 0:48 2:45
No.15 2:27 0:14 3:11 5:52 | 1:10 0:49 1:20 3:19
No.16 1:16 0:12 *5:00 6:28 | 0:58 0:42 0:25 2:05
No.17 n/a n/a n/a n/a | 2:00 1:00 0:50 3:50
No.18 2:30 0:14 *5:00 7:44 | 1:06 1:10 1:46 4:02
No.19 1:38 0:47 1:20 3:45 | 1:20 0:49 0:35 2:44
No.20 1:30 0:16 *5:00 6:46 | 1:04 0:44 0:35 2:23
No.21 n/a n/a n/a n/a | 1:11 1:17 0:59 3:27
No.22 n/a n/a n/a n/a | 2:58 1:46 1:24 6:08
No.23 n/a n/a n/a n/a | 1:19 1:40 1:14 4:13

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

Building Mashups by Demonstration

App-3

Table XV. Normalized data for task 2. E stands for data extraction, M stands for source mod-
eling, C stands for data cleaning, and I stands for data integration. The asterisk indicates time

substitution when failures happen. The data is reported in minutes. The first twenty subjects
have programming background, while the last three subjects have no programming background.

Task2 Dapper/Pipes Karma

Subject E M C I [Total E M C I [Total
No.1 4:38 0:22 2:45 1:15 9:00 | 1:26 0:43 0:43 0:00 2:52
No.2 1:35 0:12 3:30 0:12 5:29 0:50 0:57 0:57 0:00 2:44
No.3 *5:00 0:25 *5:00 *5:00 | 15:25 | 2:52 1:00 3:00 0:00 5:52
No.4 4:49 0:17 3:29 0:38 9:14 1:26 0:48 1:03 0:00 3:18
No.5 *5:00 0:29 1:44 1:16 8:29 | 1:43 0:45 1:20 0:00 3:48
No.6 *¥5:00 0:20 *5:00 *5:00 | 15:20 | 2:07 0:30 0:50 0:00 3:27
No.7 2:17 0:15 4:46 0:18 7:36 | 1:13 0:25 0:52 0:00 2:31
No.8 3:23 0:21 *5:00 *5:00 13:44 1:10 0:21 0:24 0:00 1:55
No.9 4:11 0:21 *5:00 *5:00 | 14:32 | 1:22 0:47 2:11 0:00 4:20
No.10 2:16 0:07 3:14 0:20 5:50 1:04 0:20 1:06 0:00 2:30
No.11 3:04 0:17 *5:00 *5:00 | 13:21 | 1:06 0:34 0:53 0:00 2:33
No.12 2:00 0:27 *5:00 0:20 7:47 | 1:23 0:30 0:37 0:00 2:30
No.13 *5:00 0:07 1:43 0:10 7:00 | 1:42 0:32 041 0:00 2:55
No.14 3:03 0:23 4:42 0:10 8:21 1:40 0:31 0:56 0:00 3:07
No.15 2:06 0:12 3:13 0:22 5:53 1:30 0:24 2:05 0:00 3:59
No.16 3:58 0:11 3:29 0:27 8:05 | 0:51 0:17 1:00 0:00 2:08
No.17 4:15 0:28 3:39 0:30 8:52 1:04 0:28 1:18 0:00 2:50
No.18 *5:00 0:23 *5:00 *5:00 | 15:23 | 1:17 0:30 1:10 0:00 2:57
No.19 4:01 0:14 2:42 0:21 7:16 1:39 0:21 0:50 0:00 2:50
No.20 1:36 0:43 0:36 0:22 3:17 1:07 0:28 0:40 0:00 2:15
No.21 n/a n/a n/a n/a n/a | 1:03 0:21 0:55 0:00 2:19
No.22 n/a n/a n/a n/a n/a | 3:56 1:52 2:50 0:00 8:38
No.23 n/a n/a n/a n/a n/a | 2:15 0:31 1:27 0:00 4:13

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

App—4 . Rattapoom Tuchinda et al.

Table XVI. Normalized data for task 3. E stands for data extraction, M stands for source modeling,
and I stands for data integration. The asterisk indicates time substitution when failures happen.
The data is reported in minutes. The first twenty subjects have programming background, while
the last three subjects have no programming background.

Task3 Dapper/Pipes Karma

Subject E M I [Total E M I [Total
No.1 1:30 0:26 *5:00 6:56 | 0:14 0:00 2:16 2:30
No.2 0:30 0:10 *5:00 5:40 | 0:25 0:00 0:26 0:54
No.3 1:00 0:15 *5:00 6:15 | 0:15 0:00 0:44 0:59
No.4 0:40 0:16 *5:00 5:56 | 0:20 0:00 1:06 1:26
No.5 0:40 0:14 *5:00 5:54 | 0:20 0:00 0:37 0:57
No.6 0:30 0:10 *5:00 5:40 | 0:20 0:00 0:31 0:51
No.7 0:27 0:10 *5:00 5:37 | 0:14 0:00 0:50 1:04
No.8 0:29 0:20 *5:00 5:49 | 0:30 0:00 0:51 1:21
No.9 0:40 0:23 *5:00 6:03 | 0:13 0:00 0:44 0:57

No.10 0:30 0:10 *5:00 5:40 | 0:20 0:00 0:35 0:55
No.11 0:51 0:20 *5:00 6:11 | 0:16 0:00 1:05 1:21
No.12 1:05 0:18 *5:00 6:23 | 0:30 0:00 0:46 1:16
No.13 0:31 0:14 *5:00 5:45 | 0:16 0:00 0:57 1:13
No.14 0:36 0:14 *5:00 5:50 | 0:14 0:00 2:00 2:14
No.15 0:26 0:21 *5:00 5:47 | 0:30 0:00 0:45 1:15
No.16 0:27 0:13 *5:00 5:40 | 0:15 0:00 0:56 1:11
No.17 0:33 0:38 1:56 3:07 | 0:30 0:00 0:46 1:16
No.18 1:03 0:07 *5:00 6:10 | 0:20 0:00 1:10 1:30
No.19 0:33 0:17 *5:00 5:50 | 0:25 0:00 1:20 1:45
No.20 0:18 0:13 *5:00 5:31 | 0:12 0:00 0:44 0:56
No.21 n/a n/a n/a n/a | 0:15 0:00 0:39 0:54

No.22 n/a n/a n/a n/a | 0:21 0:00 2:50 3:11
No.23 n/a n/a n/a n/a | 0:12 0:00 0:51 1:03

ACM Transactions on the Web, Vol. 5, No. 3, July 2011.

