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A B S T R A C T   

Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our 
civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term 
evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi- 
temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. 
Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map 
series to reconstruct past road networks, by integrating abundant, contemporary road network data and color 
information extracted from historical maps. Specifically, our method uses contemporary road segments as 
analytical units and extracts historical roads by inferring their existence in historical map series based on image 
processing and clustering techniques. We tested our method on over 300,000 road segments representing more 
than 50,000 km of the road network in the United States, extending across three study areas that cover 42 
historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to 
other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and 
showed that the extracted road network statistics are highly plausible over time, i.e., following general growth 
patterns. We demonstrated that contemporary geospatial data integrated with information extracted from his-
torical map series open up new avenues for the quantitative analysis of long-term urbanization processes and 
landscape changes far beyond the era of operational remote sensing and digital cartography.   

1. Introduction 

Road networks are an important component of (inter)national, 
regional, and local transportation infrastructure and are the backbone of 
economy, trade, and tourism. They reflect settlement and land devel-
opment patterns, alongside railroad networks, historical migration and 
trading routes and thus, seen from a historical perspective, represent a 
physical documentation of the dynamics of our civilization (Jacobson, 
1940). In an urban context, road networks reflect different phases of 
urban growth (Boeing, 2020), and determine potential walkability 
(Gori, Nigro, & Petrelli, 2014), efficiency (Merchan, Winkenbach, & 
Snoeck, 2020), and sustainability (Rao, Zhang, Xu, & Wang, 2018) of 
cities. Thus, they represent a driver of socio-economic urban processes 
(Graham & Marvin, 2002) related to accessibility (Coppola & Papa, 

2013), commutability, public health (Frizzelle, Evenson, Rodriguez, & 
Laraia, 2009), and equity (Santos, Antunes, & Miller, 2008), not only 
related to automobile-based transportation but also in the context of 
public transport (Daniels & Mulley, 2013). 

Detailed information on contemporary road networks and their 
geometric, semantic, material-related and dynamically changing prop-
erties such as utilization load, traffic conditions etc., can be acquired 
from remote sensing data (e.g., Schnebele, Tanyu, Cervone, & Waters, 
2015, Zhang et al., 2019, Palubinskas, Kurz, & Reinartz, 2008), through 
volunteered geographic information (e.g., Barrington-Leigh & Millard- 
Ball, 2017; Boeing, 2017) or user-collected data harvested from navi-
gation apps or devices (Cohn, 2009; Tang, Huang, Zhang, & Xu, 2012). 
Moreover, geometric changes in recent decades can be detected and 
quantified using historical GIS data (Zhang & Couloigner, 2005). 
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However, surprisingly little spatially explicit information is available on 
the evolution of urban and rural road networks over extended periods of 
time, which is crucial to fully understand the evolution of transportation 
infrastructure, enabling more informed urban and regional planning 
(Levinson, 2005). 

However, data even on the geometric properties of road networks 
prior to the 1980s are scarce. The few existing quantitative, long-term 
studies revolving around transport infrastructure evolution typically 
rely on manually vectorized road network data (Casali & Heinimann, 
2019; El Gouj & Lagesse, 2021; Kaim, Szwagrzyk, & Ostafin, 2020; 
Masucci, Stanilov, & Batty, 2013; Masucci, Stanilov, & Batty, 2014; 
Strano, Nicosia, Latora, Porta, & Barthélemy, 2012; Cirunay, Soriano, & 
Batac, 2019; Wang et al., 2019) or railroad network data (Donaldson & 
Hornbeck, 2016; Thévenin, Schwartz, & Sapet, 2013), from multi-modal 
data sources, often involving labor-intensive manual digitization work. 

Consequently, long-term studies on the evolution of road networks 
over large spatial extents and at fine spatial grain are scarce. The few 
existing approaches use ancillary data such as historical housing counts 
at the census tract level (Boeing, 2020), building construction date in-
formation at the cadastral parcel level (Barrington-Leigh & Millard-Ball, 
2015), as well as multi-temporal gridded settlement surfaces derived 
from parcel-level records (Burghardt, Uhl, Lerman, & Leyk, 2021; 
Millard-Ball, 2021) or from remote sensing observations (Barrington- 
Leigh & Millard-Ball, 2020). These approaches infer the age of roads 
based on the age of nearby buildings or based on the development period 
of the surrounding areas and are typically constrained to local roads 
within developed land, omitting roads in undeveloped, rural areas. 

To overcome this lack of historical road network data, researchers 
dedicated to the field of topographic map processing (Chiang, Leyk, & 
Knoblock, 2014; Liu, Xu, & Zhang, 2019) have developed methods for 
the extraction of road network features (or their components, such as 
road intersections) from historical maps, and from topographic maps in 
general, using image processing, template matching, classification, and 
image segmentation techniques. 

For example, Bin and Cheong (1998) use connected component 
analysis and a vectorization technique, whereas Callier and Saito (2011) 
use linear feature detection in combination with a region growing al-
gorithm to extract road geometries from scanned maps. Itonaga, Mat-
suda, Yoneyama, & Ito, 2003 use a stochastic relaxation algorithm and a 
thinning operator, while Chiang, Knoblock, and Chen (2005) employ 
histogram-based segmentation and parallel pattern tracing for the same 
purpose. Similar approaches use color clustering (Chiang & Knoblock, 
2009) or morphological operations (Chiang & Knoblock, 2008) to 
extract road features and road intersections. Despite being unsupervised 
approaches, most of these methods require some user interaction, e.g., to 
determine which cluster represents road features. Other examples are 
supervised and are based on localized template matching (Chiang, 
Knoblock, Shahabi, & Chen, 2009) or on Hough transform in combina-
tion with an edge matching algorithm (Chiang & Knoblock, 2013). 

More recently, scholars have applied deep learning methods such as 
convolutional neural networks (CNNs) to extract geometric and se-
mantic transportation network characteristics from historical maps. 
These approaches include linear road feature extraction based on a U- 
Net CNN (Ekim, Sertel, & Kabadayı, 2021; Jiao, Heitzler, & Hurni, 
2021), extraction of road network intersections using an 
Inception-ResNet CNN (Saeedimoghaddam & Stepinski, 2020), or road 
type recognition from cartographic road symbols using a U-Net CNN 
(Can, Gerrits, & Kabadayi, 2021). Similarly, researchers have proposed 
deep learning based methods for the extraction of railroad networks 
(Chiang, Duan, Leyk, Uhl, & Knoblock, 2020a; Hosseini, McDonough, 
van Strien, Vane, & Wilson, 2021; Hosseini, Wilson, Beelen, & McDo-
nough, 2021) from historical maps. These deep-learning based methods 
are resource-intensive and require large amounts of typically manually 
labelled training data or templates. Jiao, Heitzler, and Hurni (2021) 
provide a detailed overview of these methods. 

We propose an alternative, fully automated approach, making use of 

abundantly available, contemporary geometric road network data, in 
combination with image processing and unsupervised classification 
techniques applied to digital historical maps. This approach is based on 
the assumption that road networks typically expand over time (rather 
than shrink or experience other types of changes), and thus, the 
contemporary road network represents the superset of all roads being 
depicted in the historical maps. The proposed method aims to separate 
contemporary road network vector data in two classes: those roads that 
exist in an underlying historical map (i.e., historical roads) and those 
that do not exist in that map (i.e., more recent roads). This separation is 
done in an unsupervised manner, and thus, no labelled training data is 
required. Moreover, in contrast to most existing map processing ap-
proaches, we do not use the pixels of the scanned map image as 
analytical units, but rather the contemporary (vector) road segments, 
typically representing the center line of the roads. Hence, our approach 
filters the already topologically cleaned, contemporary road vector data 
based on signals extracted from the color information harvested from 
historical maps, and thus, avoids the complex, and potentially error- 
prone recognition (e.g., Chiang et al., 2020a) and vectorization (e.g., 
Chen et al., 2021) of cartographic content in historical maps (i.e., road 
symbols). It thus enables spatial, spatio-temporal, and network-based 
retrospective analyses using the contemporary road segments as 
analytical units. 

The existing supervised and unsupervised road extraction methods 
typically require a considerable degree of user interaction (e.g., manual 
labelling of training data, or parameter tweaking), and most of the 
methods have only been tested on individual map sheets. Thus, it re-
mains unclear how these methods perform on large, potentially het-
erogeneous map collections. Moreover, existing approaches do not 
incorporate contemporary road network data to guide the extraction. 
Thus, our proposed method makes the following contributions: (a) it is a 
fully automated approach to extract road networks from historical maps, 
(b) it is the first approach using vector-raster data integration (i.e., 
combining contemporary road network data and scanned historical 
maps), and (c) it has been tested over several, large study areas, and for 
different time periods. Furthermore, the proposed approach requires 
very few parameters to be set by the user, and the results are largely 
invariant to the choice of these parameters, as we will show herein. 

This effort is motivated by the growing availability of systematically 
scanned, georeferenced, and catalogued historical map archives, 
increasingly available as public and open data (Fishburn, Davis, & 
Allord, 2017, Library of Congress, 2020, National Library of Scotland, 
2020, Swisstopo, 2020, Stanford University Library, 2020, Biszak, Bis-
zak, Timár, Nagy, & Molnár, 2017, Old Maps Online, 2020, see Uhl & 
Duan, 2021, McDonough, 2022). At the time of writing, the number of 
scanned and/or georeferenced historical maps from national map ar-
chives available online is expected to exceed 1,000,000 (McDonough, 
2022), and unlocking the unique, historical-spatial information con-
tained in these map archives (i.e., extracting map content and convert-
ing it into analysis-ready spatial data structures) constitutes the overall 
goal of topographic map processing (Chiang et al., 2014). Moreover, 
there is an increasing demand of historical spatial data for numerous 
applications in urban studies and planning (Dunne, Skelton, Diamond, 
Meirelles, & Martino, 2016), as well as in the digital humanities (Chiang, 
Duan, Leyk, Uhl, & Knoblock, 2020b; Gregory & Healey, 2007; Hosseini 
et al., 2021). 

Herein, we apply our method to a range of historical topographic 
maps from the United States (Section 2.1) and present the details of this 
method (Section 2.2). We implemented several strategies for validation, 
cross-comparison, and plausibility testing to evaluate our results (Sec-
tion 2.3). We show the results of our analyses in Section 3, we discuss 
them in Section 4, and conclude with a critical reflection and an outlook 
on future work (Section 5). 

J.H. Uhl et al.                                                                                                                                                                                                                                   



Computers, Environment and Urban Systems 94 (2022) 101794

3

2. Data & methods 

Herein, we describe a method that estimates for each contemporary 
road network segment whether a corresponding road symbol exists in a 
given scanned and georeferenced historical map of the same area. This is 
done by (a) using an image processing-based, continuous metric that 
indicates the likelihood that such a road symbol exists, and (b) 
employing a discretization method to convert this continuous metric 
into a binary metric indicating the presence or absence of a road symbol 
at the corresponding location on a given historical map. 

In this section, we describe the acquisition of historical maps for 
three study areas, located in the US, and four different points in time, 
ranging from 1895 to 1950 (Section 2.1). We then detail the charac-
teristics of the contemporary road network vector data, which we ac-
quired and processed for these study areas (Section 2.2) and present a 
manual and an automatic strategy to generate validation data in order to 
evaluate our approach (Section 2.3). We then describe the image pro-
cessing pipeline to generate continuous estimates of historical road ex-
istence (Section 2.4), and the subsequent discretization step to extract 
historical road segments from the pool of the entire contemporary road 
network (Section 2.5). Finally, we present four different strategies that 
we employed to test the performance of the proposed method and the 
plausibility of the results (Section 2.6). 

2.1. Historical map acquisition 

We obtained historical maps from the United States Geological Sur-
vey (USGS) historical topographic map collection (HTMC), which is a 
digital archive of more than 190,000 scanned and georeferenced topo-
graphic maps created between 1884 and 2006 (Allord, Fishburn, & 
Walter, 2014). Specifically, we used metadata for the HTMC (available 
from https://thor-f5.er.usgs.gov/ngtoc/metadata/misc/) to generate 
the geographic footprints of each map sheet contained in the archive, 
and obtained historical map sheets for a range of U.S. metropolitan 
areas, by automatically downloading them from the Amazon Web Ser-
vices (AWS) S3 archive where the HTMC is hosted (USGS, 2021). We 
then inspected the temporal and geographic coverage of the maps in 
each metropolitan area, examining the two largest map scales (i.e., 
1:24,000 and 1:62,500) and chose three metropolitan areas with com-
plete coverage for one or more (up to three) early time periods. The 
maps from different areas often exhibit different cartographic styles 
representing various geographic settings. We discarded the 1:24,000 
scale maps, as they tend to be more recent than the 1:62,500 maps (see 
Uhl, Leyk, Chiang, Duan, & Knoblock, 2018). The study areas are 
Greater Albany (New York), for the approximate years 1900, 1930, and 
1950, consisting of six map quadrangles (Fig. 1 a-c), 10 map quadrangles 
for the San Francisco Bay area (California) in approximately 1900 and 
1950 (Fig. 1 d,e), and a study area covering four map quadrangles in the 
Mobile Bay (Alabama) in approximately 1920. Henceforth, we call these 
combinations of study areas and time periods NY-1900, NY-1930, NY- 
1950, CA-1900, CA-1950, and AL-1920, respectively. In total, we used 
42 different map sheets, covering a range of color tones and contrast 
levels, as well as different printing techniques (e.g., black and white 
print in the AL-1920 study area, 5-color print in the CA-1950 study 
area). For each study area, we used an automated procedure to (a) 
remove the map collars, and (b) generate seamless mosaicked layers. 
This procedure has been developed for a previous project focusing on the 
extraction of urban areas and is described in detail in Uhl et al. (2021)1. 

In contrast to these differences in general map appearance, the way 
how roads are depicted appears to be fairly homogeneous across time 
periods and cartographic styles. As can be seen in Fig. 2, all study areas 
use parallel black lines to depict streets, in some cases generalized to the 
street blocks, or merged with building blocks or individual building 

outlines. In the 1950 maps, dense urban areas are depicted using red 
dots (NY-1950, Fig. 2c) or in a pink color signature (CA-1950, Fig. 2e) 
underlying the road symbols. 

2.2. Road network data preprocessing 

In addition to the historical maps from the HTMC, we used the Na-
tional Transportation Dataset (NTD, v2019, USGS, 2019) from the USGS 
as contemporary road network data. The NTD is available as geospatial 
vector data, containing several feature classes on road and railroad 
networks, per state. The road network feature classes are generally to-
pologically clean, i.e., an individual line feature represents a straight or 
a curved road (i.e., the road centerline) between two intersections, or 
between a dead-end and an intersection. Herein, we refer to these linear 
features as “road segments”. An actual street, as defined by a street 
name, may consist of multiple road segments. We clipped the road 
network vector data to the extents of the three study areas shown in 
Fig. 1. As we expect our results to vary across rural-urban gradients, we 
stratify the NTD road segments into two classes, assuming that short 
road segments are likely to occur in dense, urban areas, and long road 
segments typically occur in sparsely settled rural areas. Thus, we stratify 
the road segments into short (“urban”) roads and long (“rural”) roads, 
based on the 90th percentile of the road segment length distributions per 
study area as the threshold. This threshold corresponds to absolute 
values ranging between 345 m and 469 m across study areas (Table 1). 
The effect of this stratification is shown in Fig. 3a,b; see Appendix 
Fig. A1 for a visual evaluation of this stratification against building 
density estimates. Table 1 shows some basic statistics on the road net-
works in each of the three study areas. 

2.3. Validation data generation 

To our knowledge, there is no vector-based, multi-temporal road 
network data covering the study periods used herein that would be (a) 
compiled independently from the data under test, (b) presumably of the 
same or higher levels of accuracy, and (c) represent a large enough 
sample to generate accuracy estimates of high statistical power (Con-
galton & Green, 2019), and thus could be used as reference data. To 
overcome this issue, we used a two-fold strategy to generate reference 
data as follows. 

2.3.1. Manually labelled patch-level validation data 
First, we took a stratified random sample (N = 100) of rural and 

urban roads per study area and year, summing up to a total of 1200 road 
segments. For each road segment, we cropped the historical maps within 
a patch of 500 m × 500 m around the segment centroid, and manually 
annotated these patches; we assigned a binary label indicating the 
presence or absence of a road symbol in the approximate center of the 
map patch. The random sampling yielded a relatively balanced dataset, 
i.e., 58% positive (road present), 42% negative (no road present) labels. 

2.3.2. Automatically created building-based validation data 
As the sample of N = 1200 only covers 0.2% of the overall set of 

627,909 observations (i.e., road segments per study area and time 
period, see Table 1), we also implemented a procedure that annotates 
each road segment with a reference label. This procedure is based on the 
assumption that if there is a road at a given location in a historical map it 
is likely that one or more buildings would have existed somewhere in 
proximity along the road segment. While the co-evolution of roads and 
buildings is little studied (Achibet, Balev, Dutot, & Olivier, 2014), we 
assume that this expectation is reasonable for most roads in urban set-
tings, and for a fair amount of roads in rural settings. 

We use historical built-up area (BUA, Uhl & Leyk, 2020) surfaces 
from the Historical Settlement Data Compilation for the US (HISDAC- 
US, Leyk & Uhl, 2018, Uhl et al., 2021), which are available in 5-year 
intervals for the time period from 1810 to 2016 and are derived from 1 Code available from https://github.com/johannesuhl/mapprocessor. 
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built year information contained in the Zillow Transaction and Assess-
ment Dataset (ZTRAX, Zillow, 2021). The binary BUA surfaces measure 
the presence of at least one built-up property within grid cells of 250 m 
× 250 m, in a given year, and have been employed for long-term studies 
of the built environment (Leyk et al., 2020; Uhl, Connor, Leyk, & 
Braswell, 2021) and, under similar assumptions, for historical road 
network modeling (Boeing, 2020; Millard-Ball, 2021). Fig. 3c-h shows 
the historical BUA layer sequences from the HISDAC-US, for each study 
area, and for the half-decade closest to each study period. 

Based on these historical built-up area layers, we estimate the his-
torical built-up area in proximity to each road segment of the contem-
porary NTD road network data (Fig. 4a), as follows: We buffer each road 
segment by 125 m (= half of the HISDAC-US grid resolution) (Fig. 4b). 
For the buffered NTD road segments within each map sheet extent (from 
a map referenced to year T), we extract the HISDAC-US BUA layer 
(Fig. 4c) for the most recent half-decade that is <T (Fig. 4d). That is, for 
a map sheet from 1899 we use the HISDAC-US BUA layer from 1895, in 
order to include buildings that have been established by the time of the 
survey underlying the historical map. Next, we calculate the fraction of 
built-up grid cells within each buffer area. This fraction quantifies how 
much of the area in proximity to each road segment has been built-up in 
the year T. Finally, we append this fraction to the original road segment 

vector objects (Fig. 4e) for visualization and further processing. Road 
segments attributed with a high built-up area fraction presumably are 
located in areas that have been densely built-up in the year T, and thus, 
are likely to have existed at that point in time. Thus, we assume that such 
road segments are depicted in a given historical map of the year T. We 
will compare these fractions to the results of the road overlap detection 
in Section 3.3. 

2.4. Historical road network extraction 

We extract the historical road network from the pool of contempo-
rarily existing road segments using a pipeline that involves spatial data 
processing, image processing, and data analytics. More specifically, this 
pipeline involves four steps: (a) spatial data processing to generate cross- 
sectional sampling locations (Section 2.4.1, Fig. 5a), (b) vector-raster 
data integration to harvest color information from the historical maps 
at the sampling locations (Section 2.4.2, Fig. 5b), (c) image processing to 
generate a continuous road overlap indicator metric (Section 2.4.3, 
Fig. 5c), and (d) discretization of the continuous metric in order to 
identify the approximate historical road network (Section 2.4.4, 
Fig. 5d). This road overlap indicator is based on the assumption that if a 
given road segment existed in the year T, a historical map from year T 

Fig. 1. Historical 1:62,500 topographic maps of the three study areas. A composite of six map sheets covering Greater Albany (New York) in (a) 1893, (b) 1930, and 
(c) 1950; a 10-map composite covering the Bay Area, California in (d) 1895 and (e) 1950, and (f) a four-map composite covering Mobile Bay, Alabama, in 1920. Map 
source: USGS-HTMC. 
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will contain a linear symbol that spatially coincides with the road axis 
from the contemporary road network vector data. Due to positional 
inaccuracies in the historical map (as a result of inaccurate georefer-
encing, paper map distortions, or other sources of uncertainty, see Uhl 
et al., 2018), the linear road symbol may also run in parallel to the road 
axis. The method described in this section aims to detect such linear 
symbols in the historical maps. 

2.4.1. Spatial data processing 
For each map sheet in each study area – year combination, we project 

the contemporary road network data into the spatial reference system of 
each individual map sheet and clip the road vectors to the extent of the 
historical map sheet. We then generate cross-sectional sampling loca-
tions, which are arranged in lines perpendicular to the axis of each road 
segment (Fig. 5a,b). We access the vertices of each road vector object 
and calculate points along the road axis in a regular distance every 25 m 
(=cross-section distance, CSD). At each of these locations, we generate a 
cross-section (i.e., a line perpendicular to the road axis) of length CSL 
(cross-section length) = 100 m (50 m in each direction). Examples of 
these cross-sectional lines are shown in Fig. 5a,b. The short distance CSD 
between cross-sections will allow to capture dashed lines, while the 
cross-section length CSL will allow to mitigate issues of offsets between 

road vector and road symbol in the map. Based on the spatial resolution 
of the historical map sheet underlying the road vector data (approxi-
mately 5 m for the 1:62,000 scale maps used herein), we place 20 
regularly spaced sampling points along each cross-sectional line (see 
Fig. 5b), resulting in a distance of 5 m between sampling points, 
consistent with the pixel size of the scanned map images. 

2.4.2. Vector-raster data integration 
For each scanned and georeferenced map sheet of each study area 

and year, we automatically obtain the warping parameters (i.e., the 
affine transformation parameters to convert world coordinates into pixel 
coordinates). We loop over the sampling points of the cross-sections of 
each road segment, identify the underlying pixel of the historical map 
image based on the transformation parameters, and register the R,G,B 
color information found for that pixel. This way, we efficiently generate 
a list containing the map color information for each map sheet, for each 
point in time, for all sampling locations of each cross-section, for each 
road segment. 

2.4.3. Image processing and road overlap indicator calculation 
Based on the systematically extracted color information in Section 

2.4.2, we stack the RGB values for each cross-section horizontally, and 

Fig. 2. Cartographic styles used for road depiction in the historical maps. Albany (New York) in (a) 1900, (b) 1930, and (c) 1950; Santa Clara (California) in (d) 1895 
and (e) 1950, and (f) Mobile (Alabama) in 1920. Map source: USGS-HTMC. 

Table 1 
Basic road network statistics in the three study areas.  

Study 
area 

Time periods per 
study area 

Total road 
segments 

Urban road 
segments 

Rural road 
segments 

Total km 
road 

km urban 
roads 

km rural 
roads 

Urban-rural threshold (90th 
percentile) [m] 

AL 1920 41,494 37,344 4150 6909 4320 2589 345 
CA 1900, 1950 222,517 200,265 22,252 35,896 22,430 13,465 318 
NY 1900, 1930,1950 45,354 40,818 4536 10,078 5851 4228 469  
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Fig. 3. Road network and validation data. (a) Contemporary NTD road network data, stratified into urban (short) and rural (long) road segments, shown for the 
whole New York study area, and (b) for the city of Amsterdam (New York); (c)-(e): Historical built-up areas (BUA) from the HISDAC-US dataset, derived from 
building construction year information from ZTRAX, originally obtained from county-level tax and assessment data, shown for the New York study area in 1900, 
1930, and 1950, respectively, (f), (g) BUA for the California study area in 1900, and 1950, and (h) for the Alabama study area in 1920. Grid cells labelled as “built-up 
area” contain at least one built-up property in a given year. Hillshade source in (c)-(h): World Terrain Base (Esri, USGS, NOAA). 

A B

C D

E

Historical built-up 
area fraction in 1895 
per road buffer area

0 %

100%

Fig. 4. Illustrating the automated reference data creation, shown for Albany (NY). (a) Contemporary road network, (b) road segments buffered by 125 m, (c) 
historical built-up areas from the HISDAC-US, for 1895, and (d) historical map from the same area from 1897. (e) shows the HISDAC-US built-up area fractions in 
1895 within the buffer areas shown in (b), attributed to the original road segments shown in (a), with low built-up area fractions in blue, and high built-up area 
fractions in yellow to red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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north-south sum of the west-east gradient map. 
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then stack these horizontal lines vertically in their order of appearance 
along the road axis. Thus, for each road segment, we generate a pseudo- 
spatial axial image, with the y-direction corresponding to the road axis, 
and the x-axis corresponding to the directions perpendicular to the road 
axis. This way, we arrange the color information collected along a road 
axis of arbitrary shape (which may be curved) in a Cartesian, two- 
dimensional space (see Fig. 6, left column for some examples). 

While the width w of these axial images is given by the number of 
cross-sectional sampling locations (i.e., 20), the height h is defined by 
the number of cross-sections and thus, is a direct function of the road 
segment length. For simplified data processing, we regularize these axial 
images into a common target shape of 20 × 20 pixels. This regularization 
consists of (a) random sampling (N = 20) the rows of the image if h > 20; 
this occurs if road segments are longer than 20*25 m = 500 m (Fig. 6a). 
Conversely, if h < 20, the road segment is short and we transform the 
image into the target shape, by using a reflection padding strategy to 
impute the missing values in the target grid of 20 × 20 pixels (Fig. 6b). In 
addition to that, we convert the RGB information into grayscale. The 
second column from the left in Fig. 6 shows a few examples of the 
regularized, grayscale axial images. 

If a road from the pool of contemporary vector roads existed in a 
given historical map, we assume spatial coincidence or that road vector 
axis and road symbol run in parallel. Thus, we calculate the west-east 
image gradients within each axial image. As shown in Fig. 6 (third 
column from the left), these gradient maps are sensitive to the existence 
of a linear symbol in the map, parallel to the road vector axis. In order to 
quantify this sensitivity, we plot the north-south sums of the west-east 
gradients for each column and calculate the area under this aggre-
gated gradient curve (Fig. 6, right column). This area under the curve is 
our road overlap indicator metric, which we call Road Overlap Indicator 
(ROI). As can be seen in the negative example (no road symbol in map, 
Fig. 6d), the ROI is expected to be low if no parallel linear feature exists 
in the historical map, and high, if otherwise. Moreover, the peak in the 
North-south sum curve indicates where the linear feature is located 
relative to the road axis. Here, it is worth noting that the magnitude of 
the ROI depends on the axial image dimensions, given by the chosen 
target shape, as well as on the contrast level in underlying map image. 
Hence, the ROI is a metric that is directly comparable for road segments 
within but not across map sheets. This method is expected to be sensitive 
to any linear map symbol, parallel or coinciding with a contemporary 
road, such as railroads or contour lines (see Fig. 6e), which may result in 
misclassifications (see Section 3). 

2.4.4. Extraction of the historical road network through discretization 
While the continuous ROI can be interpreted as a measure of likeli-

hood that a road segment existed in a given historical map, many ap-
plications require binary estimates (i.e., road existed vs. road did not 
exist). Thus, in this last step, we discretize the continuous ROI into two 
classes, using ck-means (Wang & Song, 2011) clustering. Ck-means is a 
variant of the k-means clustering algorithm, tailored to one-dimensional 
clustering problems. We preferred ck-means over other methods, as it 
allows to specify the desired number of clusters (i.e., 2), and it does not 
require the specification of data-specific parameters, nor does it make 
assumptions about density variations in the data, as opposed to methods 
such as DBScan (Schubert, Sander, Ester, Kriegel, & Xu, 2017). More-
over, as ck-means has been developed for 1-dimensional data, it makes 
use of sorting functions and is expected to be highly performant. 

After this clustering step, we calculate the average ROI per cluster, 
and assume that the cluster with higher average ROI represents the 
cluster of historical roads (i.e., that exist in the historical map). As 
previously discussed, the magnitude of the ROI depends on the pre-
dominant contrast level of a scanned map sheet, and thus, ck-means 
clustering is conducted separately for the road segments within each 
map sheet and compared to a “global” clustering strategy (i.e., across all 
map sheets of a study area – year combination. 

2.4.5. Sensitivity analysis 
The ROI measure is based on color information collected along cross- 

sectional lines perpendicular to the road center lines (Fig. 5a,b), and 
derived from axial images constructed from the cross-sectional color 
information (Fig. 6). The geometric properties of the cross-sections (i.e., 
cross-section length CSL and distance between cross-sections CSD) and 
the dimensions of the axial windows (i.e., width w and height h) 
potentially affect the magnitude of the ROI metric and thus, may affect 
the extracted road networks. For a subset of the NY study area (i.e., the 
1895 map for the city of Amsterdam, NY) we systematically varied these 
four parameters and visually compared the ROI and the resulting clus-
tering results for a range of scenarios (see Section 3.6). 

2.5. Validation, cross-comparison, and plausibility checks 

We carried out different types of diagnostic analyses to evaluate the 
quality of the ROI and of the extracted, historical road networks. These 
diagnostics include (a) visual assessments, (b) quantitative comparison 
against the two sets of reference data, including manually labelled 
reference data, and automatically created reference data based on his-
torical building distributions from the HISDAC-US (see Section 2.3), as 
well as (c) temporal plausibility checks. 

2.5.1. Visual assessment 
We visualized the ROI across two domains: 1.) in geographic space at 

the road segment level; and 2.) at the image patch level. For the second 
assessment, we classified the road segments into deciles based on the 
ROI distributions within each study area and year. We drew a random 
sample of N = 9 segments per decile class, per study area, and year, and 
extracted the historical map content within a patch of size 500 m × 500 
m around the segment centroid. We arranged the extracted map patches 
for visual assessment (Fig. 11). The results of this visual assessment are 
shown in Section 3.1. 

2.5.2. Validation against manually annotated reference data 
We analyzed the ROI distributions and conducted Receiver-operator- 

characteristic (ROC) analysis (Green and Swets, 1966) based on the 
manually annotated reference data, using the annotations (road pres-
ence/absence) as a binary variable, and the ROI as a continuous vari-
able. In order to evaluate the quality of the extracted historical road 
network (i.e., after discretizing the ROI using ck-means, see Section 
2.4.4), we report accuracy metrics such as precision, recall, and F1-score 
for different clustering scenarios. We report both instance-based accu-
racy metrics (i.e., based on the number of road segments in each 
agreement class: true positives TP, false positives FP, and false negatives 
FN), as well as road-length based accuracy metrics (see Heipke, Mayer, 
Wiedemann, & Jamet, 1997), which weighs the confusion matrices by 
the total length L of road segments in each agreement class (Table 2). 
Such length-based accuracy metrics account for the irregular length of 
the segments which may bias the instance-based accuracy metrics. 
Moreover, such length-based accuracy metrics give a more realistic es-
timate of the uncertainty propagated into road length statistics derived 
from the extracted network. For example, if a few short roads are mis-
classified, their bias effect on the total historical road length is smaller 

Table 2 
Instance and length-based accuracy metrics.   

Precision Recall F1-score 

Instance- 
based 

Pi =
TP

(TP + FP)
Ri =

TP
(TP + FN)

F1i =

2
Pi∙Ri

(Pi + Ri)

Length-based 
PL =

∑
LTP

(
∑

LTP +
∑

LFP)

RL =

∑
LTP

(
∑

LTP +
∑

LFN)

F1L =

2
Pi∙Ri

(Pi + Ri)
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than it would be for long, misclassified road segments (Section 3.3). 

2.5.3. Comparison to historical built-up areas from HISDAC-US 
Based on the strategy described in Section 2.3.2, we annotated each 

of the 300,000+ road segments with the proportion of built-up area in 
the proximity of the road, as modeled by a buffer polygon around each 
road segment. This strategy yields a much larger sample than the 
manually collected reference data (Section 2.3.1) and thus, allows for 
more robust accuracy quantification. As discussed, we assume the 
presence of buildings to be indicative for the presence of a road. How-
ever, it is unknown what proportion of land in proximity of a road needs 
to be built-up to be confident about the presence of a road and thus, the 
choice of a specific threshold is difficult. Hence, we define a range of 
thresholds applied to the built-up area fraction associated with each 
road segment to create different sets of binary variables. We then 
compare these binary variables to the continuous ROI, using ROC 
analysis. ROC analysis is commonly used to evaluate the agreement in 
binary classification problems between a binary reference variable and 
continuous probability scores when the optimum threshold (that maxi-
mizes the true positive rate while minimizing the false positive rate) to 
be applied to the continuous variable is unknown. Here, we assume 
there is an ROI threshold that maximizes the binary agreement to the 
reference labels derived from the built-up area fractions. We conduct 
ROC analysis for each study area and year, and for a range of thresholds 
applied to the built-up area fractions, and visualize these ROC curves. 
Moreover, we analyze the distributions of the area-under-the-curve 
(AUC) (Fawcett, 2006), of the maximum F1-score (F1MAX), and of the 
ROI threshold associated with the F1MAX. The ROC analysis results are 
presented in Section 3.2. 

2.5.4. Temporal plausibility analysis 
Finally, we assess the plausibility of our results over time. Here, we 

assume that road networks grow (i.e., expand or densify) over time. 
Thus, a road detected in a map of year T needs to be detected in a later 
year T + x as well. We test this hypothesis by visually comparing the ROI 
for a given road segment in T and T + x, and by calculating the change in 
total road network length over time, which is assumed to be positive. 
Moreover, we compare the extracted road networks of subsequent years 
in a binary fashion, by calculating the transitions of a given road 
segment over time (e.g., road detected in T, but not in T + x) (Section 
3.4). 

Fig. 7 summarizes the datasets and data processing steps used for the 
historical road extraction (left part), and the analytical steps performed 
for the different validation efforts (right part). 

2.6. Data processing and analysis tools 

We collected HTMC historical maps using Python 3.7, and used 
GDAL/OGR2 for automated map collar removal. We used the ESRI 
ArcPy3 Python package to preprocess the NTD road network vector data, 
and GDAL/OGR Python package to generate cross-sectional sampling 
locations. We then used GDAL for vector-raster data integration, and 
NumPy4 Python package for image processing and establishing the road 
overlap indicator metric. Cluster analysis was done using a Python ck- 
means implementation,5 patch-based validation data was extracted 
using GeoPandas6 and OpenCV7 Python packages. The evaluation and 
validation experiments were conducted using Scikit-learn8 Python 

package. Data visualization was done in ESRI ArcMap 10.8,9 as well as 
using Matplotlib,10 GeoPandas, and Seaborn11 Python packages. 

3. Results 

In this section, we present the different results of the analyses con-
ducted herein. First, we carried out a visual assessment: We map the ROI 
associated with each road segment in geographic space, and visualize a 
random sample of map patches collected at road segments in a contin-
uum of the ROI obtained for each segment (Section 3.1). Second, we 
present the ROC analysis results from comparing the ROI against 
manually collected reference labels (i.e., road presence / absence) at the 
map patch level (Section 3.2). Third, we discuss the ROC analysis results 
from comparing the ROI against the built-up area fractions calculated 
from the HISDAC-US for each road segment (Section 3.3). Forth, we 
compare the extracted historical road networks (i.e., after binarizing the 
continuous ROI into two classes) against both, the manually collected, 
patch-level reference labels and the automatically created built-up area 
fractions (Section 3.4). Finally, we assess the plausibility of our results 
over time, in three analytical parts: (a) by comparing the ROI for a given 
road segment over time, (b) by assessing road network growth over time, 
and (c) by tracking the binary classes assigned to the road segments (i.e., 
historical versus more recent road) over time (Section 3.5). 

3.1. ROI visualization 

We calculated the road overlap indicator (ROI) metric for each of the 
300,000+ road segments, for all points in time, and visualized the ROI 
attributed to each road segment of the contemporary road network. We 
expect regions of high ROI values in the historical centers of dense, 
urban areas, that grow over time. Across all three study areas, the results 
are largely plausible, i.e., we observe high ROI values in densely settled 
urban centers, and these areas of high ROI levels generally expand over 
time (Fig. 8, Fig. 9). Visual comparison of the ROI values for roads in the 
historical Albany city center (Fig. 8c,d) indicates high levels of sensi-
tivity of the ROI, in particular in dense urban areas, and the magnitude 
of the ROI in these urban areas appears to increase over time. Moreover, 
we observe that most rural roads in the Greater Albany area (Fig. 8a) 
already existed in the 1890s, whereas most roads in dense, urban roads 
did not exist yet by the 1950s. 

Similar observations can be made for the California study area 
(Fig. 9) where the spatial distributions of the ROI illustrate the overall 
growth patterns in the Bay area (Fig. 9a). In the Santa Clara enlarge-
ments (Fig. 9b), we observe that the ROI magnitude appears to decrease 
over time, which is due to the higher levels of contrast in the 1890 maps 
as compared to the 1950 maps where urban road networks are depicted 
based on pink colors (Fig. 9b,c). Worth noting are also the large amounts 
of contemporary roads with low ROI, neither existing in the 1890s nor 
the 1950s. These patterns impressively illustrate the extreme urban 
growth that the Bay area has experienced since the 1950s (Fig. 9b). 

The Mobile study area represents the most challenging study area, as 
the map is a rather coarse, unspecific black-and-white print. Here we 
observe a slightly different picture (Fig. 10). While large parts of the 
contemporary road network, attributed with low ROI values, did not 
exist in the 1920s, we observe that even for maps of this cartographic 
style, the ROI is sensitive to the dense urban street network that co-
incides or runs in parallel to the contemporary road network data 
(Fig. 10b,c). However, the variation of the ROI across the Mobile study 
area is much less than what we observed in the Albany and California 
study areas, likely due to the high contrast levels found in the entire 
Mobile map images. Note that the ROI color scaling is consistent across 

2 https://gdal.org/api/python.html  
3 https://pro.arcgis.com/en/pro-app/latest/arcpy  
4 https://doi.org/10.1038/s41586-020-2649-2  
5 https://github.com/llimllib/ckmeans  
6 https://doi.org/10.5281/zenodo.3946761  
7 https://docs.opencv.org  
8 https://scikit-learn.org/ 

9 https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources  
10 https://matplotlib.org/  
11 https://seaborn.pydata.org/ 
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Figs. 8, 9, and 10. 
Such visualizations across geographic space exhibit high levels of 

plausibility, and the visualization of map patches cropped around a 
stratified sample of road segments (see Section 2.5.1), sorted by the 
magnitude of the ROI obtained for each segment show a similar picture. 
We expect to see very few road symbols in map patches assigned with 
low ROI values, and at least one road symbol in map patches associated 
with high ROI values. As shown in Fig. 11, the frequency of map patches 
containing one or more road symbols increases with increasing ROI, and 
the highest ROI values are found either for dense urban road networks, 
or for individual rural road symbols without other map content. 

3.2. ROI evaluation against map-based reference data 

The comparison of the ROI assigned to the road segments and the 
manually created presence / absence labels for a subset of approxi-
mately 1200 road segments exhibits interesting, quantitative insight of 
the sensitivity of the ROI metric to the presence of road symbols in 
historical maps. We expect high ROI values for road segments attributed 
with “road presence” in the reference labels, and vice-versa, and a 
clearly defined ROI threshold that achieves high levels of agreement to 
the reference labels. The distributions of the ROI for each group of 
reference labels are shown in Fig. 12a, overall and for rural and urban 
strata. Higher values of the ROI are encountered if roads are present, and 
low values are found if road symbols are absent in the map, and this 
pattern appears to be more pronounced in urban areas. The ROC plots 
for individual study areas (Fig. 12b) indicate high levels of variability of 
these associations across study areas, with a clear progression of 
increasing AUC values over time in both, the NY study area (AUC = 0.77, 
0.86, 0.96) and for the CA study area (AUC = 0.70, 0.76). The lowest 
AUC value is found for the AL study area, which is expected due to the 
simplistic and coarse cartographic style used in the Mobile map. Fig. 12c 
shows the F1-score for each ROI threshold used for binarization. While 
the magnitudes of the F1-score roughly reflect the patterns observed in 

the AUC values, it is notable that the ROI threshold that maximizes the 
agreement with the reference labels ranges for most study areas between 
8000 and 11,000; however, there are no nuanced peaks. This indicates 
that a simple and generally applicable threshold on the continuous ROI 
for extracting the historical road network at acceptable levels of accu-
racy does not exist. 

3.3. Comparing the ROI to historical built-up areas 

While the evaluation results against manually labelled reference data 
show promising and plausible trends, the statistical support (N = 1200) 
is relatively low, compared to the building-based reference data, avail-
able for most of the 300,000 road segments (see Section 2.3.2). These 
reference data consist of the fraction of built-up area in proximity of 
each road segment. Under the assumption that the co-evolution of roads 
and buildings is largely coherent, we expect high levels of ROI where the 
historical built-up area fraction is high. Thus, for a given threshold 
applied to the built-up area fractions, a ROC analysis against the ROI 
values should yield relatively high levels of the AUC measure. Moreover, 
we test whether there is a threshold that can be applied to the ROI in 
order to maximize the agreement between binarized distributions of the 
ROI and built-up area fractions. 

In analogy to the ROC analysis conducted against the manually 
labelled reference data (Fig. 12), we present the ROC plots of the ROI 
against building presence-absence labels in Fig. 13. We tested different 
thresholds applied to the built-up area fraction in each road buffer (see 
Section 2.3.2) and observed that the AUC values are highest for 
thresholds of 75% and 90%, i.e., the ROI separates well the roads in 
areas of high built-up density from those in areas of lower built-up 
density. These increasing AUC trends also persist in most urban and 
rural strata (Appendix Fig. A2). The AUC values obtained from the ROC 
analysis across each study area are slightly lower than the AUC values 
obtained from comparison to manually (map-based) reference data 
(Section 3.2). However, we would like to reiterate that these results need 
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to be interpreted carefully, as we use the presence of buildings to eval-
uate the presence of roads. Thus, these results are directly affected by the 
relationship between building and road presence, and we assume that 
the co-evolution of roads and buildings is largely coherent (Achibet 
et al., 2014). However, variations in this relationship across study areas 
and time periods may exist. To test this, we cross-compared the map- 
based, manually created (and highly reliable) reference data against 
the continuous built-up area fractions measured along the roads (see 
Section 2.5.3). The relationship of built-up fraction and road presence is 
ambiguous, in both urban and rural regions (Appendix Fig. A3 a), and 
the AUC values obtained from the ROC analysis vary strongly across 
study areas (Appendix Fig. A3 b). Moreover, the maximum agreement 
(as measured by the F1 fscore) is achieved if we use a threshold of >0% 
built-up area fraction. The latter observation implies that if there is one 
building mapped in a historical map, the likelihood of the presence of a 
road in direct vicinity is very high. While this threshold of >0% con-
tradicts the threshold of >75%, for which the AUC of the ROI against the 
building-based reference labels maximizes, this discrepancy needs to be 
understood as a direct consequence of using two reference data types of 
different nature. 

Furthermore, the ROC curves shown in Fig. 13 exhibit high levels of 
variability across individual map sheets (grey lines), indicating (a) high 
levels of variability of the ROI across map sheets, or (b) high levels of 
variability of the co-evolution of roads and buildings across map sheets. 
Notably, the map sheets in the Alabama study area exhibit very nuanced 
peaks for an optimum separation of historical versus more recent roads 
at the map sheet level (Fig. 13f). This is likely due to the homogeneous 
map styles used in this study area. 

This variability across map sheets is also observed in Fig. 14, that 
shows the distributions of AUC, maximum F1-score, and the optimum 
ROI threshold obtained at the map sheet level within each study area, 
shown only for the built-up fraction thresholds >75% and >90%, for 
which maximum AUC values are achieved in Fig. 13. These distributions 
are shown separately for the rural and urban stratum, and indicate that 
the agreement of the ROI with built-up area derived road presence labels 
is higher in urban areas than in rural areas (i.e. higher levels of AUC and 
maximum F1-score, Fig. 14a,b). Moreover, we observe high variation of 
the optimum ROI threshold, both across study areas and rural-urban 
strata (Fig. 14c). This is in line with the evaluation against manually 
created reference data (Section 3.2) and further indicates that a binary 
separation of roads that exist in a given historical map based on a simple, 
global threshold is not feasible. 

3.4. Evaluation of historical road networks extracted by ck-means 
binarization 

The evaluation of the continuous ROI against both, manually created 
and built-up area based reference labels (Sections 3.2 and 3.3), indicates 
there is no global and generally applicable threshold that can be applied 
to the continuous ROI measure in order to create an accurate distinction 
between historical and more recent roads. Based on our results, a data- 
driven approach to discretize the ROI into two classes seems to be a 
suitable solution. Moreover, we observed strong variation of the eval-
uation results per map sheet, which implies that such a data-driven 
approach needs to be applied to the map-sheet level distributions of 
the ROI. In this subsection, we show the binarized clustering results from 
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ROI
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High

Fig. 8. Maps showing the road overlap indicator (ROI) metric for the Albany (New York) study area in (a) 1900, (b) 1930, and (c) 1950, at different level of detail. 
Shown is the ROI for each road segment, indicating whether a road likely existed in the year the historical map was created (red, yellow), blue roads likely did not 
exist yet. The column to the right shows the underlying historical maps for comparison. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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applying ck-means to the ROI distributions, representing the extracted 
historical road networks, and evaluate the agreement of these binary 
labels (i.e., historical versus more recent road) with both the manually 
created, and automatically created, building-based reference labels. 

Fig. 15a shows the extracted historical road networks for the three 

study areas and all years (in yellow), after applying ck-means parti-
tioning to the map-sheet level ROI distributions (see Section 2.4.4). For 
comparison, we also conducted ck-means partitioning based on the 
study-area level ROI distributions, and show the agreement and 
disagreement between the two clustering strategies in the agreement- 

Fig. 9. Maps of the road overlap indicator (ROI) metric for the Bay area (California) study area in 1900 and 1950, shown (a) for the whole study area, and (b) for 
Santa Clara, California. Shown is the ROI for each road segment, indicating whether a road likely existed in the year the historical moa was created (red, yellow), blue 
roads likely did not exist yet. Panel (c) shows the historical maps underlying the ROI metrics in (b). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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A B
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Fig. 10. Maps of the road overlap indicator (ROI) metric for the Mobile Bay (Alabama) study area in 1920, (a) shown for the whole study area, and (b)-(c) shown for 
the city of Mobile, at different levels of detail, including the underlying historical map. Shown is the ROI for each road segment, indicating whether a road likely 
existed in the year the historical map was created (light blue, yellow), dark blue roads likely did not exist yet. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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disagreement maps in Fig. 15b. Notably, the different clustering strategy 
yield similar results for the NY study area, where map sheets are of 
similar content and level of contrast, but cause some differences in the 
Northwest of the CA study area (characterized by dense contour lines), 
and in the Southwest of the AL study area (hatched wetland symbols). 

Furthermore, we calculated Silhouette scores (Rousseeuw, 1987) for 
each road segment, based on the clusters assigned by the ck-means 
method. The silhouette scores indicate the proximity of a data point to 
the cluster center and indicate the “confidence” of a data point being a 
member of the assigned cluster. As shown in Appendix Fig. A4, negative 
(i.e., more recent) road segments often exhibit higher silhouette scores 
than the historical segments, which may be used as additional infor-
mation for the interpretation of the results shown in Fig. 15. For 
example, road segments that “switch” cluster membership when 
applying map-sheet level versus study-area level clustering (e.g., 
Southwest of the AL study area, Fig. 15b) exhibit lower Silhouette 
scores, indicating lower levels of classification confidence. 

Moreover, we quantitatively compared the extracted historical road 
networks against both reference datasets, the manually created, map- 
based reference labels, and the automatically created reference labels 
based on the road buffer built-up fraction. As we observe highest 
agreement (i.e., F1-score) between the two types of reference data for a 
built-up fraction >0% (Fig. A4c), we report the agreement of the his-
torical road networks against the built-up-fraction based reference data 
for that threshold only (Table 3). As can be seen in Table 3, the agree-
ment appears to be higher with map-based reference data than with 
built-up-fraction based reference data. This is expected due to potential 
variations in the relationship between the evolution of buildings and 
roads. 

Also, additional uncertainty in the building-based reference labels 
may arise from overlapping buffer areas in dense, urban road networks 
(Fig. 4b). Generally, accuracies are highest in the NY study area, with 
increasing trends from the 1893 epoch to the 1950 epoch. As observed 

previously, accuracies are lowest in the Mobile study area, likely due to 
the simplistic cartographic design and the large amounts of other linear 
features such as wetland symbols, etc. Moreover, we observe variations 
of accuracy between the urban and rural strata in most study areas 
(Appendix Table A1). These urban-rural variations do not seem to follow 
a clear trend, which may be attributed to the higher levels of uncertainty 
in the building-based reference data, as previously discussed. Interest-
ingly, the effect of the clustering strategy (per study area or per map 
sheet) only has a minor effect on the accuracies, without exhibiting a 
clear trend. Hence, these results do not allow for specifying recom-
mendations on which of the strategies to use. 

3.5. Temporal plausibility analysis 

Lastly, we assess the plausibility of our results over time. As we as-
sume road network growth to be predominant in our study areas (as 
opposed to road network shrinkage), we consider road networks that 
“disappear” over time as implausible and likely to be the result of 
misclassification. As described previously, this plausibility assessment 
consists of three analytical parts: (a) assessing the trend of the ROI 
assigned to a given road segment over time (Fig. 16), (b) assessing the 
total length of the extracted historical road networks over time 
(Table 4), and (c) tracking the binary classes assigned to the road seg-
ments (i.e., historical versus more recent road) over time (Table 5). 

We begin with analyzing the continuous ROI metrics, which we 
group into 50 equal width classes and cross-tabulate them between 
subsequent points in time T1 and T2 for the same road network segment 
(Fig. 16). We observe that many value pairs are located near or above 
the main diagonal (i.e., ROIT2 ≥ ROIT1), indicating that these road 
segments either exist in both historical maps, or do not exist in either of 
the maps. Data points above the main diagonal correspond to road 
segment with an increasing ROI over time, representing roads that were 
newly built during the respective time periods. Only few road segments 

Fig. 11. Visual assessment of the road overlap indicator metric (ROI) at the patch level, by arranging a random sample of map patches collected at road segment 
centroids, by the ROI associated with each road segment. Map patches are sorted from left to right by their ROI. 
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exhibit a ROI decrease over time (i.e., they are located below the main 
diagonal), which would indicate “disappearing” road symbols over time 
(e.g., for rural roads in NY 1930–1950). This qualitative, visual assess-
ment indicates largely plausible temporal trajectories of the ROI over 
time. 

After discretizing the continuous ROI into historical and more recent 
road segments (Section 2.4.4), we extracted road network statistics such 
as the number of segments and their corresponding road length, as well 
as the relative change in road length between the points in time T1 and 
T2 (in %, referred to the road network length in T1). These statistics are 
shown in Table 4. Notably, historical road segments from each point in 
time were extracted independently. Nevertheless, we observe increases 
in the total road length over time, and mostly positive change rates, 
which seems plausible. Table 4 also shows these statistics for both 
clustering strategies (per map sheet, and per study area). The change 
rate in the NY study area from 1930 to 1950 is slightly negative for 
study-area level clustering, and switches to a positive change rate when 
applying map-sheet level clustering, potentially indicating that the map- 
sheet level clustering strategy yields more plausible results. Moreover, 
these network statistics over time do not only serve as a plausibility 
check, but also illustrate a potential application of the proposed 
approach, providing quantitative insight into the early evolution of road 
networks over long time periods of time, derived in a fully automated 
manner. 

Lastly, we assessed the changes over time at the road segment level 
with respect to the contemporarily existing road network, by cross 
tabulating the binary labels (i.e., historical versus more recent roads) for 
the same road segments in subsequent points in time (Table 5). These 
results provide some insight on the road network expansion over time (e. 
g., roughly a quarter of the contemporary road networks in the CA and 
NY study areas were built between 1900 and 1950). Furthermore, we 
observe that the road segments that “disappeared” over time (i.e., 
labelled as “historical” in T1, but not in T2) which we consider 
implausible, are consistently lower when using the map-sheet level 
clustering strategy, as compared to the study-area level clustering. This 
trend also persists in rural and urban strata (Appendix Table A2). While 
we did not observe such a trend in the accuracy analysis (possibly as a 
result of the small sample size not capturing these improvements), this 
observation confirms our initial hypothesis that a cluster analysis per 
map sheet is expected to improve the extraction results, as it reduces bias 
introduced by heterogeneous contrast levels across different map sheets. 

3.6. Sensitivity analysis 

Varying the parameters cross-section length CSL and cross-section 
distance CSD used to harvest color information from the historical 
maps (Fig. 5), as well as the dimension of the axial images (i.e., w and h, 
Fig. 6) used to construct the ROI metric potentially affect its magnitude 
and thus, may affect the extracted road networks. As shown in Fig. 17a, 
varying the dimension of the axial images, for fixed values of CSL = 100 
m and CSD = 25 m, does affect the magnitude of the ROI, but results in 
highly similar spatial patterns and clustering results. When varying the 
parameters of the cross-sections we observe that for a very low cross- 
section length (CSL = 25 m) the resulting clusters do not seem to cap-
ture the historical road network very well (Fig. 17b). This is likely due to 
positional offsets between contemporary road network vector data and 
the historical map exceeding 25 m. Choosing large values for CSL and/ 
or CSD (Fig. 17c,d) does not have a major effect on the outcomes but will 
possibly affect processing time. Thus, the choice of a short cross-section 
length CSL, long enough to account for positional offsets, in combina-
tion with a high CSD may increase processing efficiency while keeping 
extraction quality constant when working with large volumes of data. 
See Appendix Fig. A5 for the full sensitivity analysis results varying all 
parameters systematically. 
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NY-1900 NY-1930

NY-1950 CA-1900

CA-1950 AL-1920

A B

C D

E F

Fig. 13. ROC analysis results against building-based reference data for different thresholds of built-up area fraction: ROC plots and optimum ROI thresholds (based 
on the maximum F1-score) for the NY study area in (a) 1900, (b) 1930, (c) 1950, for the CA study area in (d) 1900, (e) 1950, and (f) for the AL study area in 1920, 
Grey lines show the ROC curves for each individual map sheet (grey) per study area. 

AUC F1MAX ROI (F1MAX)

sdaor nabr
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AL-1920

Fig. 14. Distributions of AUC, maximum F-1 score, and ROI threshold corresponding to the maximum F-1 score, within each study area, and per road length stratum 
(roughly separating short urban from long rural roads), shown for the 0.75 and 0.9 built-up area fraction thresholds only. 
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4. Discussion 

The results presented in Section 3 illustrate that the proposed 
method to assign a road overlap indicator to each contemporary road 
network segment works and responds to the presence of linear road 
symbols in a given historical map (Fig. 11). Results are geographically 

logical (i.e., highest ROI values are observed in clusters, typically 
located in the center of contemporary cities and thus, likely to represent 
a spatial approximation of historical urban centers existing in the 
reference year of the historical map, including the roads connecting 
these centers (Figs. 8-10). Moreover, the temporal trends of the extrac-
ted road networks are plausible, i.e., they suggest road network growth 

NY-1900

NY-1930

NY-1950

CA-1900

CA-1950

AL-1920
Historical road
More recent road

NY-1900

NY-1930

NY-1950

CA-1900

CA-1950

AL-1920
Agreement (historical)
Agreement (more recent)
Disagreement

A B

Fig. 15. Extracted historical road networks for the three study areas and the different years. (a) map-sheet level ck-means clustering, and (b) agreement- 
disagreement map of map-sheet level cluster analysis versus study-area level cluster analysis. 

Table 3 
Binary classification accuracy assessment of the ck-means clusters against manually created reference data and reference labels based on the built-up area fraction per 
road buffer (Prec = Precision, Rec = Recall).  

Referene data source: Reference labels from built-up fraction >0% Manually created reference labels 

Cluster analysis setup: Per study area Per map sheet Per study area Per map sheet 

Study area Year Weighting scheme Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 

AL 1920 Road length based 0.12 0.43 0.19 0.17 0.43 0.24 0.67 0.50 0.58 0.69 0.36 0.48 
CA 1900 0.42 0.73 0.53 0.40 0.57 0.47 0.52 0.68 0.59 0.58 0.62 0.60 
CA 1950 0.74 0.58 0.65 0.79 0.57 0.66 0.89 0.67 0.77 0.83 0.57 0.67 
NY 1900 0.63 0.64 0.63 0.67 0.64 0.65 0.75 0.77 0.76 0.80 0.77 0.79 
NY 1930 0.83 0.72 0.77 0.84 0.72 0.77 0.84 0.93 0.89 0.84 0.93 0.88 
NY 1950 0.77 0.78 0.78 0.76 0.73 0.74 0.97 0.93 0.95 0.97 0.88 0.92 
AL 1920 Instance-based 0.19 0.36 0.24 0.22 0.36 0.27 0.67 0.39 0.49 0.61 0.30 0.41 
CA 1900 0.48 0.70 0.57 0.50 0.70 0.58 0.63 0.58 0.60 0.65 0.58 0.62 
CA 1950 0.76 0.61 0.68 0.77 0.61 0.68 0.86 0.62 0.72 0.84 0.59 0.69 
NY 1900 0.70 0.60 0.65 0.73 0.61 0.67 0.78 0.72 0.75 0.81 0.74 0.77 
NY 1930 0.85 0.71 0.77 0.86 0.72 0.78 0.89 0.83 0.86 0.89 0.83 0.86 
NY 1950 0.86 0.66 0.75 0.84 0.65 0.73 0.97 0.84 0.90 0.96 0.83 0.89  
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Fig. 16. Temporal plausibility analysis assessing the trend of the ROI obtained for each road segment over time, for the NY and CA study area, and for all com-
binations of points in time. Shown are the bivariate histograms of ROI pairs after discretizing the ROI distributions into 50 equal-width classes. A concentration on or 
above the main diagonal implies roads that persist, or that were added during the observational window, respectively. Data points below the main diagonal indicate 
disappearing roads, which is considered implausible. High frequencies at or near (0,0) indicate roads that did not exist during the study period (i.e., low ROI in both 
points in time). 

Table 4 
Road length dynamics over time. The reported relative change is measured as the increase in road network length relative to the earlier point in time.   

Year Albany (NY) study area Bay Area (CA) study area 

Total road network length [km] Relative change [%] Total road network length [km] Relative change [%] 

1900 1930 1950 1900–1930 1930–1950 1900–1950 1900 1950 1900–1950 

Clustering per study area overall 4359 6142 6382 40.9 3.9 46.4 14,572 18,557 27.4 
urban 2085 3054 3317 46.5 8.6 59.1 8283 11,461 38.4 
rural 2274 3088 3065 35.8 − 0.7 34.8 6289 7096 12.8 

Clustering per map sheet overall 4181 6077 6292 45.3 3.5 50.5 14,143 18,774 32.7 
urban 2054 3087 3300 50.3 6.9 60.7 8017 11,503 43.5 
rural 2127 2990 2992 40.6 0.1 40.7 6126 7271 18.7  

Table 5 
Multi-temporal road network statistics based on cross-tabulation of cluster labels over time.  

Clustering strategy Study area T1 T2 km road [%] of contemporary road length 

Not existent Persistent Newly 
built 

Disappeared Not existent Persistent Newly 
built 

Disappeared 

Clustering per study 
area 

NY 1900 1930 3625 3756 2522 605 34.50 35.75 24.00 5.75 
NY 1930 1950 3399 5664 825 613 32.36 53.94 7.86 5.84 
NY 1900 1950 3379 3727 2762 633 32.18 35.49 26.31 6.03 
CA 1900 1950 12,966 10,544 9253 4578 34.72 28.24 24.78 12.26 

Clustering per map sheet NY 1900 1930 3317 3772 2277 503 33.61 38.22 23.07 5.10 
NY 1930 1950 3105 5572 716 477 31.46 56.45 7.25 4.84 
NY 1900 1950 3082 3775 2513 501 31.22 38.25 25.46 5.08 
CA 1900 1950 13,026 10,142 8097 4096 36.84 28.68 22.90 11.58  
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over time (Tables 4,5, Fig. 16), which is in line with the literature on 
road network development (Levinson, 2005). Finally, the proposed 
method appears to be insensitive to the choice of parameters used to 
sample color information from the historical maps and to construct the 
ROI measure (Fig. 17). 

The extracted historical road networks reflect long-term urbaniza-
tion and land development patterns and constitute an important step 
towards the availability of large-scale, historical road network data, 
which will fill an important gap in the geospatial data landscape. As such 
data is scarce, the quantitative evaluation of the extracted road networks 
is difficult. Therefore, we employed two types of reference data: his-
torical built-up areas, and road presence-absence data obtained from 
manual map interpretation. The results suggest relatively high levels of 
agreement, increasing over time (e.g., Table 3). Observed disagreement 
(e.g., lower levels of accuracy for specific map sheets or points in time) 
likely represents a combined effect of misclassification and the in-
compatibility of the reference data used (i.e., presence of a road may not 
always indicate the presence of a built-up structure, or vice-versa). In 
addition to that, map quality affects the extraction results, as observed in 
the Mobile, Alabama, map which exhibits a very unique, rough carto-
graphic style as a black-and-white print (Fig. 10). 

As a result of misclassification, individual road segments of the 
extracted historical road network may be missing (omission errors) or 
may be spatially isolated (likely to represent commission errors). While 
such imperfect results can be used to identify and quantify urban growth 
and land development patterns, measured through the lens of the road 
network (e.g., Tables 4 and 5), topological or connectivity-based ana-
lyses conducted on the extracted historical road networks may be biased 
and require further refinement of the results. Such refinements could 
involve topological checks and heuristics to ensure the connectivity of 
the extracted road networks, integrated in the binarization process to 
“separate” historical from more recent road network segments (Section 
2.4.4). This will enhance the usability of the extracted historical road 
networks for topology-based analyses. Moreover, such a topology- 
informed extraction will also overcome a current limitation, which is 
the data-driven, and rigorous derivation of the ROI threshold (using ck- 
means clustering) that may be the cause for some of the observed 
misclassifications. 

In summary, the presented method represents an innovative example 
of spatial data integration and highlights how we can gain knowledge 
about past landscapes by leveraging color information harvested from 
increasingly digitally available historical maps at large spatial extents. 

5. Conclusions 

Herein, we propose a method that integrates contemporary, spatially 
explicit vector road network data and color information from historical 
topographic maps in order to reconstruct past road networks at high 
spatial detail, and in a fully automated manner. To our knowledge, this 
analysis represents the first large-scale study that “translates” color in-
formation from historical maps into quantitative indicators using road 
network segments as analytical units. This approach enables the direct 
measurement and quantification of land development and urban growth 
through a road network lens in a completely unsupervised manner. 
Thus, it constitutes an important step towards the fully automatic 
preservation of spatial-historical information on past landscapes con-
tained in historical cartographic documents. 

The proposed approach is robust to the choice of user-set parameters. 
It is unsupervised and thus, does not require any training data. It is 
computationally efficient and could be applied at country scales at a 
feasible level of data processing effort. Moreover, the results of the 
sensitivity analysis (Fig. 17) suggest that through modification of the 
parameters used to establish the ROI, the extraction can be made more 
efficient without affecting the results. 

Despite the observed, high levels of agreement with a manually 
labelled reference database, as well as acceptable agreement with Fi
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historical built-up areas, there are a few shortcomings of the proposed 
approach. (A) Our method is based on the contemporary road network 
as the analysis universe, and allows for measuring road network growth 
over time, but not the shrinkage of road networks (i.e., roads that have 
disappeared over time). While shrinkage of transportation infrastructure 
is common in the case of railroad networks in the US (Levinson, 2005), 
road network shrinkage is not common and typically neglected in sci-
entific studies (e.g., Meijer, Huijbregts, Schotten, & Schipper, 2018). (B) 
Our method is not capable to discriminate between roads and other 
linear features depicted in historical maps, such as railroads, contour 
lines, map graticule, or administrative borders. Future work could make 
use of additional color information, or of a supervised classification 
approach to tackle this problem. Future work will also include testing 
alternative clustering techniques (e.g., Liu, Ting, & Zhou, 2008; Schu-
bert et al., 2017) and binarization strategies for the continuous ROI 
measure (e.g., Otsu, 1979; Sabo, Scitovski, & Vazler, 2013), or a-pos-
teriori refinement strategies, such as topological assessments to identify 
disconnected road segments. Moreover, the proposed method could be 
employed as a labelled data generator for the automated training data 
generation by sampling from both sides of the ROI distributions. These 
training data could then be input to computer-vision based road 
recognition models using convolutional neural networks or similar ap-
proaches (Can et al., 2021; Ekim et al., 2021; Saeedimoghaddam & 
Stepinski, 2020; Jiao et al., 2021). Such a two-staged approach would 
also overcome the shortcoming of ignoring road network shrinkage. 
Furthermore, we will test the applicability of the presented approach to 
multi-temporal remote sensing data, or historical aerial imagery instead 
of historical maps. 

The availability of spatially explicit, historical road network data 
over large geographic (and temporal) extents will enhance a variety of 
research directions, such as road network scaling (e.g., Strano et al., 
2017), urban growth simulation (e.g., Zhao, Sun, Wu, & Gao, 2014; 
Zhao, Wu, Sun, Gao, & Liu, 2016), economic studies related to the road 
network (e.g., Iacono & Levinson, 2016; Miatto, Schandl, Wiedenhofer, 
Krausmann, & Tanikawa, 2017) and studies on the co-evolution of road 
networks and other components of the built environment (Achibet et al., 
2014). As our approach does not extract historical road geometries from 
raster maps directly, but annotates contemporary vector data, the re-
sults, once topologically cleaned, could be directly input to topology- 
and graph based systems for change analysis (e.g., Lohfink, McPhee, & 
Ware, 2010; Shbita et al., 2020). 

Concluding, the presented method and results illustrate how the 
integration of multi-source geospatial data allows for the generation of 
enriched, novel data infrastructure, constituting a fundamental prereq-
uisite to enhance our knowledge of the long-term evolution of contem-
porary geographic phenomena. Ultimately, a thorough understanding of 
the long-term development of urban and rural transportation infra-
structure will enable a more informed urban and regional planning, and 
make future transportation infrastructure more efficient, resilient, and 
sustainable. 
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Appendix A. Appendix  

Appendix Table A1 
Binary classification accuracy assessment of the ck-means clusters against manually created reference data and reference labels based on the built-up area fraction per 
road buffer, including urban and rural strata for each scenario (Prec = Precision, Rec = Recall).  

Referene data source: Reference labels from built-up fraction >0% Manually created reference labels 

Cluster analysis setup: Per study area Per map sheet Per study area Per map sheet 

Weighting scheme Study area Year Stratum Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 

Road length AL 1920 overall 0.12 0.43 0.19 0.17 0.43 0.24 0.67 0.50 0.58 0.69 0.36 0.48 
AL 1920 rural 0.07 0.54 0.12 0.11 0.54 0.19 0.70 0.59 0.64 0.77 0.39 0.52 
AL 1920 urban 0.30 0.36 0.33 0.28 0.36 0.31 0.58 0.30 0.40 0.53 0.30 0.38 
CA 1900 overall 0.42 0.73 0.53 0.40 0.57 0.47 0.52 0.68 0.59 0.58 0.62 0.60 
CA 1900 rural 0.36 0.88 0.51 0.29 0.47 0.36 0.41 0.81 0.54 0.48 0.63 0.54 
CA 1900 urban 0.51 0.61 0.56 0.52 0.64 0.57 0.68 0.59 0.63 0.69 0.62 0.65 
CA 1950 overall 0.74 0.58 0.65 0.79 0.57 0.66 0.89 0.67 0.77 0.83 0.57 0.67 
CA 1950 rural 0.65 0.63 0.64 0.79 0.64 0.70 0.91 0.82 0.87 0.77 0.58 0.66 
CA 1950 urban 0.78 0.57 0.66 0.79 0.54 0.64 0.88 0.60 0.72 0.86 0.56 0.68 
NY 1900 overall 0.63 0.64 0.63 0.67 0.64 0.65 0.75 0.77 0.76 0.80 0.77 0.79 

(continued on next page) 
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Appendix Table A1 (continued ) 

Referene data source: Reference labels from built-up fraction >0% Manually created reference labels 

Cluster analysis setup: Per study area Per map sheet Per study area Per map sheet 

Weighting scheme Study area Year Stratum Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 

NY 1900 rural 0.63 0.72 0.67 0.66 0.72 0.69 0.81 0.84 0.83 0.85 0.84 0.84 
NY 1900 urban 0.62 0.49 0.55 0.70 0.49 0.58 0.60 0.60 0.60 0.68 0.61 0.64 
NY 1930 overall 0.83 0.72 0.77 0.84 0.72 0.77 0.84 0.93 0.89 0.84 0.93 0.88 
NY 1930 rural 0.80 0.73 0.76 0.80 0.73 0.76 0.84 1.00 0.91 0.84 1.00 0.91 
NY 1930 urban 0.90 0.69 0.78 0.93 0.70 0.80 0.85 0.82 0.83 0.84 0.79 0.82 
NY 1950 overall 0.77 0.78 0.78 0.76 0.73 0.74 0.97 0.93 0.95 0.97 0.88 0.92 
NY 1950 rural 0.70 0.93 0.80 0.67 0.83 0.74 0.97 0.97 0.97 0.97 0.89 0.93 
NY 1950 urban 0.92 0.63 0.75 0.92 0.63 0.75 0.97 0.85 0.90 0.96 0.85 0.90 

Instance-based AL 1920 overall 0.19 0.36 0.24 0.22 0.36 0.27 0.67 0.39 0.49 0.61 0.30 0.41 
AL 1920 rural 0.09 0.50 0.15 0.14 0.50 0.22 0.73 0.53 0.62 0.71 0.33 0.45 
AL 1920 urban 0.25 0.33 0.29 0.25 0.33 0.29 0.63 0.32 0.43 0.56 0.29 0.38 
CA 1900 overall 0.48 0.70 0.57 0.50 0.70 0.58 0.63 0.58 0.60 0.65 0.58 0.62 
CA 1900 rural 0.44 0.88 0.58 0.45 0.63 0.53 0.38 0.86 0.52 0.45 0.71 0.56 
CA 1900 urban 0.49 0.67 0.57 0.51 0.71 0.59 0.69 0.56 0.62 0.68 0.57 0.62 
CA 1950 overall 0.76 0.61 0.68 0.77 0.61 0.68 0.86 0.62 0.72 0.84 0.59 0.69 
CA 1950 rural 0.70 0.58 0.64 0.80 0.67 0.73 0.90 0.75 0.82 0.80 0.67 0.73 
CA 1950 urban 0.77 0.61 0.68 0.77 0.60 0.67 0.85 0.60 0.71 0.84 0.59 0.69 
NY 1900 overall 0.70 0.60 0.65 0.73 0.61 0.67 0.78 0.72 0.75 0.81 0.74 0.77 
NY 1900 rural 0.60 0.82 0.69 0.64 0.82 0.72 0.73 0.92 0.81 0.79 0.92 0.85 
NY 1900 urban 0.73 0.56 0.63 0.76 0.58 0.65 0.80 0.68 0.73 0.82 0.70 0.76 
NY 1930 overall 0.85 0.71 0.77 0.86 0.72 0.78 0.89 0.83 0.86 0.89 0.83 0.86 
NY 1930 rural 0.76 0.81 0.79 0.76 0.81 0.79 0.88 1.00 0.94 0.88 1.00 0.94 
NY 1930 urban 0.87 0.69 0.77 0.89 0.70 0.78 0.89 0.79 0.84 0.89 0.79 0.84 
NY 1950 overall 0.86 0.66 0.75 0.84 0.65 0.73 0.97 0.84 0.90 0.96 0.83 0.89 
NY 1950 rural 0.71 0.92 0.80 0.69 0.85 0.76 0.94 0.94 0.94 0.94 0.88 0.91 
NY 1950 urban 0.90 0.62 0.73 0.89 0.62 0.73 0.98 0.82 0.89 0.97 0.82 0.89   

Appendix Table A2 
Multi-temporal road network statistics based on cross-tabulation of cluster labels across time, within strata of urban and rural roads, and for both clustering strategies.  

Clustering strategy Study 
area 

T1 T2 Stratum km road [%] of contemporary road length 

Not 
existent 

Persistent Newly 
built 

Disappeared Not 
existent 

Persistent Newly 
built 

Disappeared 

Clustering per 
study area 

NY 1900 1930 overall 3625 3756 2522 605 34.50 35.75 24.00 5.75 
NY 1900 1930 urban 2490 1747 1391 353 41.64 29.21 23.26 5.90 
NY 1900 1930 rural 1135 2009 1131 252 25.07 44.39 24.98 5.56 
NY 1930 1950 overall 3399 5664 825 613 32.36 53.94 7.86 5.84 
NY 1930 1950 urban 2312 2824 526 311 38.70 47.29 8.81 5.20 
NY 1930 1950 rural 1087 2840 299 303 24.01 62.71 6.60 6.69 
NY 1900 1950 overall 3379 3727 2762 633 32.18 35.49 26.31 6.03 
NY 1900 1950 urban 2272 1746 1605 350 38.05 29.23 26.87 5.85 
NY 1900 1950 rural 1107 1981 1157 283 24.44 43.75 25.56 6.25 
CA 1900 1950 overall 12,966 10,544 9253 4.578 34.72 28.24 24.78 12.26 
CA 1900 1950 urban 8397 5495 6080 2.588 37.22 24.36 26.95 11.47 
CA 1900 1950 rural 4569 5049 3173 1.990 30.91 34.16 21.47 13.46 

Clustering per map 
sheet 

NY 1900 1930 overall 3317 3772 2277 503 33.61 38.22 23.07 5.10 
NY 1900 1930 urban 2417 1720 1307 346 41.75 29.70 22.57 5.97 
NY 1900 1930 rural 900 2053 970 158 22.06 50.30 23.77 3.87 
NY 1930 1950 overall 3105 5572 716 477 31.46 56.45 7.25 4.84 
NY 1930 1950 urban 2234 2767 528 260 38.60 47.79 9.12 4.48 
NY 1930 1950 rural 871 2805 187 218 21.34 68.73 4.59 5.33 
NY 1900 1950 overall 3082 3775 2513 501 31.22 38.25 25.46 5.08 
NY 1900 1950 urban 2175 1746 1549 319 37.58 30.17 26.75 5.50 
NY 1900 1950 rural 906 2028 964 182 22.21 49.70 23.62 4.47 
CA 1900 1950 overall 13,026 10,142 8097 4.096 36.84 28.68 22.90 11.58 
CA 1900 1950 urban 8575 5880 5544 2.367 38.34 26.29 24.79 10.59 
CA 1900 1950 rural 4451 4262 2553 1.728 34.25 32.80 19.65 13.30       
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Appendix Fig. A1. Top row: Visualization of segment-length based strata of roads, roughly classifying roads into “urban” roads (segment length < 90th percentile) 
and “rural” roads (segment length ≥ 90th percentile). (a) Albany (NY), (b) Bay area (CA), and (c) Mobile bay (AL). Percentiles are based on road segment length 
distributions per study area. While we did not derive this threshold empirically, we visually cross-compared the extents of the urban road segments with a built-up 
property (BUPR) density surface from the Historical Settlement Data Compilation for the US (HISDAC-US, Uhl, Leyk, McShane, et al., 2021), shown in panels (d)-(f). 
The BUPR surface maps built-up properties in 2016, derived from cadastral data, and is a rough proxy measure for building density. We find high levels of agreement 
between the “urban” roads and high-density settlements.  
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NY-1900 NY-1930 NY-1950

Urban Rural Urban Rural Urban Rural

CA-1900 CA-1950 AL-1920

Urban Rural Urban Rural Urban Rural

Appendix Fig. A2. ROC analysis results of the continuous road overlap indicator against discrete, for different thresholds applied to the building-based reference data. Different thresholds were applied to the built-up 
area fraction within road buffer areas, for generating optimistic and conservative reference labels, i.e., we assume that a road exists if HISDAC-US reports at least one building in the neighborhood of the street, 
(threshold>0), or only if more than 90% of the area in the neighborhood of the street are developed (threshold>0.9).  
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Appendix Fig. A3. Cross-comparison of manually and automatically generated reference data. Agreement between binary labels (road exists / does not exist in map) 
vs. continuous built-up area fractions in the proximity of the roads.  

NY-1900

NY-1930

NY-1950

CA-1900

CA-1950

AL-1920

Study-area clustering Map-sheet clustering Study-area clustering Map-sheet clustering

Silhoutte score
-1 +1

Appendix Fig. A4. Silhouette scores for each road segment from ck-means clustering for each study area, point in time, and clustering strategy.   
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Appendix Fig. A5. Sensitivity analysis results varying the cross-section length, cross section distance used to sample color information from the historical maps, and 
the width w and height h of the axial images used to construct the road overlap metric. Shown are the ROI (upper part) and corresponding ck-means clusters (lower 
part), based on a 1895 map of Amsterdam (NY).  
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