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Abstract—Programming by example (PBE) enables users to
transform data formats without coding. As data transformation
often involves data with heterogeneous formats, it often requires
learning a conditional statement to differentiate these different
formats. However, to be practical, the method must learn the
correct conditional statement efficiently and accurately with little
user input. We present an approach to reduce the conditional
statement learning time and the required amount of data. This
approach takes advantage of the fact that users interact iteratively
with a programming-by-example system. Our approach learns
from previous iterations to guide the program generation for
the current iteration. The final results show that our method
successfully reduces the system running time and the number of
examples.

Keywords—data transformation;clustering;classification; Pro-
gramming by Example;

I. INTRODUCTION

Data transformation is an essential preprocessing step for
many tasks. It changes the data from the source format to the
target format. However, performing such transformation often
requires users to write programs or teach the system by demon-
strating a sequence of transformation operations [1] [2] [3] [4].
It can be time consuming and error-prone. The latest PBE
approaches enable users to generate transformation programs
directly from examples [5] [6].

TABLE I. EXAMPLE SCENARIO

ID Original Target
R1 5.25 in HIGH x 9.375 in WIDE 9.375
R2 9.75 in|16 in HIGH x 13.75 in|19.5 in WIDE 13.75
R3 20 in HIGH x 24 in WIDE 24
R4 Image: 20.5 in. HIGH x 17.5 in. WIDE 17.5
... ... ...
Rn 12 in|14 in HIGH x 16 in|18 in WIDE 16

For example, the original values in Table I are the size
information of some artwork. Some records not only have the
sizes for the artwork but also have the sizes for the frames,
which are separated by a vertical bar. The user only needs to
extract the widths of these artworks. If there is a bar separating
two values for the two widths, the user wants the first one as
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the target value. For instance, the user extracts the 13.75 as
the target in the R2 record.

To transform the original values into target values using the
PBE system, the user just gives some target values as shown
in the right column and the approach automatically learns a
program that can transform the data from the original format
into the target format. This program is then applied to the rest
of the data to convert those data automatically. For example,
the user may only give the target values for the R1 and R2
records; the system then learns the transformation program
that can transform the rest of the original values. The user then
reviews the results. If the user finds entries that are transformed
incorrectly, the user can provide an additional example to refine
the transformation program. This process iterates until the user
determines all the results are correct.

Much real world data has multiple formats and a single
conversion cannot change all these formats. Therefore, it is
essential for a PBE system to generate transformation pro-
grams that are capable of handling conditional transformations.
It requires the system to learn conditional statements that can
recognize these formats and then apply the right transformation
to the data of a specific format. As shown in Table I, the
transformation program should distinguish between the two
types of formats: the one with a bar separating two widths
and the one without the bar.

In this paper, we solve the problem of learning expressive
conditional statements efficiently with few user provided
examples. As shown in Figure 1, to learn the conditional
statement using the given examples, the current state-of-the-
art approach by Gulwani [5] first (1) partitions the examples
into several clusters where examples in one cluster can be
transformed by the same conversion and then (2) learns a
classifier to distinguish these formats. For example, given the
first four rows as examples in Table I, the partition algorithm
generates two partitions: R1, R3 and R4 as one partition and
R2 as its own partition. With the partitions, we can then train a
classifier. This classifier can then be used to recognize the other
inputs so that the approach can invoke the correct conversion
for those inputs.

However, learning a conditional statement for PBE systems
brings a series of challenges. First, the users are waiting for
the response on the fly. The systems only have limited time to
generate the conditional statement. However, PBE approaches



Fig. 1. The steps for learning the conditional statement

must identify one partitioning among the many ways of
clustering the examples such that every partition generated by
this partitioning can produce a program that is consistent with
all its examples. Moreover, it is computationally expensive to
verify whether certain examples can form a partition that can
produce a consistent program.

Second, examples often have multiple valid conditional
statements. Naively, the approach can treat each example as
one partition and learn a conditional statement to differentiate
these partitions. However, the approach aims to identify an
interpretation that is consistent with most of the records. Based
on the Occam’s razor principle, the simplest interpretation
tends to be correct [5]. Therefore, the approach should cluster
the examples into the fewest partitions.

Third, users generally provide few input-output examples.
The conditional statements trained based on the few examples
usually have poor prediction accuracy, as the training data may
not fully represent the rest of the records.

To address the challenges mentioned above, we exploit
the fact that the users usually iteratively interact with the
system. Users provide the examples in an iterative way. Every
time the user provides a new example, it triggers the system
to produce a new transformation program that is consistent
with the examples that it has so far. During the process, the
system explores different ways of partitioning the examples
and gains the knowledge of whether a group of examples can
lead to a valid partition that can generate at least one consistent
program. Therefore, we can maintain a record of the previous
running information so that the system can learn from its past
experience to guide the current partitioning. To fully utilize
the previous knowledge, our approach learns a distance metric
and integrates it into the partitioning. By applying distance
metric learning, the system will assign large distances among
the examples that cannot form a valid partition and assign
small distances among the examples that can generate a valid
partition. Through this distance metric, the formed clusters
are less likely to violate any constraints owing to the small
distances among the examples.

Moreover, this distance metric can be used to incorporate
unlabeled inputs as training data to improve the classifier’s
accuracy. Here, unlabeled inputs refer to the inputs that are not

used as examples. We first use the distance metric to calculate
the distances from the unlabeled entry to each partition. Our
approach then assigns the unlabeled entry into the correspond-
ing partition based on its relative distances to other partitions.
These unlabeled inputs along with examples are used to train
the classifier used as the conditional statement, which reduces
the required number of manually provided examples.

To summarize, our approach has the following contribu-
tions:

1) exploiting the iterative process to collect constraints;
2) learning a distance metric based on all known constraints

to efficiently partition examples into clusters;
3) utilizing the unlabeled data to improve the accuracy of

the conditional statement, which reduces the number of
required examples.

II. PREVIOUS WORK ON PROGRAMMING BY EXAMPLE

Our approach is built on the state-of-the-art PBE system
described in Gulwani [5], which exploits the version space
algebra like many other program induction approaches [3].
His approach defines a string transformation language. This
language supports a restricted, but expressive form of regular
expressions.

To better understand the structure of the generated trans-
formation program, we use a different representation of the
transformation program without changing its meaning. The
transformation program learned from the examples is shown
in Figure 2. This program has a conditional statement to find
the class label for the input. It then choose the right partition
transformation program to change the data format.

Fig. 2. Transformation Program

Definition 1. comp(p1, p2) = 1, if partitions p1 and p2 are
compatible. Otherwise, comp(p1, p2) = 0. Two partitions are
compatible, if the merger of the two partition can generate a
valid partition that can produce a program that is consistent
with all its examples.

Definition 2. merge(p1, p2) returns the newly generated par-
tition by merging p1 and p2. merge(p1, p2) = φ, if p1 and p2
are incompatible.

To learn the conditional statement, the approach initially
treats each example as its own partition. It iterates over all



the different pairs of partitions and select the two compatible
partitions with highest compatibility score (cs) [5] to merge
each time. The process iterates until no more compatible
partitions are available. The compatibility score is defined as
follows.

CS(p1, p2, P ) = (CS1(p1, p2, P ), CS2(p1, p2)) (1)

CS1 =
∑

pk∈P,k 6=1,k 6=2

z(p1, p2, pk) (2)

z(p1, p2, pk) =

{
1 if (comp(p1, pk) = comp(p2, pk)

= comp(merge(p1, p2), pk))
0 otherwise

(3)

CS2 =
size(merge(p1, p2))

max(size(p1), size(p2))
(4)

The compatibility score consists of two parts: (1) the
agreement score CS1, which captures the compatibility of
merged partitions with the rest of partitions and (2) a finer
score CS2 used to measure the relative size of the partition
after the merge. The CS2 is used only when there is a tie of
CS1 scores. As shown in the equation above, the CS1 is the
summarization of the z(p1, p2, pk). z(p1, p2, pk) is 1 if both p1
and p2 are compatible with pk, while the merged partition of p1
and p2 is also compatible with pk. The CS2 score calculates
the relative size of the programs after the merge, where the
size function measures the number of programs that can be
generated from the partition.

To select two partitions, the approach is required to cal-
culate O(n3) times whether two partitions are compatible
where n is the number of partitions. Verifying whether two
partitions are compatible is computationally expensive; it re-
quires verifying whether the merged partitions can generate
a program that is consistent with examples. Each partition
actually corresponds to a hypothesis space derived from the
examples belonging to their partition where each hypothesis
corresponds to a transformation program. Merging two par-
titions requires intersecting the two hypothesis spaces of the
two partitions and verifying whether there exists a program
that is consistent with the examples from both partitions. It is
especially computationally expensive when the two partitions
are incompatible, as it requires evaluating all the programs in
that intersected space.

III. CONSTRUCT CONDITIONAL TRANSFORMATIONS

Our approach iteratively learns conditional statements for
PBE systems as shown in Algorithm 1. The approach in every
iteration can be broke into 3 high-level steps: (1) partitioning
the examples, (2) learning the classifier and (3) generating
branch programs for all the partitions. To takes advantage of
the knowledge obtained from previous iterations, the approach
also maintains the information collected from previous itera-
tions and represent it using two types of constraints. In each
iteration, these constraints are used improve the performance
of partitioning and classifier learning.

• Set of cannot-merge constraints: each cannot-merge con-
straint in this set contains a group of examples that are

not compatible in the same partition, which has been
discovered previously.

• Set of must-merge constraints: each must-merge con-
straint in this set contains the examples that are already
in the same partition.

Every time the user provides a new example, the approach
first partitions the examples. The partition function takes five
arguments: the cannot-merge constraints R, the must-merge
constraints M , all the examples E, the unlabeled data U
and the parameters Dw for the distance metric. It learns a
distance metric Dw to partition the examples into several clus-
ters. During the execution, it also adds the newly discovered
constraints into the constraint sets and updates the distance
metric parameters when necessary. The set of must-merge
constraints (M ) is cleared at the beginning of every iteration,
as the newly provided examples can change the membership of
previous examples. We empty M to allow different partitions
to be formed in the new iteration. Second, the approach learns
a classifier for the partitions. It uses the examples in each
partition along with the unlabeled inputs assigned to each
partition to train the classifier. This classifier serves as the
conditional statement. Third, the approach generates partition
transformation programs that are consistent with the examples
in each partition respectively. To generate the conversion
program for each partition, we used the approach described
by Gulwani [5]. Finally, our approach combines the partition
transformation programs prog1, prog2, ... with the conditional
statement G to create the transformation program.

Algorithm 1: Create Transformation Program
Input: examples E = Ø, unlabeled Data U ,

cannot-merge constraints R = Ø, must-merge
constraints M = Ø, distance metric Dw

while user provides a new example do
E = E ∪ e
M = Ø
partitions=partition(R,M,E,U,Dw)
G=learnClassifier(partitions, Dw, U )
for pi in partitions do

progi=learnPartitionTransformation(pi)
create transformation program by combining G and
{prog1, prog2, ...}

Our approach can be easily applied to other PBE systems to
learn the conditional statement, as it does not require knowing
how the conversion programs are generated. It only needs
to know whether the PBE system can successfully generate
conversion programs from a group of examples, which will be
explained in the following sections with more details.

A. Partition Algorithm

The Partition algorithm in each iteration places the exam-
ples into several clusters where each cluster can be covered by
the same program. We prefer a smaller number of partitions, as
it often leads to a more concise program with fewer conditional
branches.

The partitioning algorithm takes a set of inputs. E is the
set of the examples given by the user. U is a set of original



inputs randomly selected from all original inputs that are not
used as examples. Dw is the distance metric learned from
the previous iteration. The distance metric here is a weighted
Euclidean distance and Dw contains the weights for all the
features. R contains all the known cannot-merge constraints
so far. M contains all the must-merge constraints discovered
in the current iteration. As the new example given by the user
may change the previous partitioning, M is initialized to empty
at the beginning of each iteration.

Our system performs the following preprocessing before
partitioning the examples. The goal is to convert the text
into feature vectors. The approach first tokenizes all the texts
into token sequences. A token is a class of characters. We
use the following tokens to tokenize the string: NUM ([0-
9]+), LWRD([a-z]+), UWRD([A-Z]), BNK(whitespace) and
some punctuation token like a comma, a hyphen, etc. Here,
the UWRD represents a single upper case letter and LWRD
represents a continuous sequence of lower case letters. We also
use start and end tokens to indicate the start and end position
of the input.

With these token sequences, we count these tokens and
use these counts of different tokens as the feature values. We
count the tokens, which is not just based on their types but
also on the content of the token. For example, a string “Width:
9.75 in” can be tokenized as “Start UWRD(W), LWRD(idth)
Colon(:) BNK NUM(9) Period(.) NUM(75) BNK LWRD(in)
End”. The feature vector of this string: “NUM: 2, UWRD: 1,
LWRD: 2, BNK: 2, Period: 1, Colon: 1, W: 1, idth: 1, 9: 1, 75:
1, in: 1”. We can see that “W”, “idth” etc. are considered as
tokens. For the features based on the token content, we reduce
the dimension of the feature vector by discarding some rare
tokens that appear in less than 10% of the entries. By doing
so, we can convert all the inputs into feature vectors. We then
perform feature rescaling over these vectors.

To partition the examples, our partitioning algorithm es-
sentially performs a constrained agglomerative clustering. As
shown in Algorithm 2, each example becomes a partition pi
at the beginning.

Algorithm 2: Partition Algorithm
Input: examples E, unlabeled Data U, cannot-merge

constraints R, must-merge constraints M = Ø,
distance metric Dw

Output: partitions P

create a partition pi for each ei ∈ E
while ∃pi, pj ∈ P merge(pi, pj) 6= Ø do

use Dw to find two closet partitions px, py
pz = merge(px, py)
if pz = Ø then

R = R ∪ {{ei | ei ∈ px ∨ ei ∈ py}}
Learn Distance Metric Dw using U , R and M

else
P = P \ {px, py}
P = P ∪ {pz}
update M with P

Return P

Our algorithm will continue running if there are still

partitions to merge. In each round, it tries to find the two
closest partitions and merge them into one. To calculate the
distance between two partitions, we use the minimal distance
between the examples of the two partitions as below. This
will result in a dense partition with examples compared to
the centroid-based distance. The ex and ey are the examples
belonging to partitions pi and pj .

d(pi, pj) = min{d(ex, ey)|ex ∈ pi, ey ∈ pj}
If the merge cannot generate a valid partition (pz = Ø),

the algorithm records a new cannot-merge constraint with all
the examples in pi and pj . It adds this constraint to the cannot-
merge constraint set R. It then uses the updated cannot-merge
and the must-merge constraints to refine the distance metric
Dw, which is described in the next section. With the updated
distance metric, the algorithm finds the two closest partitions
without contradiction to the constraints.

If the merge succeeded, the previous two partitions are
removed from partitions P . The new partition (pz) is inserted
into the existing partitions set P . It also updates the must-
merge constraints M using the current clusters that have at
least two examples. The examples in the partition ({ei|ei ∈ p})
form one must-merge constraint.

For example, the user provides the first four records in
Table I as examples. The algorithm now needs to partition
these examples. In the previous iteration, the system has
already successfully learned a program with three examples
and identified one cannot-merge constraint (R1, R2 and R3).
Suppose there are three partitions in the current iteration: (1)
R1 and R3 are in one partition (R1, R3), (2) R2 is in the
second partition and (3) R4 is in the third partition. Thus, R1
and R3 constitute one must-merge constraint. As R1 and R3
in the must-merge constraints have different “.” counts (two
“.” in R1 and zero “.” in R3), it indicates the examples can
have different numbers of “.” in the same partition. At the
same time, the cannot-merge constraint with R1, R2 and R3
shows that differences in the number of “|” and “. ” indicate
that these examples may not be put into the same partition.
Combining the information from both must-merge and cannot-
merge constraints, the distance metric learning can figure out
that the examples with different numbers of “|” should not
be in the same cluster while the different number of “.” does
not matter. It will assign large distances among records with
different numbers of “|” and assign small distances to the
records with different number of “.”. Therefore, the algorithm
will put the R4 record into the same partition as R1 and R3.

B. Distance Metric Learning

Our approach learns a weighted Euclidean distance that is
a special case of the Mahalanobis distance [7]. This weighted
Euclidean distance is used to select partitions to merge. The
weights of the features are used to capture the importance of
that feature in deciding the distance. The higher weight for a
certain feature, the larger distance incurred due to the variance
on this feature between two records.

d(x, y) = ‖x− y‖w =
√∑

i wi(xi − yi)2

The x and y are two feature vectors and wi is the weight
for the i-th feature. We use weighted Euclidean distance for
two reasons: (1) less expensive to calculate than Mahalanobis



distance as our program interacts with users on the fly, which
requires fast response, (2) the weights in the distance metric
are more interpretable.

To incorporate the constraints, our objective function is as
follow.

arg min
w>0

∑
i

‖xi − exi
‖w + a · g(w)− b · h(w) (5)

g(w) = ln(
∑
Xm

∑
xi,xj∈Xm,i6=j

‖xi − xj‖w) (6)

h(w) = ln
∑
Xr

max
xi,xj∈Xr

‖xi − xj‖w (7)

The first component is the sum of the squared weighted
Euclidean distance from each unlabeled input to its cluster. To
find which cluster this input belongs to, we simply assign the
input to its closest partition. To calculate the distance between
the input and a partition, we use the smallest distance between
the input and the examples in that partition as follows:

d(x, p) = min{‖x− ei‖w | ei ∈ p}. (8)

Here, x is the input, p is the partition and ei is an example
in partition p. ‖x− exi‖w is the weighted Euclidean distance
between input x and the closest example exi

in p, which is
the distance from x to its corresponding partition.

g(w) is the penalization term corresponding to the must-
merge constraints. A must-merge Xm constraint means the
examples in this constraint should be in the same partition,
which implies that these examples should be close to each
other so that they can form a cluster. Therefore, we penalize the
sum of the distances between examples in the must-merge con-
straint.

∑
xi,xj∈Xm,i6=j ‖xi − xj‖w adds the distances between

all pairs of examples xi and xj in one must-merge constraint
Xm. It then sums over all the different must-merge constraints.

h(w) is the penalization term corresponding to the cannot-
merge constraints. The cannot-merge constraint Xr means
the examples in this constraint should not be in the same
partition. However, a subset of the examples can still be in
the same partition. For example as shown in Table I, R1,
R2 and R3 together are not compatible, but R1 and R3
can be in the same partition. Intuitively, the examples in
the cannot-merge constraint should at least have one pair of
examples that are extremely far away from each other. This
can also be interpreted as the requirement that the farthest
two examples in this constraint should be extremely far away
from each other. To model this type of constraint, we first
use a max operator to find the farthest examples xi and xj by
maxxi,xj∈Xr

‖xi − xj‖w in each constraint Xr and then try to
maximize the distance of this pair of examples by minimizing
its negative values. This term then sums over all the different
cannot-merge constraints. The costs a and b provide a way
of specifying the relative importance of the two types of
constraints. The a is usually set as a large coefficient and b is
set according to the ratio between the number of constraints
in the must-merge and the cannot-merge sets.

As there is a max operator in the objective function, we
propose an iterative optimization algorithm that alternates be-
tween finding the farthest pair in the cannot-merge constraints
and finding the optimal w. The algorithm works as follows:

• Find the farthest pairs of examples xi and xj in each
cannot-merge constraint Xr.

• Optimize the objective function in Equation 5 where
h(w) = ln

∑
Xr
‖xi − xj‖w using the gradient descent.

Firstly, the optimization algorithm fixes on w to find the
farthest pairs of examples in each cannot-merge constraint
group to remove the max operator in the objective function; the
algorithm later fixes on these farthest pairs of examples to find
the w that makes the objective function achieve the minimum
value using the gradient descent algorithm. The algorithm
performs a line search to select the right step size to ensure
w > 0 during the search. This process iterates until reaching
a fixed number of iterations or the change of the objective
function is below a threshold. As the objective function’s
value always decreases in each step of the optimization, our
algorithm will finally converge to a local optima.

C. Learning the Classifier

Our system learns a multi-class classifier as the conditional
after an iteration. The users are only willing to provide a
small number of examples, which are usually 2-5 per partition.
Relying on data solely from examples can result in a classifier
with poor prediction performance, which in turn may require
the user to provide more examples to improve the classifier’s
performance. Therefore, we augment the training data with
both the examples and the unlabeled inputs assigned to that
partition and then train a classifier to recognize these partitions.
The data in each partition can be seen in Figure 3. For
each partition, the upper table shows the examples of that
partition. The bottom table shows the unlabeled data that has
been assigned to this partition as it has the shortest distance
to this partition as mentioned in previous section. Later, we
can use the inputs of the examples and other raw unlabeled
inputs together to train a SVM [8] classifier as the conditional
statement for the transformation program.

Fig. 3. The examples and the unlabeled data in each partition

We filter the unlabeled data before using it as the training
data. As we mentioned before, the unlabeled inputs are added
into the closest partition using the learned distance metric.
To prevent the approach adding raw inputs into the wrong
partition, we follow the steps in Algorithm 3 to keep only the
inputs that we are certain about their labels.



Algorithm 3: Filter the unlabeled data in each partition
Input: partitions P , unlabeled data U

for pi ∈ P do
for ui ∈ pi do

d1=getDistance(ui, pi)
for pj ∈ P and pj 6= pi do

d2 = getDistance(ui, pj)
if (d2 − d1)/d1 < ε then

delete ui

for pi ∈ P do
sort Upi ascendingly based on distance
keep top K elements in U

The algorithm 3 iterates over all the unlabeled data ui in
each partition pi. First, it computes the distance d1 between the
unlabeled input and the partition it belongs to. The distance
between an input and a partition is defined in Equation 8.
The algorithm then computes the distances between the input
ui and all other partitions pj . If any distance d2 is close to
d1 and the difference is within a threshold ε, it means the
distances from the input to the two partitions are very close
and the input lies near the boundary of the two partitions. We
are not confident with the class label for these raw inputs.
To avoid adding the inputs into the wrong class, we remove
these unlabeled inputs from the partitions. In practice, we have
found that setting the ε to 10% usually achieves a good result.
Second, our approach sorts the remaining unlabeled inputs in
the ascending order based on the distance to their partition.
We then only keep the top K unlabeled inputs as the training
data. We usually set the K to be 10 times the number of the
examples in that partition. Finally, we use the inputs of the
examples and the remaining unlabeled inputs as the training
data to learn a SVM [8] classifier.

IV. RELATED WORK

Programming-by-example approaches has been extensively
studied for the past decades. Early work [9] [10] [11] in
wrapper induction learns extraction rules from user labels to
extract target fields from documents. These extraction rules
are used to locate the target fields and return the values of
these target fields. These rules are similar to the substring
expressions used in our approach. However, our approach
adopts a domain specific language to organize the extractors to
generate more powerful programs. It allows the concatenation
of the substring extractors in arbitrary order, loop extractors.
Moreover, the approach can also handle multiple branches
using conditional statements.

SMARTpython [12] learns programs using a subset of the
python programming language through user demonstration,
which supports conditionals, loops and arrays. But it only
allows the if-else clause. To learn the clause, it analyzes
the traces of various programs to identify the conditional
statement. It then labels the conditional statement positive if
it is evaluated to be true and labels the statement negative
if it is evaluated to be false. Given the labeled data, it can
train a binary classifier to serve as the conditional statement.

Data Wrangler [4] is an interactive tool for data transformation.
Besides supporting string level transformation, it also supports
data layout transformation including column split, column
merge, fold and unfold. It learns a parameter set from the
user interaction to recognize whether a row, column or a cell
is the target that should be transformed. This is essentially a
binary classifier, which helps the user focus on the target data
that they want to transform. Our approach is different from
the two approaches above as our approach learns a multi-class
conditional statement. It can include more than two branches
in the program, which means it can handle more than two
kinds of inputs at the same time.

Gulwani [5] developed an approach to synthesize a trans-
formation program through input and output pairs. His ap-
proach directly learns a set of binary classifiers to recognize
whether an input matches a certain format. As it has multiple
binary classifiers, it can also handle multiple formats at the
same time. However, the classifiers used in [5] are built based
on conjunction or disjunction of a predefined set of predicates,
which is hard to express the nominal values of the features like
the counts of different tokens. Moreover, our work focuses on
exploiting previous knowledge to learn the conditional more
efficiently and accurately. Perelman [13] developed a program
synthesizer which can synthesize a program in any domain
if given a domain specific language. His approach iteratively
creates new programs using previously generated subprograms,
which can be used to improve the efficiency in generating
the partition transformation code. However, his approach does
not generate the conditional statement efficiently by utilizing
constraints from previous iterations.

There is a large body of work in metric learning [14] [15].
Researchers applied distance metric learning in various clus-
tering algorithms. Some of the most closely related work is
[16] [17] [18] [19] [20]. Xing et al. [16] proposed to learn
a Mahalanobis distance metric and applied it in K-means
algorithm. Bilenko et al. [17] integrate the constraints and
metric learning in K-means clustering by utilizing both the
constraints and unlabeled data. The two approaches above
both used pairwise constraints, which claim two instances
should either be close or far away from each other. David-
son et al. [21] investigated applying instance-level must-
link and cannot-link constraints in agglomerative clustering,
which shows the feasibility of the problem. Bade and Nurn-
berger [18] described an approach that learned a distance
metric to perform agglomerative clustering by introducing
relative instance-level constraints. Zhao and Qi [19] extended
instance-level constraints to order constraints to capture the
hierarchical side information. Zheng and Li [20] used the
triple-wise relative constraint, which is a special case of the
order constraints. They then applied a ultra-metric dendro-
gram distance to improve effectiveness and efficiency of the
hierarchical clustering. Our partition algorithm is essentially
performing agglomerative clustering, which integrates distance
metric learning with constraints. It is different from previous
approaches as we first applied must-merge and cannot-merge
constraints in distance metric learning, which describes the
relationships among groups of instances instead of pairwise
or relative pairwise constraints. Our constraints are defined
on a group of instances, of which there can be more than
two. We also developed an iterative algorithm to solve this
problem. Moreover, we first applied this semi-supervised clus-



tering approach in the program synthesizing setting, which can
effectively utilize constraints collected from previous running
information to improve the system performance.

V. EVALUATION

We describe our datasets, experimental results and then
report the evaluation results.

A. Datasets

We identified 30 scenarios1 that require conditional trans-
formations. We collected 12 scenarios involving conditional
transformations used in Wu et al. [22]. We also manually
collected 18 conditional transformation scenarios to increase
the number of scenarios. The data was gathered from student
mashup projects in a graduate-level course, which required
the students to integrate data from multiple sources to create
various applications. They were required to perform a variety
of transformations to convert the data into the target formats.
We collected the editing scenarios from these projects and
randomly selected 18 scenarios from them.

B. Experiment Setup

To fully evaluate our approach, we compared 5 different
alternatives described below to validate our design decisions.
We designed these alternatives to separately investigate the
effects of the three key design differences: (1) the weighted
Euclidean distance scoring functions compared to the compat-
ibility score (DP v.s SP), (2) utilizing the constraints collected
from previous iterations compared to not utilizing the previous
constraints (IC vs non-IC) and (3) incorporating unlabeled
data in learning a classifier compared to not incorporating the
unlabeled data (ED v.s non-ED).

1) Compatibility Score Based Partitioning (SP): This is
the state-of-the-art approach [5] that calculates the
compatibility score as described in Section II to decide
the partitions to merge .

2) SP with Incremental Constraints (SPIC): This is the
version of SP approach that uses previous constraints to
record the example compatibilities.

3) Distance Metric Based Partitioning (DP): This method
learns a weighted Euclidean distance with only constraints
discovered in the current iteration. The weighted Eu-
clidean distance is then used to choose partitions to merge.

4) DP with Incremental Constraints (DPIC): this approach
learns the weighted Euclidean distance with all the known
constraints.

5) DPIC with Expanded Training Data (DPICED): this is
our approach introduced in this paper. Besides DPIC,
it also incorporates unlabeled data in learning the
classifier.

All 5 algorithms above use agglomerative clustering as
described in [5], which greedily selects the partitions to
merge until there are no more compatible partitions to merge.
However, these approaches have different ways of utilizing the
constraints. The DP, DPIC and DPICED can learn from the
constraints to adjust its scoring function (distance function).

1The data can be accessed at http://bit.ly/1jcZmGv. The system is available
on Github at http://bit.ly/1EZnjhT.

TABLE II. SUCCESS RATES ON ALL SCENARIOS

DPICED DPIC DP SPIC SP
SccRate 1 1 0.97 0.77 0.77

TABLE III. COMPARING DIFFERENT APPROACHES

Total Time (seconds) Examples Constraint Number
DPICED 3.9 5.4 6.1

DPIC 6.4 6.8 6.6
DP 8.3 6.8 17.6

SPIC 21.3 6.8 260.1
SP 26.5 6.9 305.8

As SP and SPIC need to calculate the compatibility score,
they exploit both the cannot-merge and must-merge constraints
to obtain the compatibility information to avoid redundantly
verifying whether two partitions are compatible.

To measure the performance of the approaches above, we
use the following metrics:

1) Total Time: the seconds used to correctly transform all
the entries in a scenario.

2) Number of Examples: the number of examples required
to successfully transform a scenario. It is also the number
of iterations.

3) Constraint Number: the number of cannot-merge con-
straints encountered in transforming a scenario. The ap-
proach identifies a cannot-merge constraint when it tries
to merge two incompatible partitions.

4) Success Rate: the percentage of scenarios that can be
correctly transformed under 10 minutes. Otherwise, it is
too long for a user to continue working on that scenario.

C. Experimental Results

We can see in Table II that the distance metric learning
based approaches (DPICED, DPIC, DP) have much higher
success rates than the compatibility score based approaches
(SPIC, SP). The compatibility score based approaches can only
transform 77% of scenarios in less than 10 minutes.

Aside from having a higher success rate, we also compared
our approach (DPICED) against other approaches on total
time, number of examples and constraint number. To prevent
the failed scenarios from dominating the averaged results,
we compared on the scenarios that all the approaches can
successfully transform. The results are displayed in Table III.

The results in Table III show that DPICED outperforms
other approaches in all metrics. Excluding the failed scenarios,
the DPICED still saved 2.5 and 4.4 seconds compared to DPIC
and DP; saved 17.4 and 22.6 seconds compared to SPIC and
SP. We conducted paired one-tail t test. The results suggest that
the improvements were statistically significant (p < 0.05).

Moreover, the results in Table III also validate our design
decisions. Utilizing the information from previous iterations
improves efficiency. The approaches utilizing the previous
constraints avoided redundant work; they used less time com-
pared to their counterparts which didn’t leverage previous
constraints. In Table III, DPIC and SPIC all used less time
compared to DP and SP respectively.

Learning the weighted Euclidean distance also improves
the system efficiency. DPIC used less time compared to



SPIC as shown in Table III. The improvement in the time per
iteration comes from the reduction in the number of discovered
cannot-merge constraints. The higher the number is, the more
failed mergers the approach encounters, which in turn wastes
more time. A better algorithm can learn from previous failed
mergers to avoid intersecting these partitions in the future.
For example, by learning from the constraints to adjust the
Euclidean distance metric, the DPIC approach had much less
number of failed mergers compared to SPIC. Moreover, SPIC
has extremely high number of cannot-merge constraints, as
computing compatibility score requires fully verifying the
compatibilities over a large number of possible partitions.
Computing Euclidean distance does not require verifying the
compatibility until it tries to merge two partitions.

Augmenting the training data with unlabeled data can
reduce the required number of examples. The saving in the
number of examples is mainly due to the improved accuracy of
the learned classifier. The poor classifier will classify the entry
into a wrong category and then a wrong transformation would
be applied to this entry. This will result in an incorrect result,
which requires the user to provide a new example. Therefore,
the classifier with higher accuracy would reduce the number
of required examples. We measured the classifier accuracy
on the unlabeled entries. By incorporating unlabeled data
as training data, the DPICED method successfully increased
the classifier’s accuracy from 0.928 to 0.952 compared to
DPIC. As a result, it reduced the average number of required
examples from 6.8 to 5.4 as shown in the table above.

DPICED do not increase the number of conditional
branches in the final program. Gulwani [5] mentioned that
using the compatibility score to merge partitions practically
leads to a small number of partitions, which is likely to be the
correct program that can transform all records.

We compared the 5 approaches on all the 23 scenarios that
SP had successfully transformed. We noticed that DPICED,
DPIC, SPIC and SP can all achieve the same number of
partitions when the system finished transforming the scenarios.

As agglomerative clustering with constraints can get stuck
in local optima [21], where there are no more compatible par-
titions to be merged, even though other sequences of merging
may lead to fewer partitions. However, as our approach starts
over the partitioning in every iteration and refines the distance
metric by learning form the accumulated constraints, it is likely
that our approach can get out of the local optima in the new
iteration.

VI. CONCLUSION AND FUTURE WORK

This paper presents an approach for learning conditionals
in a programming-by-example system. The approach takes ad-
vantage of previous constraints to learn a weighted Euclidean
distance function to efficiently partition the examples. It then
use the same distance function to incorporate unlabeled as
training data to learn more accurate conditionals. The exper-
iment results shows that the proposed approach significantly
reduces the time and number of examples required to correctly
transform a scenario. They also show that the approach has
higher success rate compared to other approaches that can
require extremely long time on certain scenarios.

In the future, we will experiment with some recent distance
metric learning approaches and different clustering algorithms
to see whether we can further improve the efficiency while
still obtain a conditional statement with the smallest number of
branches. We will also apply our approach to other application
domains such as table layout transformation and XML format
transformation.
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