
Optimizing Information Mediators by
Selectively Materializing Data

Naveen Ashish
Information Sciences Institute, Integrated Media Systems Center and

Department of Computer Science

University of Southern California

Information Mediators
Example: Restaurant and Theatre Info
on the Web

Ariadne
Mediator

Map Servers

Geocoders

Movies
Zagat Health Ratings

Talk Outline
Performance - speed of application dependent on sources
Approach to performance optimization by local materialization
Materialization framework for mediators
Design of materialization system
Selecting data to materialize
– Distribution of user queries
– Structure of sources
– Updates

Admission and replacement
The integrated materialization system
Experimental results
Related work, applicability to other mediator systems
Conclusion and future directions

Performance Issue in Information Mediators

Speed of the application is heavily dependent on sources
Query response time is high despite having high quality query plans
Dominant cost is retrieving data from remote sources
– May have to retrieve a large number of Web pages
– Source is structured such that retrieving data is time consuming
– Source may be slow

Typical Query: “Find all chinese restaurants in Santa Monica with
an excellent food rating”
Takes several minutes to return an answer

Materialize data locally
Materializing all the data is impractical
– Mediator degenerates into data warehouse

Significant performance gain can be achieved by materializing
small fraction of data
– Hypotheses that some portions of data queried more frequently
– Materializing certain portions of data speeds up response time

for expensive queries
Data has to be selectively materialized
Primary Issues
– How is materialized data represented and used
– How do we automatically identify what to materialize

Solution: Materialize Data Locally

Existing mediator infrastructure to address two issues
– Providing semantic description of materialized data contents
– Query planner can reason with contents of materialized data

SANTA MONICA
THEATRES

Showtimes

LOCATION

GEOCODER

WEEKLY Telephone
Reviews

YAHOO
Showtimes

Address
Telephone

Address
Latitude

Longitude THEATRE

YAHOO
MOVIES

LA
WEEKLY

SANTA MONICA THEATRES
MATERIALIZED

Address

Showtimes

Overall Approach: Define Materialized Data as
Another Information Source

Selecting Data to Materialize

Distribution of User Queries
(Identify frequently
accessed classes)

Distribution of User Queries
(Identify frequently
accessed classes)

Structure of Sources
(Prefetch data to speed up
expensive queries)

Structure of Sources
(Prefetch data to speed up
expensive queries)

Updates
(Have to consider
maintenance cost)

Updates
(Have to consider
maintenance cost)

Classes of
Data to
Materialize

SELECTING
CLASSES

Materialization System : Architecture

UPDATES

SOURCE
STRUCTURE
ANALYSIS

QUERY
DISTRIBUTION
ANALYSIS

ADMISSION
AND
REPLACEMENT

Update Specifications

Less Frequently
Updated Classes

Classes Proposed to Prefetch

Classes Proposed by Query Distribution Analysis

Maintenance Cost

Classes to
Materialize

Axioms

OPTIMIZER

LOCAL DB

Refresh
Frequency GUI

Spec

Query Distribution

Distribution of User Queries: Extracting Patterns

SELECT name, tel
FROM restaurant
WHERE cuisine=“Chinese”

SELECT name, review, address
FROM restaurant

WHERE city=“Los Angeles”

SELECT name, address
FROM restaurant
WHERE cuisine=“Mexican”

SELECT name, tel, address
FROM restaurant
WHERE cuisine=“Chinese”

SELECT name, review
FROM restaurant

WHERE cuisine=“Italian”

SELECT name, address
FROM restaurant

WHERE city=“Santa Monica”

SELECT name, tel,review

(name, tel) of
chinese_restaurant

(name, tel) of
chinese_restaurant

(name, address) of
restaurant

(name, address) of
restaurant

(name, reviews, times) of
theatre

(name, reviews, times) of
theatre

EXTRACTING
PATTERNS

CM Algorithm for Extracting Patterns

Too many classes i.e, new information sources create
performance problems for query planner
– Compact description of patterns extracted

Analyze each query in query distribution
Create subclasses of interest by analyzing constraints
For each subclass cluster attribute groups
Merge across class coverings
Outputs compact description

Ontology of Subclasses of Interest

Analyze constraints in each query
Identify subclasses of information of interest
Maintain ontology in KR system LOOM
Record attribute groups queried for each subclass

Art

THEATRE

Foreign

Regular

Santa
Monica

Century
City

Hollywood

Clustering Attribute Groups

Cluster by attribute group similarity and hits
2D clustering - optimal clustering NP complete, approximate

(name, address, showtimes) 13
(movieurl, tel) 12
(tel, reviews, name) 5
(name, showtimes) 2
(name, address) 2
(movieurl, tel, reviews) 4
(tel, reviews) 7
(name, showtimes, trailers) 10
(name, showtimes) 8
...

Santa
Monica

(name, address, showtimes) 13
(name, showtimes) 8
(name, showtimes, trailers) 10
(name, showtimes) 2
(name, address) 2
(tel, reviews, name) 5
(tel, reviews) 7
(movieurl, tel, reviews) 4
(movieurl, tel) 12
...

(name, address, showtimes) 13
(movieurl, tel) 12
(tel, reviews, name) 5
(name, showtimes) 2
(name, address) 2
(movieurl, tel, reviews) 10
(tel, reviews) 7
(name, showtimes, trailers) 10
(name, showtimes) 8
...

Santa
Monica

(name, address, showtimes,
trailers) 10

(name, address, showtimes) 2

(tel, reviews, name) 6

(movieurl, tel, reviews) 11
...

Clustering Attribute Groups

Merging Across Coverings

Mexican

RESTAURANT

ItalianChinese

(name,address,tel)
(name,cuisine)
(décor,service,tel)

(rating,service)
(tel,address,décor)
(name,rating)
(name,tel)

(name,decor�)
(name,address)

Covering: (chinese, mexican, italian) --> Restaurant
(chinese,{A}) U (mexican,{A}) U (italian,{A}) -->(Restaurant,{A})

Merging Across Coverings

Mexican

RESTAURANT

ItalianChinese

(name,cuisine)
(décor,service,tel)

(rating,service)
(tel,address,décor)
(name,rating)

(name,decor�)

(name,address,tel)

Effectiveness, Complexity

Measured ‘precision’ and ‘recall’ in extracting patterns
Pattern P in query distribution
– Precision is % of patterns extracted that is in P
– Recall is % of P that is in patterns extracted

High precision and recall for q=0.2
Complexity = O(M2N2)
– M = number of queries, N = Number of attributes in a class

Source Structure Analysis

Problem: Certain kinds queries are expensive as wrapped Web
sources not originally designed for database like querying
Solution: Prefetch and materialize data to improve response time
Such data cannot be identified by analyzing user queries

SOURCE
STRUCTURE
ANALYSIS

(name, latitude, longitude) of
restaurant

(name, latitude, longitude) of
restaurant

(name, cuisine) of
restaurant

(name, cuisine) of
restaurant

User Interface

Axioms

Cost Estimator

GUI Specification

Mediator GUI is typically more restrictive
Formal specification language
Data items that can be retrieved
Details of selection conditions that can be specified
SELECT {name, tel, address, cuisine, review, city, rating, map}
FROM ent
WHERE [city,1,(LA, NYC, Santa Monica)] {cuisine,1,(chinese,...)}

Query Processing Axioms
Precompiled axioms for query processing

restaurant(name,cuisine,address,tel)= zagats(z.name,z.cuisine,z.address,z.tel)

restaurant(name,cuisine,address,tel,lat,long)= zagats(z.name,z.cuisine,z.address,z.tel)
and ent_geocoder($z.address,g.lat,g.long)

Axioms tell what data operations will be performed on what sources
Can be used to determine data to prefetch
Cost Estimator: Costs of queries
Process of Source Structure Analysis
– Use GUI specification and axioms to identify queries
– Use cost estimator to determine expensive queries
– Use axioms and knowledge of type of query to determine data to

prefetch

Source Structure Analysis

Example :
GUI specification : selection queries on “cuisine” of restaurant
Cost estimator : Expensive query
Query processing axioms:

restaurant(name,cuisine,address,tel)= zagats(z.name,z.cuisine,z.address,z.tel)

Heuristic : Prefetch key (name) and selection attribute (cuisine)
Optimization : selection can now be done locally, thus faster

Examples of heuristics
1. selection query - materialize key and selection attribute
2. join query - materialize join attributes and keys
3. ordered join - materialize result of ordered join

Updates
Data materialized can change at original sources
Strategy
– Do not materialize very frequently updated data
– Refresh materialized data at appropriate intervals

Specifying update characteristics, frequency
Need not assume that user always absolutely requires the latest data
Also specify user’s requirements for freshness of data

UPDATESUpdate Characteristics Maintenance Frequency

Update Specifications

CLASS MEMBERSHIP CHANGE TIME_PERIOD TIME

MOVIE_SRC A Y 1 week week : friday

ATTRIBUTE CHANGE TIME_PERIOD TIME

actors N - -

CLASS TOLERANCE ATTRIBUTE TOLERANCE

MOVIE 0 theatre 0

actors 0

review 6 weeks

Maintenance Frequency and Cost

For each attribute:
maintenance period = max(update period, tolerance)

= tolerance , if update period unknown
Example
review = max(1 week, 6 weeks) = 6 weeks
theatre = max(1 week, 0) = 1 week

Maintenance frequency and Query cost - > Maintenance cost
Do not materialize an attribute if maintenance cost too high
Total maintenance cost must be within limit

MOVIE

review

theatre

Admission and Replacement
Choose optimal set of classes to materialize under 2 constraints
– Space and Maintenance Cost

Same as fractional knapsack in 2 dimensions
– Greedy algorithm for multi-dimensional fractional knapsack

S

M

wi (query response time savings), si (space), mi (maintenance cost)
Store in order of wi/max(si,mi)
Guarantees optimal selection, generalizes to n dimensions

wi

mi

si

Materialization System : Architecture

UPDATES

SOURCE
STRUCTURE
ANALYSIS

QUERY
DISTRIBUTION
ANALYSIS

ADMISSION
AND
REPLACEMENT

Update Specifications

Less Frequently
Updated Classes

Classes Proposed to Prefetch

Classes Proposed by Query Distribution Analysis

Maintenance Cost

Classes to
Materialize

Axioms

OPTIMIZER

LOCAL DB

Refresh
Frequency GUI

Spec

Query Distribution

Optimizer Module

Gets set of classes of data to materialize
Retrieves data from original sources
Populates local database with data
Makes appropriate changes to domain and source models
Recompiles axioms
Periodically refreshes materialized classes
Periodically reevaluates materialized data classes

Experimental Results
Query Set Response Time Response Time %improvement

(No optimization) (with Optimizer)

Q1 38115 9301 75 %
Q2 44186 3775 91 %

Query Set Response Time Response Time Response Time %improvement %improvement
(No optimization) (with Optimizer) (Page level) (Optimizer) (Page level)

Q1 38115 1549 34320 96 % 10 %
Q2 44186 2174 37993 95 % 13 %

Query Set Response Time Response Time Response Time %improvement %improvement
(No optimization) (with Optimizer) (Page level) (Optimizer) (Page level)

Q1 22013 1644 17832 93 % 19 %

(a) Source structure analysis (Countries)

(c) All factors, comparison with page level (TheaterLoc)

(b) All factors, comparison with page level (Countries)

Experimental Results

Total work done with and without materialization
Varied update frequency

Related Work
Semantic Caching [Dar 1996, Keller and Basu 1996]
– Compact description is solution to containment problem

Caching for Web Proxy Servers [Chankunthod et al., 1995]
– Significant improvement over page level

Caching for Federated Databases [Goni et al, 1996]
– Only fixed classes

View Selection for materialization in Data Warehousing [Gupta
and Mumick 1998]
– Fixed set of views, minimizing cost of data operations

Extracting patterns from queries similar to mining association
rules [Agrawal, Imielinski & Swami 1993]
– Differences in language learnt, also we have dynamic ontology

Related Work
Studied applicability of materialization approach in Information
Manifold, InfoMaster, TSIMMIS, InfoSleuth, DISCO and Garlic
Different modeling and query processing approaches
– views, object-based, datalog based, KR based etc.

Materialization framework applicable
Compact description needed in all
Can be extended for source structure analysis
Approach for updating data will also apply

Conclusion
Contributions
– Approach for performance optimization by materialization
– Identifying what to materialize

Query distribution analysis
Source structure analysis
Update issue

Future Work
– Support for multimedia data
– Tighter integration with query planner
– Automating collection of statistics about sources

Extending contributions to other data management areas
– Query mining
– Semantic caching in databases
– Semi-structured data management

