Reformulating CSPs for Scalability with Application to Geospatial Reasoning

K. Bayer ¹ M. Michalowski ² B.Y. Choueiry ^{1,2} C.A. Knoblock ²

¹ Constraint Systems Laboratory University of Nebraska-Lincoln

² Information Sciences Institute University of Southern California

Supported by NSF CAREER Award #0133568 and AFOSR grants FA9550-04-1-0105 and FA9550-07-1-0416

Constraint Systems Laboratory

10/1/2007

CP 2007

Contributions

- BID problem as a CSP
 - Improved constraint model
 - Showed original BID problem is in P
 - Custom solver
- Four new reformulation techniques for CSPs
 - 1. Query reformulation
 - 2. Domain reformulation
 - 3. Constraint relaxation
 - 4. Reformulation via symmetry detection
- Applying the reformulations to the BID problem

Constraint Systems Laboratory

10/1/2007

[Michalowski & Knoblock, AAAI 05]

Outline

Background

- BID: CSP model & custom solver
- Reformulation techniques
 - Description
 - General use in CSPs
 - Application to BID
 - Evaluation on real-world BID data
- Conclusions & future work

Nebraska Lincoln 3

Constraint Systems Laboratory

Abstraction & Reformulation

The reformulation may be an approximation

Issue: finding Ken's house

Building Identification (BID) problem

Layout: streets and buildings

Basic (address numbering) rules

- Ordering
 - Numbers increase/decrease along a street
- Parity
 - Numbers on a given side of a street are odd/even

Additional information

Query

- 1. Given an address, what buildings could it be?
- 2. Given a building, what addresses could it have?

Outline

- Background
- BID model & custom solver
- Reformulation techniques
- Conclusions & future work

CSP model

- Parity constraints
- Ordering constraints
- Corner constraints
- Phone-book constraints
- Optional: grid constraints

Constraint Systems Laboratory

Example constraint network

Features of new model & solver

Improvement over previous work: [Michalowski +, 05]

- Model
 - Reduces number of variables and constraints arity
 - Reflects topology: Constraints can be declared locally & in restricted 'contexts,' important feature for Michalowski's work
- Solver
 - Exploits structure of problem (backdoor variables)
 - Implements domains as (possibly infinite) intervals
 - Incorporates all reformulations (to be introduced)

Constraint Systems Laboratory

incoln

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Nebraska Lincoln 14

Query in the BID

• Problem: BID instances have many solutions

Phone book: {4,8}

B 1	B2	B3	B4
2	4	6	8
2	4	8	10
2	4	8	12
4	8	10	12
4	6	8	10
4	6	8	12

We **only** need to know which values (address) appear in *at least one* solution for a variable (building)

Query reformulation

Evaluations: real-world data from El Segundo

[Shewale]

Case study	Phone book		Number of				
	Completeness	Buildings	Corner buildings	Blocks			
NSeg125-c	100.0%	105	47	4			
NSeg125-i	45.6%	125	17	4			
NSeg206-c	100.0%	200	20	7			
NSeg206-I	50.5%	200	28	1			
SSeg131-c	100.0%	404	20	0			
SSeg131-i 60.3%		131	30	ð			
SSeg178-c	100.0%	170	46	10			
SSeg178-i	65.6%	Ι/δ	40	12			
Previous work did not scale up beyond		nd 34	7	1			

Evaluation: query reformulation

Incomplete phone book \rightarrow many solutions \rightarrow better performance

Case study	Original query	New query [s]
NSeg125-i	>1 week	744.7
NSeg206-i	>1 week	14,818.9
SSeg131-i	>1 week	66,901.1
SSeg178-i	>1 week	119,002.4

Complete phone book \rightarrow few solutions \rightarrow worse performance

Case study	Original query [s]	New query [s]
NSeg125-c	1.5	139.2
NSeg206-c	20.2	4,971.2
SSeg131-c	1123.4	38,618.4
SSeg178-c	3291.2	117,279.1

Constraint Systems Laboratory

Generalizing query reformulation

- Relational (*i*,*m*)-consistency, algorithm R(*i*,*m*)C
 - For every *m* constraints
 - Compute **all solutions** of length s
 - To generate tuples of length *i*
 - Space: $O(d^s)$

- Query reformulation for Relational (*i*,*m*)-consistency
 - For each combination of values for *i* variables
 - Try to extend to **one** solution of length s
 - Space: $O({\binom{s}{i}}d^i)$, i < s
- Reformulated BID query is R(1,|C|)C

Nebraska Lincoln 19

Constraint Systems Laboratory

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation

– AIIDiff-Atmost & domain reformulation

- Constraint relaxation
- Reformulation via symmetry detection
- Conclusions & future work

Nebraska Lincoln 20

Constraint Systems Laboratory

AllDiff-Atmost in the BID

Even side

Phone book: {12,48}

Original domain = {2, 4, ..., 998, 1000}

- Can use at most
 - **3** addresses in [2,12)
 - **3** addresses in (12,48)
 - 3 addresses in (48,1000]

AllDiff-Atmost({B1,B2,...,B5},3,[2,12)) AllDiff-Atmost({B1,B2,...,B5},3,(12,48)) AllDiff-Atmost({B1,B2,...,B5},3,(48,1000))

30

14 16 38 48

4 6 12 48

12

2

48

10 12 14

32

20

12 48 ...

34

48

Reformulated domain $\{S_1, S_2, S_3, 12, S_4, S_5, S_6, 48, S_7, S_8, S_9\}$ Original domain $\{2, 4, ..., 10, 12, 14, ..., 46, 48, 30, ..., 998, 1000\}$

AllDiff-Atmost reformulation

- Given AllDiff-Atmost(*A*,*k*,*d*)
 - The variables in A can be assigned at most k values from the set d
- Replace
 - interval d of values (potentially infinite)
 - with k symbolic values

AllDiff-Atmost constraint

- AllDiff-Atmost(*A*,*k*,*d*)
 - The variables in \mathcal{A} can be assigned at most k values from the set d

Evaluation: domain reformulation

• Reduced domain size \rightarrow improved search performance

Case study	Phone-book completeness	Average	e domain size	Runtime [s]			
		Original	Reformulated	Original	Reformulated		
NSeg125-i	45.6%	1103.1	236.1	2943.7	744.7		
NSeg206-i	50.5%	1102.0	438.8	14,818.9	5533.8		
SSeg131-i	60.3%	792.9	192.9	67,910.1	66,901.1		
SSeg178-i	65.6%	785.5	186.3	119,002.4	117,826.7		

Constraint Systems Laboratory

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Nebraska Lincoln 25

Constraint Systems Laboratory

BID as a matching problem

Assume we have no grid constraints

BID w/o grid constraints

 BID instances without grid constraints can be solved in *polynomial time*

Case study	Runtime [s]			
	BT search	Matching		
NSeg125-c	139.2	4.8		
NSeg206-c	4971.2	16.3		
SSeg131-c	38618.3	7.3		
SSeg178-c	117279.1	22.5		
NSeg125-i	744.7	2.5		
NSeg206-i	5533.8	8.5		
SSeg131-i	38618.3	7.3		
SSeg178-i	117826.7	4.9		

Constraint Systems Laboratory

BID w/ grid constraints

1. Filter CSP

[Régin, 1994]

Remove vvps that do not appear in a maximum matching

2. Relaxed CSP: matching reformulation as a *necessary approximation* of the BID

Matching reformulation in Solver

Filter CSP	Preproc1
For every vvp	
Consider CSP + vvp	
If relaxed CSP is solvable	Preproc2
Find one solution using BT search	
At each instantiation, filter CSP	Lookahead

Evaluation: matching reformulation

• Generally, improves performance

Case Study	BT	Preproc2 +BT	% (from BT)	<mark>Lkhd</mark> +BT	% (from BT)	Lkhd +Preproc1&2 + BT	% (from Lkhd+BT)
NSeg125-i	1232.5	1159.1	6.0%	726.6	41.0%	701.1	3.5%
NSeg206-c	2277.5	614.2	73.0%	1559.2	31.5%	443.8	71.5%
SSeg178-i	138404.2	103244.7	25.4%	121492.4	12.2%	85185.9	29.9%

• Rarely, the overhead exceeds the gains

Case Study	BT	Preproc2 +BT	% (from BT)	<mark>Lkhd</mark> +BT	% (from BT)	Lkhd +Preproc1&2 + BT	% (from Lkhd+BT)
NSeg125-c	100.8	33.2	67.1%	140.2	-39.0%	29.8	78.7%
NSeg131-i	114405.9	114141.3	0.2%	107896.3	5.7%	108646.6	-0.7%
							VERSITY OF

Constraint Systems Laboratory

Lincoln

Nedraska

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Nebraska Lincoln 31

Constraint Systems Laboratory

Symmetric matchings in BID

- All matchings can be produced from the symmetric difference of
 - a single matching and
 - a set of disjoint alternating cycles
 & paths starting @free vertex

- Some symmetric solutions do not break grid constraints
 - Ignore symmetric solutions during search
- Some do, we do not know how to use them...

Nebraska Lincoln 32

Constraint Systems Laboratory

Conclusions

- We proposed four reformulation techniques
- We described their usefulness for general CSPs
- We demonstrated their effectiveness on the BID

Lesson: Reformulation is an effective approach to improve the scalability of complex combinatorial systems

Constraint Systems Laboratory

Future work

- Empirically evaluate our new algorithm for relational (*i*,*m*)-consistency
- Exploit the symmetries we identified
- Enhance the model by incorporating new constraints
 [Michalowski]

Questions?

Constraint Systems Laboratory

10/1/2007

CP 2007