

FINDING, ASSESSING, AND INTEGRATING STATISTICAL SOURCES FOR DATA MINING

Karin Becker¹, Xiaojie Tan²,

Shiva Jahangiri³, Craig Knoblock³

- ¹ Instituto de Informática Universidade Federal do Rio Grande do Sul
- Brazil
- ²School of Information Management University of Nanjing China
- ³ Information Sciences Institute, University of Southern California USA

Introduction

- The number of government statistical datasets in the LOD is increasing (300% in the last census)
- Enriched statistical data can be used to build analysis models
- Growing opportunity to use the LOD as a primary data source for knowledge discovery
- Cube vocabulary is a de facto standard for representing multi-dimensional data (indicators)

Introduction

- Existing tools support querying and visualization cubes
 - Assumes the cube datasets are given
 - Integration is mostly left to the user
- Our goal:
 - Mechanisms for finding and integrating cube datasets that contain compatible indicators
 - Data selection and preprocessing steps of knowledge discovery process

Scenario: Peacebuilding

- Predict Fragile States Indicator "Economic Decline"
 - influenced by inflation, GDP, unemployment, etc.
- Data is available as open data in different portals

Finding
Understanding
Proprietary APIs and Formats
Integrating

Laborious, time consuming, error-prone

Proposed Approach

Economic decline, GDP, inflation, ...

Algeria,Zimbabwe,...2000-2010

Country	Year	GDP	Inflation	
Algeria	2000	208,080	4.2	
Algeria	2001	214,080	3.4	
Zimbabwe	2010	10,814	598.75	

Proposed Approach

Economic decline, GDP, inflation, ...

Algeria,Zimbabwe,...2000-2010

Country	Year	GDP	Inflation	
Algeria	2000	208,080	4.2	
Algeria	2001	214,080	3.4	
Zimbabwe	2010	10,814	598.75	

Proposed Approach

Cube Vocabulary in Practice

- Standard concepts, but different modeling styles
- Data Definition Structure (DSD) should provide the explicit definition of measures and dimensions in cube datasets
 - Often not the case
- Semantics associated at different levels, using different properties
 - Cube constructs are not exploited to their full potential
 - Many cubes are straightforward conversions of SDMX representations

Where to find?

Cube Catalogue

- Endpoint
- Cubes metadata

Cube candidates finding

Cube catalogue enables searching for data in different endpoints or public data stores

- Seed Concepts
- Entity of interest
- Temporal definition

How to find?

Cube Catalogue

- Endpoint
- Cubes metadata

Cube query wrapper1

e query pper n

Cube candidates finding

- Seed Concepts
- Entity of interest
- Temporal definition

 Metadata and Cube wrappers deal with the different patterns of multidimensional modeling and differences in vocabularies

What to find?

Cube Catalogue

- Endpoint
- Cubes metadata

Cube candidates finding

Compatibility verification

2

- Seed Concepts
- Entity of interest
- Temporal definition

Candidate

indicator and

cubes

CANDIDATE CUBES:

- Measures match seed concepts
- Dimensions match entity of interest and time

What to find?

Cube Catalogue

- **Endpoint**
- Cubes metadata

Cube candidates finding

Compatibility verification

"MATCH"

- labels, descriptions or related concepts
- Same number of dimensions
- Same or compatible dimensions

Seed Concepts

- **Entity of interest**
- **Temporal definition**

Candidate

indicator and

cubes

CANDIDATE CUBES:

- Measures match seed concepts
- Dimensions match entity of interest and time

Integrate and Check .OD[∰] JOIN: different indicators, **Cube query** different cubes wrapper1 e query UNION: same indicator, pper n different cubes Conversion rules Cube integration Quality verification **Candidate Cube selection Data mining set** indicator and **Positioning** cubes criteria ity threshold

Integrate and Check Sanity checking Remove columns (or rows) with missing values above threshold Cube que Other more advanced (e.g. **Cube Catalogue** wrapper1 skewed distributions) **Endpoint** ippei ii **Cubes metadata** Cube integration Quality verification **Candidate Cube selection Data mining set** indicator and **Positioning** cubes criteria ity threshold

Related Work

- Cube Platforms: LOD2 Statistical Workbench, OpenCube, OLAP4LD
 - Support the creation, validation, querying, and visualization of cube datasets
- LOD extension for RapidMiner
 - Set of operators for integrating data with LOD data
 - Cube retrieval operator
- Janpuangton and Shell (2015) identification of relevant data in the LOD from seed concepts
 - Does not deal with multidimensional data
- Our work complements these works with functionality for Cube discovery and integration

Conclusions and Future Work

- Approach to
 - finding and integrating cube datasets from seed concepts
 - Assessing their capability
 - Integrating them to generate a mining dataset
- Next steps
 - Automatic generation of query wrappers
 - Exploiting the data for predicting indicators