

Karin Becker

Instituto de Informática - Federal University of Rio Grande do Sul, Brazil

Shiva Jahangiri, Craig A. Knoblock

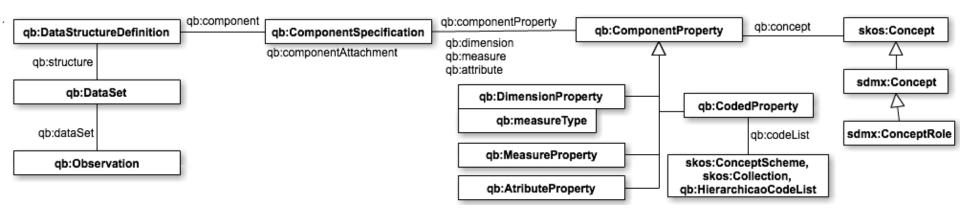
Information Sciences Institute, University of Southern California, USA

Introduction

- Statistical data is used as the foundation for policy prediction, planning and adjustments
- Growing consensus that Linked Open Data (LOD) cloud is the right platform for sharing and integrating open data
- The success of the LOD depends on basic principles
 - Common vocabulary reuse
 - Interlinking
 - Metadata provision
 - Otherwise, it is just another platform for making data available

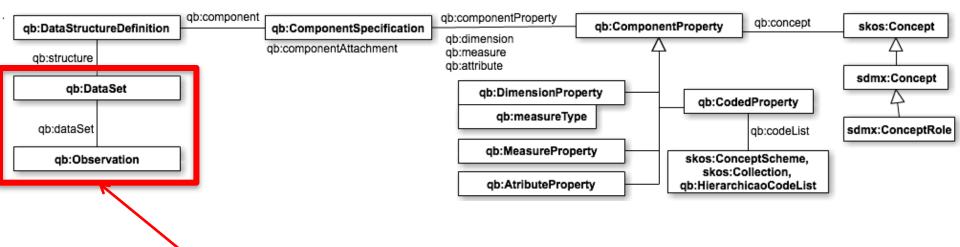
Introduction

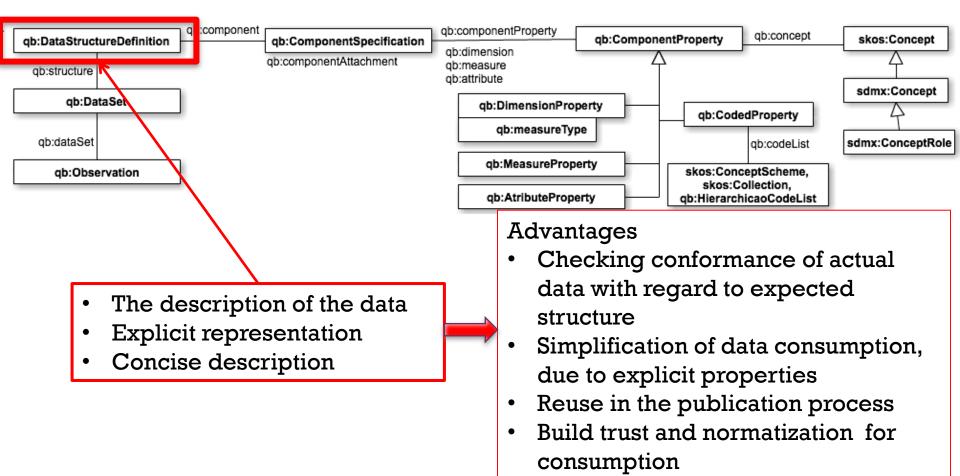
- Cube vocabulary
 - W3C recommendation
 - Multidimensional representation of data
 - But designed to be compatible with statistical ISO SDMX standard
 - Popular (62% of datasets in the LOD in the governmental domain)
 - Several projects address platforms for publishing data using the cube

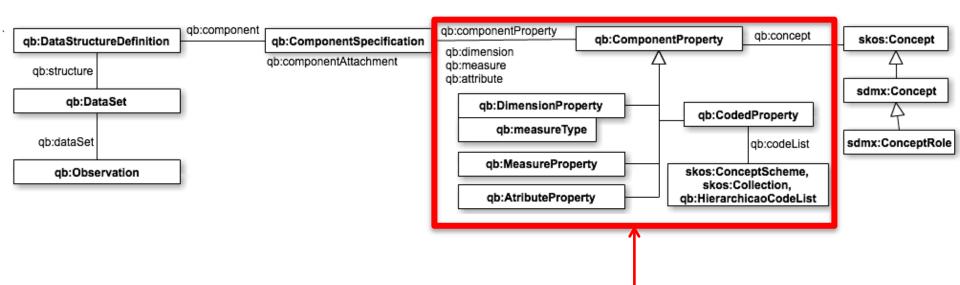

■ Is data being represented using the Cube in such a way that it can be easily found in the LOD cloud, consumed and integrated with other data?

+ Goal

- Quantitative survey on the current usage of the Cube vocabulary
 - Governmental data identified in the last LOD census (2014)
- Focus: commonly used strategies for modeling multi-dimensional data
 - They affect how data can be found and consumed automatically
- Contributions
 - Analysis of various ways the Cube vocabulary is used in practice
 - Guidance on the most useful representations
 - Baseline for comparison with the evolution of Cube usage
 - Input for methodological support and platforms addressing Cube usage

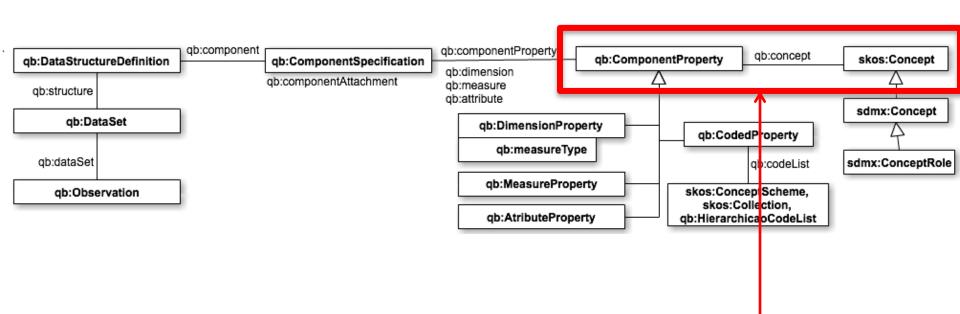

+ Cube Vocabulary


Cube Vocabulary



- The actual data
- The structure of the dataset is implicitly represented
- Possibly large volumes of data

Cube Vocabulary



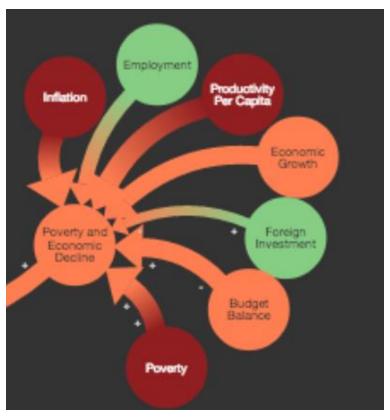
- Measures and dimensions
- "measure dimension" (qb:measureType)
- Possible values for dimensions

Cube Vocabulary

- Concepts represented by measures and dimensions
 - Possibly SDMX concepts

Motivating Example

- Prediction of public indicators: Fragile State Index (FSI)
 - 14 social, economic and political indicators
 - Methodology
 - software that collects millions of documents, select relevant ones, and values indicators (CAST)
 - human analysis
- Can we predict FSI indicators using other indicators and data available in the LOD Cloud?
 - Automatic location and consumption
 - Otherwise, it is just another media where data is available ...



Motivating Example

- Find datasets that
 - Measures
 - Have the label "poverty"
 - Are described by using the term "poverty"
 - Are related to the concept poverty
 - etc
 - Dimensions
 - year time series
 - countries


```
Modeling Strategies
```

#ST1: Single Measure

```
fao:SingleMea a qb:DataStructureDefinition;
qb:component [ qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure fao:AvgDESAdequacy . ].
```

#ST2: Multi Measure

```
fsi:MultiMea a qb:DataStructureDefinition;
qb:component [ qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure fsi:DemographicPressures;
qb:measure fsi:RefugeesandIDPs . ].
```

#ST3: Measure Dimension

```
fao: MeasureDim a qb:DataStructureDefinition;
qb:component [ qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure qb:measureType;
qb:measure fao:AvgDESAdequacy;
qb:measure fao:AvgValueFoodProd .].
```

```
fao:refPeriod a qb:DimensionProperty;
rdfs:subPropertyOf sdmx-dimension:refPeriod;
rdfs:range xsd:gYear; ....
```

```
fao:refArea a qb:DimensionProperty;
rdfs:range schema:Place;
qb:concept sdmx-concept:refArea; ....
```

```
fao:AvgDESAdeq a qb:MeasureProperty;
rdfs:label "Avg. Dietary Energy Supply Adequacy"en;
rdfs:subPropertyOf sdmx-measure:obsValue;
rdfs:range xsd:decimal; ....
```

fao:AvgValueFoodProd a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

fsi:DemographicPressures a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

fsi:RefugeesandIDPs a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue ...

#ST1: Single Measure

fao:SingleMea a qb:DataStructureDefinition;
qb:component [qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure fao:AvgDESAdequacy .].

#ST2: Multi Measure

fsi:MultiMea a qb:DataStructureDefinition;
qb:component [qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure fsi:DemographicPressures,
qb:measure fsi:RefugeesandIDPs .].

#ST3: Measure Dimension

fao: MeasureDim a qb:DataStructureDefinition;
qb:component [qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure qb:measureType;
qb:measure fao:AvgDESAdequacy;
qb:measure fao:AvgValueFoodProd .].

Single Measure

 Each observation contains a value for the measure

Several Dimensions

Measures and dimensions can be related to both

- generic (statistical) concepts
- domain concepts

rdfs:range xsd:decimal;

fao:AvgValueFoodProd a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

fsi:DemographicPressures a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

fsi:RefugeesandIDPs a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue ...


```
#ST1: Single Measure
fao:SingleMea a qb:DataStructureDefinition;
  qb:component [ qb:dimension fao:refArea;
                  qb:dimension fao:refPeriod;
                  qb:measure fao:AvgDESAdequacy . ].
#ST2: Multi Measure
```

fsi:MultiMea a qb:DataStructureDefinition; qb:component [qb:dimension fao:refArea; qb:dimension fao:refPeriod; gb:measure fsi:DemographicPressure: qb:measure fsi:RefugeesandIDPs .].

#ST3: Measure Dimension

fao: MeasureDim a qb:DataStructureDefinition; qb:component [qb:dimension fao:refArea; qb:dimension fao:refPeriod; qb:measure qb:measureType; qb:measure fao:AvgDESAdequacy; qb:measure fao:AvgValueFoodProd .]. fao:refPeriod a qb:DimensionProperty; rdfs:subPropertyOf sdmx-dimension:refPeriod; rdfs:range xsd:gYear;

Multiple Measures

Each observation must contain values for all measures **Several Dimensions** Measures and dimensions can be related to both generic and domain concepts

fao:AvgValueFoodProd a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

fsi:DemographicPressures a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

fsi:RefugeesandIDPs a qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue ...


```
#ST1: Single Measure
fao:SingleMea a qb:DataStructureDefinition;
  qb:component [ qb:dimension fao:refArea;
                  qb:dimension fao:refPeriod;
                  qb:measure fao:AvgDESAdequacy . ].
#ST2: Multi Measure
fsi:MultiMea a qb:DataStructureDefinition;
  qb:component [ qb:dimension fao:refArea;
                  qb:dimension fao:refPeriod;
                  qb:measure fsi:DemographicPressure:
                  qb:measure fsi:RefugeesandIDPs . ].
#ST3: Measure Dimension
fao: MeasureDim a qb:DataStructureDefinition;
  qb:component [ qb:dimension fao:refArea;
                  qb:dimension fao:refPeriod;
                  qb:measure qb:measureType;
                  qb:measure fao:AvgDESAdequacy;
                  qb:measure fao:AvgValueFoodProd
```

```
fao:refPeriod a qb:DimensionProperty;
rdfs:subPropertyOf sdmx-dimension:refPeriod;
rdfs:range xsd:gYear; ....

fao:refArea a qb:DimensionProperty;
rdfs:range schema:Place;
qb:concept sdmx-concept:refArea; ....

fao:AvgDESAdeq a qb:MeasureProperty;
rdfs:label "Avg. Dietary Energy Supply Adequacy"en;
```

Measure Dimension

- Each observation contains one value for one of the measures
- The specific measure is the value of the "measure dimension"

Several Dimensions
Measures and dimensions can be
related to both generic and domain
concepts

#ST4: Generic Single Measure

fao:captureDSD a qb:DataStructureDefinition; qb:component [qb:dimension fao:refArea; qb:dimension fao:refPeriod; qb:measure sdmx-measure:obsValue.].

#ST5: Ad hoc Dimension Measure

wb:indicatorDSD a qb:DataStructureDefinition;
qb:component [qb:dimension wb:refArea;
qb:dimension wb:refPeriod;
qb:dimension wb:indicator;
qb:measure sdmx-measure:obsValue.].

wb:refPeriod a qb:DimensionProperty; ...

Single Generic Measure

- each observation contains a value for the measure
- a generic statistical measure
- cannot be related to domain concepts

Several Dimensions

DSD is limited in the explicit information it provides

#ST4: Generic Single Measure

fao:captureDSD a qb:DataStructureDefinition;
qb:component [qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure sdmx-measure:obsValue

#ST5: Ad hoc Dimension Measure

wb:indicatorDSD a qb:DataStructureDefinition;
qb:component [qb:dimension wb:refArea;
qb:dimension wb:refPeriod;
qb:dimension wb:indicator;
qb:measure sdmx-measure:obsValue

Ad hoc Dimension Measure

- each observation contains a value for a measure
- a generic statistical measure
- cannot be related to domain concepts

Several Dimensions

- one dimension is implicitly a measure dimension
- a codelist might describe the measure, but only the actual dataset defines the measure
- DSD is limited in the explicit information it provides

Modeling Strategies

#ST4: Generic Single Measure

fao:captureDSD a qb:DataStructureDefinition;
qb:component [qb:dimension fao:refArea;
qb:dimension fao:refPeriod;
qb:measure sdmx-measure:obsValue.].

#ST5: Ad hoc Dimension Measure

wb:indicatorDSD a qb:DataStructureDefinition;
qb:component [qb:dimension wb:refArea;
qb:dimension wb:refPeriod;
qb:dimension wb:indicator;
qb:measure sdmx-measure:obsValue.].

wb:refPeriod a qb:DimensionProperty; ... rdfs:subPropertyOf sdmx-dimension:refPeriod.

wb:refArea a qb:DimensionProperty; ...
rdfs:subPropertyOf sdmx-dimension:refArea .

wb:indicator a qb:DimensionProperty; qb:concept wb-concept:indicatorConcept;qb:codeList wb-classification:indicatorCodeList.

- · Correct with regard to the Cube, but ...
 - DSD fulfills its role partially
 - Conformance of the actual data with regard to structure is limited to structural properties
 - Semantics is poor
- Harder to automatically locate useful datasets in the LOD cloud and consume

Goal-Question-Metric (GQM)

- Proposed by Basili et al. in experimental SW engineering
- Measurement model at three levels
 - Conceptual: Goal of the measurement
 - entity, purpose, focus, point of view and context
 - Operational: Questions define models of the object of study
 - characterize the assessment or achievement of a specific goal
 - Quantitative: a set of Metrics
 - defines a set of Measures that enable to answer the questions in a measurable way.

Survey: Goals

- Goal 1: Analyze DSD and Datasets for the purpose of understanding with respect to DSD relevance and reuse from the point of view of the publisher
 - Do publishers agree that DSDs have several benefits?
 - Do publishers reuse DSDs and its underlying definitions?
- Goal 2: Analyze DSD for the purpose of understanding with respect to modeling strategy from the point of view of the publisher
 - how frequent is each modeling strategy?
 - how easy it is to identify hidden semantics about measures and dimensions?
- Goal 3: Analyze DSD for the purpose of understanding with respect to DSD conceptual enrichment from the point of view of the publisher
 - Do publishers practice semantic annotation on DSDs?

Survey: Method

- Data from the LOD cloud census (Aug. 2014)
- Manheim Catalogue
- Data Collection
 - 114 catalogue entries
 - March-Apr. 2015
 - Tag cube-format

Operations

- Sparql queries to all entries
- All triples involving Cube constructs (except qb:Observation)
- Results integrated in a local repository
- Several issues for data extraction
- Data about 16,563 cube datasets and 6,847 DSDs
- Half of the data referred to a single publisher (Linked Eurostat)

+ Goal 1: DSD and Reuse

Goal 1: Datasets and DSDs with respect to relevance and reuse					
Q1: Do all datasets have a	M1: NbDatasets				
corresponding DSD?	M2 : NbDatasetWithDSD (M2%=M2/M1)				
Q2: Are DSDs, dimensions and	M3: NbDSDs				
measures reused?	M4 : NbReusedDSDs (M4% = M4/M3)				
	M5: NbDimensionProp				
	M6: NbMeasureProp				
	M7 : NbReusedDimensionPropInDSD (M7%=M7/M5)				
	M8 : NbReusedMeasurePropInDSD (M8%=M8/M6)				
	M9 : NbReusedDimensionSubProperty (M9 %=M9/M5)				
	M10: NbReusedMeasureSubProperty (M10%=M10/M6)				
	M11: TopReusedDimensionProp				
	M12:TopReusedMeasureProp				

Goal 1: DSD and Reuse

Goal 1: Datasets and DSDs with respect to relevance and reuse

Q1: Do all datasets have a M1: NbDatasets

corresponding DSD? M2 : NbDatasetWithDSD (M2%=M2/M1)

- We found 273 datasets without DSDs, referring to 2 publishers
- Non-conformant cubes

Goal 1: DSD and Reuse

Goal 1: Datasets and DSDs with respect to relevance and reuse

Q2: Are DSDs, dimensions and M3: NbDSDs

measures reused?

M4 : NbReusedDSDs (M4% = M4/M3)

Metric	Measure	Non-Eurostat		Eurostat		Both	
Metric	Ivicasure	Count	%	Count	%	Count	%
M3	nbDSDs	309		6,538		6,847	
M4	NbReusedDSD		3.6%	1	0%	12	0.2%
M5	NbDimensionProp	538		506		1,044	
M6	NbMeasureProp	163		1		163	
M7	NbReusedDimensionPropInDSD		35.5%	447	88.3%	638	61.1%
M8	NbReusedMeasurePropInDSD	31	19%	1	100%	32	19.6%
M9	NbReusedDimensionSubProperty	4	0.7%	0	0%	4	0.4%
M10	NbReusedMeasureSubProperty	1	0.6%	0	0%	1	0.6%

- DSD reuse is not a practice (3 publishers)
- Reuse is limited within a same publisher despite they all share similar dimensions (e.g. time, location)
 - No interlinking of concepts
- Reuse of SDMX concepts
- Popular dimensions: in-house variations of Time, Location and Sex
- Popular measures: sdmx:obs-value and its in-house variations

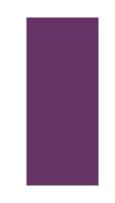
Goal 2: DSD Modeling Strategy

Goal 2 : DSD with respect to modeling	strategy
Q3: How many DSDs apply the multi-	M13 : nbDSDsWithMultipleMeasures (M13%=M13/M3)
measure strategy (ST2)?	
Q4: How many DSDs adopt the	M14: nbDSDsWithMeasureDimensionApproach (M14%=M14/M3)
measure dimension strategy (ST3)?	
Q5: How many DSDs define a single	M15 : nbDSDsWithSingleDomainMeasure (M15%=M15/M3)
measure (ST1 and ST4/ST5)	M16: nbDSDsWithSingleGenericMeasure (M16%=M16/M3)
Q6: How many DSDs with a single	M17 : nbDSDsWithDimensionReprMeasure (M17%=M17/M3)
measure contain dimension	M18: TopStrategiesDimensionRepresentingMeasure
representing measures (ST5)	

Goal 2: DSD Modeling Strategy

Goal 2: DSD with respect to modeling strategy

Q3: How many DSDs apply the multimeasure strategy (ST2)?


Q3: How many DSDs apply the multi- M13: nbDSDsWithMultipleMeasures (M13%=M13/M3)

Metric	Measure	Non-Eurostat		Eurostat		Both	
IVIEUIC	IVICASAIC	Count	%	Count	%	Count	%
M13	nbDSDsWithMultipleMeasures	54	17.5%	0	0%	54	0.8%
M14	nbDSDsWithMeasureDimensionApproach		0%	0	0%	0	0%
M15	nbDSDsWithSingleDomainMeasure	0	0%	0	0%	0	0%
M16	nbDSDsWithSingleGenericMeasure	244	79%	6,538	100%	6782	99.1%
M17	nbDSDsWithDimensionReprMeasure	33	10.7%	2,233	34,2%	2266	33.1%

- 1st strategy: a single generic measure (ST4)
- 2nd strategy: a dimension implicitly representing a measure dimension (ST5)
- Strategies to find dimensions representing measures (ST5):
 - Patterns involving the URI (e.g. included indic, variab, measur)
 - Concepts and codelists were not useful at all
- Strategies to find generic measures also involved URI patterns

Goal 3: DSD Conceptual Enrichment

	Goal 3: DSD	with respect	to conceptual	enrichment
--	-------------	--------------	---------------	------------

Q7: Do publishers relate component properties to concepts for conceptual enrichment?

M19 NbComponentProp

M20: NbCompPropRelatedToConcept (M20%=M20/M19)

M21: NbDimPropRelatedToConcept (M21%=M21/M5)

M22: NbMeasurePropRelatedToConcept (M22%=M22/M6)

M23: NbCompPropRelatedToSDMXConcept (M23%=M23/M19)

M24: NbDimPropRelatedToSDMXConcept (M24%=M24/M5)

M25: NbMeasurePropRelatedToSDMXConcept (M25%=M25/M6)

M26: NbDSDsComPropRelatedToConcept (M26%=M26/M3)

M27: NbDSDsComPropRelatedToSDMXConcept (M27%=M27/M3)

M28: TopPopularConcepts

Goal 3: DSD Conceptual Enrichment

Q7: Do publishers relate component

M19 NbComponentProp

proportios to concepts for

MOO. NIhComp Dran Palatad To Concept (MOO/-MOO/M10)

Goal	Question	Metric	Measure	Non-Eurostat		Eurostat		Both		
Goal				Count	%	Count	%	Count	%	
		M19	NbComponentProp	701		509		1209		
G3	Q7		M20	NbCompPropRelatedToConcept	411	58.6%	507	99,6%	916	75.8%
		M21	NbDimPropRelatedToConcept	395	73.4%	506	100%	901	86.3%	
		M22	NbMeasurePropRelatedToConcept	16	9.8%	1	100%	16	9.8%	

- Dimensions are often related to concepts, however ...
 - in-house concepts, not interlinked with external concepts (e.g. owl:same-as, skos:exactMatch)
 - frequently concepts are paired with codes from codelists (uri patterns)
- Top concepts:
 - sdmx-concept:obsValue, sdmx-concept:freq
 - Different in-house representations for location, time, measuring unit and sex

Goal 3: DSD Conceptual Enrichment

Q7: Do publishers relate component | M19 NbComponentProp

proportion to concepts for

MOO. NhCompDrapPalatadTaCancont (MOO/-MOO/M10)

G	Goal	Question	Metric	Measure	Non-Eurostat		Eurostat		Both	
	Guai	Question			Count	%	Count	%	Count	%
		Q7	M23	NbCompPropRelatedToSDMXConcept	44	6.3%	2	99.6%	45	75.8%
G			M24	NbDimPropRelatedToSDMXConcep	36	6.7%	1	0.2%	37	3.5%
	G3		M25	NbMeasurePropRelatedToSDMXConcept	8	4.9%	1	100%	8	4.9%
			M26	NbDSDsComPropRelatedToConcept	266	86.1%	6,538	100%	6804	99.4%
			M27	NbDSDsComPropRelatedToSDMXConcept	215	69.6%	6,538	100%	6,754	98.6%

- Common practice of defining a concept as an instance of sdmx:Concept
 - not adequate considering SDMX is a standard to be shared across datasets of various domains, with well-defined concepts (COG)
- For the survey, we adopted a more strict interpretation
 - concept that belongs to the standard SDMX COG
 - (subproperty of) SDMX dimension/measure (which is always linked to a sdmx-concept)
- Top concepts: sdmx-concept:obsValue, sdmx-concept:freq

+ Related Work

- LOD Census: growing importance of the Cube and governmental topical domain (Schmachtenberg et al. 2014)
- Preferred reuse strategy: a single, popular vocabulary (Schaible et al.2014)
- platforms that support using, publishing, validating and visualizing
 Cube datasets
 - LOD2 Statistical Workbench, OpenCube, Vital, OLAP4LD
 - Our results can be leveraged to integrate components that also provide methodological guidance to support modeling choices
- Automatic search of open data for data mining (Becker et al. 2015;
 Janpuangtong et al. 2015)

Conclusions

- Survey current practices of modeling datasets with the Cube vocabulary
 - Surprised by the number of non-conformant cube datasets
 - most Cube datasets are straightforward conversions of SDMX data
 - standard for exchanging statistical data: interoperability
 - LOD cloud: ability of automatically processing of data requires
 - Next step: more complex conversion rules
 - Cube constructs are underused
 - more normative ways of modeling multidimensional data, and explicitly defining in the structure and semantics of DSDs
 - the use of Cube is new, and its usage will reveal the importance of certain constructs/modeling strategies

Conclusions and Future Work

- Publishers are concerned with establishing a proper, standard vocabulary to uniformly apply within the scope of a specific organization
 - Opportunity integrate commonly used dimensions, either by reuse, adoption of standard concepts, or concept-based linkage
- Survey has a specific focus
 - Baseline for future comparison
 - Extended to other aspects
 - Results can be leveraged into supporting platforms
- currently we are using the investigated patterns of Cube usage to automatically identify and integrate cube datasets for data mining applications