Doctoral Thesis:
Learning Semantic Definitions for Information Sources on the Internet

Mark James Carman

Advisors:
Prof. Paolo Traverso
Prof. Craig A. Knoblock
Abundance of Information Sources

Motivation
Approach
Search
Scoring
Extensions
Experiments
Related Work
Conclusions
Bringing the Data Together
Bringing the Data Together
Mediators resolve Heterogeneity

Motivation

Approach

Search

Scoring

Extensions

Experiments

Related Work

Conclusions
Mediators Require Source Definitions

- New service => no source definition!
- Can we discover a definition automatically?

```
SELECT MIN(price)
FROM flight
WHERE depart="LAX"
AND arrive="MXP"
```
Inducing Source Definitions by Example

- Step 1: classify input & output semantic types

 source1($zip, lat, long) :-
 centroid(zip, lat, long).

 source2($lat1, $long1, $lat2, $long2, dist) :-
 greatCircleDist(lat1, long1, lat2, long2, dist).

 source3($dist1, dist2) :-
 convertKm2Mi(dist1, dist2).

 source4($startZip, $endZip, separation) :-
 Assumed this problem has been solved!
Inducing Source Definitions - Step 2

- **Step 1:** classify input & output semantic types
- **Step 2:** generate plausible definitions

```
source1($zip, lat, long) :-
  centroid(zip, lat, long).

source2($lat1, $long1, $lat2, $long2, dist) :-
  greatCircleDist(lat1, long1, lat2, long2, dist).

source3($dist1, dist2) :-
  convertKm2Mi(dist1, dist2).

source4($zip1, $zip2, dist) :-
  source1(zip1, lat1, long1),
  source1(zip2, lat2, long2),
  source2(lat1, long1, lat2, long2, dist2),
  source3(dist2, dist).
```

Known Source 1

Known Source 2

Known Source 3
Inducing Source Definitions – Step 3

- **Step 1**: classify input & output semantic types
- **Step 2**: generate plausible definitions
- **Step 3**: invoke service & compare output

```
source4($zip1, $zip2, dist):-
    source1(zip1, lat1, long1),
    source1(zip2, lat2, long2),
    source2(lat1, long1, lat2, long2, dist2),
    source3(dist2, dist).
source4($zip1, $zip2, dist):-
    centroid(zip1, lat1, long1),
    centroid(zip2, lat2, long2),
    greatCircleDist(lat1, long1, lat2, long2, dist2),
    convertKm2Mi(dist1, dist2).
```

<table>
<thead>
<tr>
<th>$zip1</th>
<th>$zip2</th>
<th>dist (actual)</th>
<th>dist (predicted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80210</td>
<td>90266</td>
<td>842.37</td>
<td>843.65</td>
</tr>
<tr>
<td>60601</td>
<td>15201</td>
<td>410.31</td>
<td>410.83</td>
</tr>
<tr>
<td>10005</td>
<td>35555</td>
<td>899.50</td>
<td>899.21</td>
</tr>
</tbody>
</table>

Match
Overlapping Data Requirement

- Assumption: overlap between new & known sources
- Nonetheless, the technique is widely applicable:
 - Redundancy
 - Scope or Completeness
 - Binding Constraints
 - Composed Functionality
 - Access Time
Searching for Definitions

- Search space of *conjunctive queries*:
 \[\text{target}(X) :- \text{source}1(X_1), \text{source}2(X_2), \ldots \]
- For scalability don’t allow negation or union
- Perform Top-Down Best-First Search

1. First sample the New Source
2. Then perform best-first search through space of candidate definitions

For scalability don’t allow negation or union

Expressive Language Sufficient for modeling most online sources
Invoking the Target

Invoke source with \textit{representative} values

- Try randomly generating input tuples:
 - Combine examples of each type
 - Use distribution if available

\begin{tabular}{|l|l|}
\hline
\textbf{Input} & \textbf{Output} \\
\hline
<zip1, dist1> & \{<07097, 0.26>, <07030, 0.83>, <07310, 1.09>, \ldots\} \\
<60632, 10874.2> & \{\} \\
\hline
\end{tabular}
Invoking the Target

Invoke source with *representative* values

- Try randomly generating input tuples:
 - Combine examples of each type
 - Use distribution if available
- If *only empty invocations* result
 - Try *invoking other sources* to generate input
- Continue until sufficient non-empty invocations result
Top-down Generation of Candidates

Start with empty clause & generate specialisations by
- Adding one predicate at a time from set of sources
- Checking that each definition is:
 - Not logically redundant
 - Executable (binding constraints satisfied)

```
source5(_,_,_,_).
source5(zip1,_,_,_) :- source4(zip1,zip1,_).
source5(zip1,_,zip2,dist2) :- source4(zip2,zip1,dist2).
source5(_,dist1,_,dist2) :- <(dist2,dist1).
```

```
source5($zip1,$dist1,zip2,dist2)
```

New Source 5
Best-first Enumeration of Candidates

- Evaluate each clause produced
- Then expand best one found so far
- Expand high-arity predicates incrementally

source5(zip1,_,zip2,dist2) :- source4(zip2,zip1,dist2).

source5(zip1,dist1,zip2,dist2) :- source4(zip2,zip1,dist2), source4(zip1,zip2,dist1).
source5(zip1,dist1,zip2,dist2) :- source4(zip2,zip1,dist2), <(dist2,dist1).

...
Limiting the Search

- Extremely Large Search space
- Constrained by use of Semantic Types
- Limit search by:
 - Maximum Clause length
 - Maximum Predicate Repetition
 - Maximum Number of Existential Variables
 - Definition must be Executable
 - Maximum Variable Repetition within Literal
 - Standard ILP techniques
 - Non-standard technique
Evaluating Candidates

- Compare output of clause with that of target.
- Average the results across different input tuples.
Evaluating Candidates II

Candidates may return multiple tuples per input

- Need measure that compares sets of tuples!

<table>
<thead>
<tr>
<th>Input</th>
<th>Target Output</th>
<th>Clause Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><zip1, $dist1></td>
<td><zip2, dist2></td>
<td><zip2, dist2></td>
</tr>
<tr>
<td><60632, 874.2></td>
<td>{}</td>
<td>{<60629, 2.15>, <60682, 2.27>, <60623, 2.64>, ...}</td>
</tr>
<tr>
<td><07307, 50.94></td>
<td>{<07097, 0.26>, <07030, 0.83>, <07310, 1.09>, ...}</td>
<td>{}</td>
</tr>
<tr>
<td><28041, 240.46></td>
<td>{<28072, 1.74>, <28146, 3.41>, <28138, 3.97>, ...}</td>
<td>{<28072, 1.74>, <28146, 3.41>}</td>
</tr>
</tbody>
</table>

Motivation Approach Search Scoring Extensions Experiments Related Work Conclusions
Evaluating Candidates III

PROBLEM: All sources assumed incomplete
- Even *optimal definition* may only produce overlap
- Want definition that *best predicts* the target’s output
- Use Jaccard similarity to score candidates

Motivation Approach Search Scoring Extensions Experiments Related Work Conclusions

forall (tuple in InputTuples)

\[
\begin{align*}
T_{\text{target}} &= \text{invoke}(\text{target, tuple}) \\
T_{\text{clause}} &= \text{execute}(\text{clause, tuple}) \\
\text{if not } (|T_{\text{target}}|=0 \text{ and } |T_{\text{clause}}|=0)
\end{align*}
\]

\[
\text{fitness} = \frac{|T_{\text{target}} \cap T_{\text{clause}}|}{|T_{\text{target}} \cup T_{\text{clause}}|}
\]

return average(fitness)

At least half of input tuples are non-empty invocations of target
Similarity metric is Jaccard similarity between the sets
Average results only when output is returned
Missing Output Attributes

- Some candidates produce less output attributes:
 - Makes comparing them difficult

 1. `source5(zip1,_,_,_,_) :- source4(zip1,zip1,_,_)`.
 2. `source5(zip1,_,zip2,dist2) :- source4(zip2,zip1,dist2)`.

- Penalize candidate by number of “negative examples”

- First candidate doesn’t produce either outputs, thus:
 - Penalty = | {zipcode}| x | {distance}|
 - For numeric types use accuracy to approximate cardinality
Different Input Attributes

- Some clauses take different inputs from target:

  ```prolog
  source5($zip1,$dist1,zip2,_) :- source4($zip1,$zip2,dist1).
  ```

- `zip2` is an input parameter for clause but not target.
- Should invoke operation with *every possible zip code!*

 > > 40,000 zip codes in US

- Problem: algorithm should return & not get banned!
- Solution: sample to estimate score for clause:

 - record the scaling factor = | {zipcode}/ #invocations
 - bias search: choose at least half of tuples to be positive
Approximating Equality

Allow flexibility in values from different sources

- **Numeric Types like** *distance*

 $10.6 \text{ km} \approx 10.54 \text{ km}$

 Error Bounds (eg. +/- 1%)

- **Nominal Types like** *company*

 Google Inc. \approx Google Incorporated

 String Distance Metrics (e.g. JaroWinkler Score > 0.9)

- **Complex Types like** *date*

 Mon, 31. July 2006 \approx 7/31/06

 Hand-written equality checking procedures.
Extensions

Many extensions to basic algorithm are discussed in thesis:

- Inverse and functional sources
- Constants in the modeling language
- Post-processing (tightening) of definitions
- Search heuristics based on semantic types
- Caching & determining if source is blocking
Experiments – Setup

Problems:
- 25 target predicates
- *same* domain model
 (70 Semantic Types and 37 Predicates)
- 35 known sources

System Settings:
- Each target source invoked at least 20 times
- Time limit of 20 minutes imposed

Inductive search bias:
- Maximum clause length 7
- Predicate repetition limit 2
- Maximum variable level 5
- Candidate must be executable
- Only 1 variable occurrence per literal

Equality Approximations:
- 1% for *distance, speed, temperature & price*
- 0.002 degrees for *latitude & longitude*
- JaroWinkler > 0.85 for *company, hotel & airport*
- hand-written procedure for *date*.
Actual Learned Examples

1. **GetDistanceBetweenZipCodes**(zip0, zip1, dis2):-
 - GetCentroid(zip0, lat1, lon2), GetCentroid(zip1, lat4, lon5),
 - GetDistance(lat1, lon2, lat4, lon5, dis10), **ConvertKm2Mi**(dis10, dis2).

2. **USGSElevation**(lat0, lon1, dis2):-
 - ConvertFt2M(dis2, dis1), Altitude(lat0, lon1, dis1).

3. **YahooWeather**(zip0, cit1, sta2, , lat4, lon5, day6, dat7, tem8, tem9, sky10) :-
 - WeatherForecast(cit1,sta2,,lat4,lon5,,day6,dat7,tem9,tem8,,,sky10,,,),
 - GetCityState(zip0, cit1, sta2).

4. **GetQuote**(tic0, pri1, dat2, tim3, pri4, pri5, pri6, pri7, cou8,,pri10,,,pri13,,com15) :-
 - YahooFinance(tic0, pri1, dat2, tim3, pri4, pri5, pri6, pri7, cou8),
 - GetCompanyName(tic0,com15,,),Add(pri5,pri13,pri10),Add(pri4,pri10,pri1).

5. **YahooAutos**(zip0, $mak1, dat2, yea3, mod4, , , pri7,) :-
 - GoogleBaseCars(zip0, mak1, , mod4, pri7, , , yea3),
 - ConvertTime(dat2, , dat10, ,), **GetCurrentTime**(, , dat10,).
Experimental Results

Results for different domains:

<table>
<thead>
<tr>
<th>Problem Domain</th>
<th># of Problems</th>
<th>Avg. # of Candidates</th>
<th>Avg. Time (sec)</th>
<th>Attributes Learnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>geospatial</td>
<td>9</td>
<td>136</td>
<td>303</td>
<td>84%</td>
</tr>
<tr>
<td>financial</td>
<td>2</td>
<td>1606</td>
<td>335</td>
<td>59%</td>
</tr>
<tr>
<td>weather</td>
<td>7</td>
<td>368</td>
<td>693</td>
<td>69%</td>
</tr>
<tr>
<td>hotels</td>
<td>4</td>
<td>43</td>
<td>374</td>
<td>60%</td>
</tr>
<tr>
<td>cars</td>
<td>2</td>
<td>68</td>
<td>940</td>
<td>50%</td>
</tr>
</tbody>
</table>
Comparison with Other Systems

ILA & Category Translation (Perkowitz & Etzioni 1995)
Learn functions describing operations on internet
- My system learns *more complicated* definitions
 - Multiple attributes, Multiple output tuples, etc.

iMAP (Dhamanka et. al. 2004)
Discovers complex (*many-to-1*) mappings between DB schemas
- My system learns *many-to-many* mappings
- My approach is more general (single search algorithm)
- Deal with problem of invoking sources
Conclusions

Learning procedure for online information services is:

1. **Automated**
2. **Expressive** *(conjunctive queries)*
3. **Efficient** *(access sources only as required)*
4. **Robust** *(to noisy and incomplete data)*
5. **Evolving** *(improves with # of known sources)*
6. **Scalable** *(for moderate size domain model)*

Generate Semantic Metadata for Semantic Web

- Little motivation for providers to annotate services
- Instead we generate metadata automatically