Automatically and Accurately Conflating Road Vector Data, Street Maps and Orthoimagery

Ching-Chien Chen

Ph.D. Dissertation March 2005

Outline

Introduction & Motivation

Our approach: AMS-conflation

- Vector and imagery conflation (pre-qualifying research)
- Map and imagery conflation
 - Finding control points in the imagery and in the maps
 - Geospatial point pattern matching (GeoPPM)
 - Image and map conflation using rubber-sheeting
- Experimental Results
- Related Work
- Conclusion and Future Work

Introduction

 Geospatial data sources have become widely available
 Automatically and accurately integrating and aligning two spatial datasets is a challenging problem

Road network (in vector format)

Orthoimagery (in raster format)

Street maps (in raster format)

Motivation : Vector and Imagery Integration

Challenges

Different projections, accuracy levels, resolutions result in <u>spatial inconsistencies</u>

Lat / Long

Motivation : Map and Imagery Integration

Lat / Long

Lat / Long

Integration Challenge

• Different geographic projections and accuracy levels

Motivation : Map and Imagery Integration

Lat / Long

Another Integration Challenge
 Some online maps are not geo-referenced

Motivation

Traditionally, the problems of vector-imagery and mapimagery alignment have been in the domain of <u>GIS</u> and <u>Computer Vision</u>

In GIS literature

- The alignments were previously performed <u>manually</u>
 - Commercial products: *ESRI MapMerger*; *Able R2V*; *Intergraph I/RASC*

In Computer Vision literature

- The alignments were performed automatically based on image processing techniques
 - Often required significant CPU time

Outline

Introduction & Motivation

Our approach: AMS-conflation

- Vector and imagery conflation (pre-qualifying research)
- Map and imagery conflation
 - Finding control points in the imagery and in the maps
 - Geospatial point pattern matching (GeoPPM)
 - Image and map conflation using rubber-sheeting

Experimental Results

- Related Work
- Conclusion and Future Work

Aligning Geospatial Data Using Conflation Technique

- Conflation: Compiling two geo-spatial datasets by establishing the correspondence between the matched entities and transforming other objects accordingly
 Requires identifying matched entities, named control
- Requires identifying matched entities, named <u>control</u> <u>points</u>, on both datasets

Our Approach: AMS-Conflation Automatic Multi-Source Conflation

Thesis statement: By exploiting multiple sources of geospatial information, we can achieve automatic and accurate conflation of road vector data, street maps and orthoimagery.

- Automatically exploiting information from each of the sources to be integrated to generate accurate control point pairs
- Exploited geospatial information from one data source can help the processing of the other source

AMS-Conflation : Exploit Inferred Information from the Data Source

AMS-Conflation : Exploit Metadata about the Data Source

Long: -90.43 Lat: 38.595

Metadata about the data source

Metadata about the data source

Geo-coordinates Resolution

Long: -90.42 Lat: 38.594

Road widths

Metadata about the data source

Resolution (or map scale)

AMS-Conflation : Exploit Peripheral Datasets to the Data Source

AMS-Conflation to Align Vector and Imagery

Lat / Long

Aligning Vector and Imagery: Finding Control Point Pairs Using Localized Template Matching (LTM)

Evaluation

Using road-buffer method

Red lines: Reference roads (roadsides)

-<u>Blue lines</u>: Reference roads (centerlines) Completeness : the percentage of the reference roads for which we generated conflated lines

• (Length of matched reference roads)/(Length of reference roads)

Correctness : the percentage of correctly conflated lines with respect to the total conflated lines

• (Length of matched conflated lines)/(Total length of conflated lines)

Positional Accuracy : the percentage of conflated roads within x meters to the reference roads

Results: One of Our Four Test Areas

• For the other test areas, we align different road vector data (MO-DOT, NAVSTREETS and TIGER/Lines) with the imagery

	Original TIGER/Lines	Conflated TIGER/Lines
Completeness	37.9%	84.7%
Correctness	31.3%	88.49%

Yellow Lines: Conflated TIGER/Lines Red Lines: Original TIGER/Lines

AMS-Conflation to Align Maps and Imagery

Finding Intersection Points on Maps

Difficult to identify intersection points automatically and accurately

E Holly Ave top Park び

Elsey PI

E Gra

- Varying thickness of lines
- Single-line map v.s. double-line map
- Noisy information: symbols and alphanumeric characters
- We proposed a technique to detect intersections in [acm-gis'04]

Ave

Our primitive technique is further improved in [Chiang et al.'05 ?]

Finding Intersection Points on Maps

- Some <u>noisy points</u> will be detected as intersection points.
- Our geo-spatial point matching algorithm can tolerate the existence of misidentified intersection points.

Identify

Intersections

FRANK

Point Pattern Matching

Find the mapping between these pointsWhy? To generate a set of control point pairs

How to solve the point sets matching problem :

- A geometric point sets matching problem
- Find the transformation T between the layout (with relative distances) of the two point sets

80 points

Point Pattern Matching: Finding the Transformation

Transformation = Scaling + Translation
 Transforms most points on map to points on

imagery

Find <u>matching point pairs</u> to solve this dirtcansformation

Point Pattern Matching: A Brute-Force Algorithm

 Iterate all point pair in M, and for each chosen point pair in M examining all point pairs in S

- Time-consuming : O(m³ n² log n)
 - Can we improve it by <u>randomization</u>? Not always !
 - Noisy points on maps
 - Some missing points on imagery

Geospatial Point Pattern Matching (GeoPPM): Exploit Geometric Info. Associated with Each Intersection

Intersection degree: the number of intersected roadsDirections of Intersected road segments

Degree:3; Directions:0, 90, 270

Geospatial Point Pattern Matching (GeoPPM): Exploit Map Scale • We need to consider <u>translation</u> only $O(m^3 n^2 \log n) \rightarrow O(m^2 n \log n)$

Geospatial Point Pattern Matching (GeoPPM): For Map with Unknown Map Scale

- Exploiting Point Density and Localized Distribution of Points
 Assumption: we focus on medium to high resolution maps
 - We are conflating maps with high resolution imagery !

Coarse level map: map with smaller map-scale (low resolution)

Geospatial Point Pattern Matching (GeoPPM): Exploit Point Density

1059 points

Geospatial Point Pattern Matching (GeoPPM): Exploit Localized Distribution of Points The points are in a cluster !

1059 points

Geospatial Point Pattern Matching (GeoPPM): Exploit Localized Distribution of Points Using HiGrid Structure

Geospatial Point Pattern Matching (GeoPPM)

Aligning Maps and Imagery

- Using matched point pattern to align maps with imagery by <u>Delaunary triangulation and rubber-sheeting [Saalfeld'88]</u>
 - Space partition to build influence regions: Delaunary triangulation
 - Warping maps' pixels within each triangle to the corresponding pixels on imagery : based on Delaunary triangles and rubber-sheeting

Outline

Introduction & Motivation

Our approach: AMS-conflation
 Vector and imagery conflation (pre-qualifying research)
 Map and imagery conflation

 Finding control points in the imagery and in the maps
 Geospatial point pattern matching (GeoPPM)

- Geospatial point pattern matching (Georgin)
 Image and man conflation using rubbar chastic
- Image and map conflation using rubber-sheeting
- Experimental Results
- Related Work
- Conclusion and Future Work

Experimental Setup: Test Data Sets

	Test area 1	Test area 2
Imagery	Geo-referenced USGS black-white orthoimagery (1 meter/pixel)	Geo-referenced USGS color orthoimagery (0.3 meter/pixel)
Maps	5 maps for each map service: <u>ESRI</u> , MapQuest, Yahoo, <u>TIGER</u> , USGS topographic maps	5 maps for each map service: <u>ESRI</u> , MapQuest, Yahoo, <u>TIGER</u> , USGS topographic maps
Vector Data	TIGER/Lines	MO-DOT
Area covered	Partial area of City of El Segundo, CA (total road length is about 84.32km)	Partial area of St.Louis, MO (total road length is about 364.28km)

Experimental Setup: Some Sample Images (50 maps in total)

Results

Evaluation: The performance of GeoPPM

- Definition:
 - Pattern_{rel} : The relevant point pattern (and there are X matched points)
 - Pattern_{ret} : The retrieved point pattern by GeoPPM (and there are y matched points)
 - ✓ Let set C = Pattern_{rel} ∩ Pattern_{ret} (and there are Z matched points)
 - Precision = Z / Y; Recall = Z / X

Pattern_{rel}

Pattern

Evaluation: The performance of GeoPPM in Precision/Recall

	ESRI map	MapQuest map	Yahoo map	TIGER map	Topographic map
Precision	96.0%	95.2%	94.0%	84.2%	93.9%
Recall	80.2%	84.8%	88.3%	75.6%	80.94%

				Precision	Recall
	Test data set 1	Test data set 2			
	(El Segundo, CA)	(St. Louis, MO)	Res≤2m/pixel (38%)	87.4%	78.2%
Precision	91.9%	93.4%	2 < Res ≤ 4 (18%)	92.9%	84.0%
Recall	84.6%	77.4%	4 < Res < 7(33%)	96.4%	88.6%
			Res > 7 (13%)	91.6%	77.1%

Evaluation: The performance of GeoPPM

One of our 50 tested maps where the intersection point set is not accurately aligned with the corresponding point pattern on the image

- 13 points TIGER map (resolution: 1.85m/pixel)
- 13 matched points in relevant point pattern
- 10 matched points in the retrieved pattern

Evaluation: The running time of GeoPPM

- Platform: Windows 2000; CPU Xeon 1.8GHz with 1GMB memory
- Test on a Yahoo map with 57 points with varying number of image points

57 map points

	Brute force algorithm	Using map scale only	Using map scale and road directions	Using road directions	Using HiGrid and road directions
402 imagery points	5 hours 58 minutes	171 seconds	16 seconds	503 seconds	11 seconds
591 imagery points	N/A	317 seconds	26 seconds	1049 seconds	17 seconds
800 imagery points	N/A	540 seconds	42 seconds	2449 seconds	26 seconds
1059 imagery points	N/A	934 seconds	70 seconds	5298 seconds	38 seconds

Evaluation: The performance of overall map-imagery conflation

Evaluation

Lat / Lo The conflated map roads v.s. 2 the corresponding roads in the imagery Use TIGER maps for evaluation • TIGER maps are georeferenced • Roads on TIGER maps can be "vectorized" (or represented) by TIGER/Lines vector data Compare conflated map roads with <u>reference roads</u> (manually plotted roads) Completeness/ Correctness /Positional Accuracy Imagery Vector Data

AMS-conflation

Original

TIGER map

Evaluation results

Reference roads

roads

Lat / Long

Evaluation: The performance of overall map-imagery conflation

Completeness/Correctness

Positional Accuracy

Outline

Introduction & Motivation

Our approach: AMS-conflation
 Vector and imagery conflation (pre-qualifying research)
 Map and imagery conflation

 Finding control points in the imagery and in the maps
 Geospatial point pattern matching (GeoPPM)
 Image and map conflation using rubber-sheeting

- Experimental Results
- Related Work
- Conclusion and Future Work

Related Work

- <u>Vector to vector</u> conflation based on corresponding features identified from both vector datasets (in GIS domain)
 - Walter et al. 99]: Matching features (e.g. intersection points or polygons) at geometry level
 - [Cobb et al. 98]: Matching features both at spatial/non-spatial level
- Vector to imagery conflation
 - Utilizing matched polygons [Hild et al. 98]
 - Utilizing matched <u>lines</u> [Filin et al. 00]
 - Utilizing matched junction-points [Flavie et al. 00]
 - All above solutions
 - Require lots of CPU time
 - Utilize vector data only for verifying detected features not for extracting features

Related Work

Raster to raster conflation:

- To the best of our knowledge, there is no research addressing the problem of automatic conflation of maps and imagery
- Related work of imagery-imagery conflation
 - Sato et al. [Sato 01] proposed an edge detection process was used to determine a set of features that can be used to conflate two image data sets
 - Their work requires that the coordinates of both image data sets be known
 - Dare et al. [Dare 00] proposed multiple feature extraction and matching techniques
 - Need to manually select some initial control points
 - Seedahmed et al. [Seedahmed 02] proposed an approach extract features from imagery by Moravec feature detector and obtain transformation parameters by investigating the strongest clusters in the parameter space
 - Require lots of CPU time
 - Commercial products: Able R2V and Intergraph I/RASC
 - Need to manually select all control points

Conclusion

Our contributions : AMS-Conflation

Automatic Vector to Imagery Conflation

- Vector to Black-White Imagery Alignment [sstd'03]
- Vector to Color (High-resolution) Imagery Alignment [stdbm'04] [GeoInformatica'05 ?]

Automatic Map to Imagery Conflation [ng2i'03a] [acm-gis'04] [Transactions in GIS ?]

Applications

- Vector-imagery and map-imagery conflation web services
- Building Finder: A System to Automatically Annotate Buildings in Satellite Imagery [ng2i'03b]

Future Work

Improvements of AMS-Conflation

- Vector-Imagery conflation: Devising an automatic approach to decide whether new training for road classification is needed for a given image
- Map-Imagery conflation: Utilizing extracted text from maps

Generalization of AMS-Conflation to deal with other geospatial datasets

- Point to map conflation
- Elevation data conflation

Future Work

Point to map conflation: Integration of gepspatial point data with maps

apinumber	STATUS	OPERATOR	LEASE	WELLNO_	SEC	map	RNG	TWN	LATITUDE	LONGITUDE
11102789	004	Wasibi Oil Co	Well No.	В	34	207	19W	05N	34.497765000000001	-118.856876
11106431	014	Arizona Oil Company	Well No.	1	13	207	20W	04N	34.4 <mark>/</mark> 1190999999998	-118.92027899999
11106042	006	Texaco E & P Inc	Standrad-Arundell	1	17	207	19W	04N	34.4 <mark>29599000000003</mark>	-118.885361
11106013	006	Jahn's Oil Company	Goodenough	1	18	207	19W	04N	34.42944	-118.918792
11106004	006	C. W. Colgrove	Bursin	46-18	18	207	19W	04N	34.424782999999998	-118.912588

Elevation data conflation: Integration of low resolution elevation data (e.g., USGS DEM) with higher resolution elevation data (e.g., contour lines) by matching highest/lowest points
 Commercialization of AMS-Conflation
 GeoSemble Tech.: http://www.geosemble.com/