Classification of Raster Maps for Automatic Feature Extraction

I

Yao-Yi Chiang and Craig A. Knoblock

University of Southern California

Motivation

- Raster map is a bitmap image of a map
- Raster maps are easily accessible
 - Contain information that is difficult to find elsewhere
 - Contain historical data

Exploit the geospatial information in raster maps

Roads

Extracting geographic features from raster maps

Road Extraction

Original map

- Text Extraction and Recognition
- Building Extraction
 ...
 ...
 Buxton Street Buxton Street Cost Buxton Street

rincelete Street

Pre-Processing for feature extraction

Much of the feature extraction work relies on user input to extract the foreground pixels from the maps as a preprocessing step

Automatic determine an applicable map profile

Can we automatically select a map profile for new input map?

New map

Map repository

Automatic feature extraction with map classification

We can eliminate the manual pre-processing task using the map classification component

Can we use meta-data to determine a map profile?

- Meta-data such as map source, is not always available
- Maps from the same source can be very different
 - Two USGS topographic maps covering two different cities

Content-based Image Retrieval (CBIR)

- CBIR is the technique to find images with similar 'content'
 - Content similarity defined by the comparison features
- In our case, similar content means two raster maps shared the same map profile for extracting their foreground pixels
 - Comparison feature Luminance-Boundary Histogram
 - Classifier Nearest-Neighbor Classifier

Luminance or Color

- Luminance is chosen instead of using one or all of the Red, Green, and Blue components
 - One-dimensional features is more computational efficient
 - Luminance is the most representative component by design

Luminance-Boundary Histogram (LBH)

- LBH captures the spatial relationships between neighboring luminance levels in the map
- The two example maps have similar spatial relationship between their luminance levels

High/Low Luminance-Boundary Histogram

 A set of LBH contain a High Luminance-Boundary Histogram (HLBH) and a Low Luminance-Boundary Histogram (LLBH)

How to generate the HLBH and LLBH?

highlighted level

Nearest-Neighbor Classification

Use LI Distance to compare two sets of LBH

$$L_1 = \sum_{i=0}^{255} |HLBH1_i - HLBH2_i| + |LLBH1_i - LLBH2_i|$$

• A smaller distance indicates that the spatial relationships between luminance levels in one map are similar to the ones in the other map

| |2

Experiments

- Compare luminance-boundary histogram with
 - Color Histogram (CH):
 - Record the number of pixels of each color in a given color space
 - Color Moments (CM):
 - Based on statistical analysis of CH, i.e., average, standard deviation, and skewness
 - Color-Coherence Vectors (CCV):
 - Similar to CH, and further incorporates sizes of color regions into CH

Two types of experiment:

- Image retrieval queries
 - Evaluate the robustness of test features
- Map classification tasks
 - Simulate a map classification component in a map feature extraction system

Test Data

- 60 test maps from 11 different sources
- Manually separated test maps into 12 class based on their luminance usage
- Insert the test maps to a map repository contained 1,495 raster maps

<u> </u>				
Map Source	Map	Map	Intensity	
-	Type	Counts	Interval	
Google Maps	Digital	5	0–230	
Live Maps	Digital	5	0-225	
Yahoo Maps	Digital	5	0-200	
MapQuest Maps	Digital	5	0-220	
USGS topographic maps	Scanned	5	0–36	Map Profiles
USGS topographic maps	Scanned	5	0–184	
Rand McNally	Digital	5	0–190	
Map24	Digital	5	0 - 215	
TIGER/Line	Digital	5	0-110	
OpenStreetMap	Digital	5	0–238	
Streetmap.co.uk	Digital	5	$0\!-\!175$	
ViaMichelin	Digital	5	0-234	
	•	· · · · · ·		

Experiments on Image Retrieval

Test on Robustness

- Remove a test class from the repository, such as a class of five test maps from Google Maps, namely GI, G2, G3, G4, and G5.
- Insert one test map, say GI, into the repository (there is only one correct answer for each query in the repository)
- Use G2 as the query image
- Record the rank of GI in the returned query results
- Next, we used G3, G4, and G5 in turn as the query image
- Remove GI from the repository, insert G2, and repeat the experiments

Feature	Average Ranks	σ
LBH	5.95	24.15
Color-Coherence Vectors	15	52.14
Color Histogram	28.17	116.85
Color Moments	232.87	239.52

Image Retrieval Sample Results

| |6

Experiments on Simulating Map Classification

- Simulate a real map classification task
- Example:
 - Remove one test map, such as GI, to query the repository (i.e., GI represents a new input map and there are 4 correct answers)
 - If the first returned map was G2, G3, G4, or G5, then we had a correct classification
 - The accuracy is defined as the number of successful classifications divided by the total number of tested classifications

Feature	Accuracy
Luminance-Boundary Histogram	95%
Color-Coherence Vectors	86.67%
Color Histogram	88.33%
Color Moments	13.33%

Computation time on feature generation

- We implemented our experiments using Microsoft .Net running on a Microsoft Windows 2003 Server powered by a 3.2 GHz Intel Pentium 4 CPU with 4GB RAM
- Compare the top two features in the experiments
 - With 1,949 images
 - 428 seconds to generate the luminance-boundary histograms
 - 805 seconds to generate color-coherence vectors
 - The smallest test image in pixels is 130-by-350 and the largest image is 3000-by-2422

Related Work

Map Classification using Meta-data (Gelernter, 09)

- Answer queries such as finding the historical raster maps of a specific region for a specific year
- Image Comparison Features
 - **Shape**:
 - Histogram of oriented gradient HoG (Dalal and Triggs, 05) for human detection
 - Texture:
 - Tamura texture features (Tamura et al., 78), Gabor wavelet transform features (Manjunath and Ma, 96)
 - Represent the overall texture of an image does not fit our goal
 - Color:
 - Color Histogram and Color Moments (Stricker and Orengo, 95) do not generate robust results
 - Color-Coherence Vectors (Pass et al., 96) requires threshold tuning

Discussion and Future Work

- Achieve 95% accuracy on map classification task
- Make it possible to extract geographic features (e.g., roads and text) automatically on new input maps
- LBH generation is efficient
- Future Work
 - Test with modern classifiers (e.g., SVM) or off-the-shelf content-based image retrieval (CBIR) systems
 - Integrate with our current system of map feature extraction

Normalized HLBH and LLBH (Cont'd)

High Luminance-Boundary Histogram

21

High/Low luminance-boundary histogram

- High/Low luminance-boundary histogram (HLBH/LLBH)
 - > X-axis represents the luminance spectrum
 - Y-axis represents the the comparative importance of the luminance level in a raster map
 - A highlighted luminance level is surrounded by luminance levels that have high contrast against the highlighted level
- Luminance-boundary value
 - The luminous differences between adjacent luminance levels
 - HLBH value
 - A higher boundary in the grayscale histogram that separates the luminance level from its adjacent luminance levels in the raster map
 - LLBH value indicates a lower boundary

Content-based Image Retrieval (CBIR)

- Find images with similar 'content'
- Content similarity defined by the comparison features
- Shape features

CBIR Cont'd

Texture features

 Represent visual patterns in images and their spatial relationship (how they are defined spatially)

The Near-regular Texture Database from Penn Stats Univ.

CBIR Cont'd

25

Extracting features from raster maps

Aligning raster maps with other geospatial data

Labeling other geospatial data with map features

Creating map context, e.g., georeferenced road names

High/Low luminance-boundary histogram

- High/Low luminance-boundary histogram (HLBH/LLBH)
 - X-axis represents the luminance spectrum
 - Y-axis represents the the comparative importance of the luminance level in a raster map
 - A highlighted luminance level is surrounded by luminance levels that have high contrast against the highlighted level

LBH Values

0	0	64	128	255	255	255	255
64	e	64	1	28	255		255
128						2	
255		0		54			255
255		0		0		64	
255	255	255 Luminance Levels					

Х	128	255
Х	64	128
Х	Х	х

Low Luminance-Boundary value

The greatest lower bound among the surrounding luminance levels

High Luminance-Boundary value

The least upper bound among the surrounding luminance levels

Normalized HLBH and LLBH

The comparative importance of the luminance level in a raster map

Normalized high luminance-boundary value:

$$\textit{nHLBValue}_i = \textit{HLBValue}_i / \sum_{i=0}^{255} \textit{HLBValue}_i$$

Normalized low luminance-boundary value:

$$\textit{nLLBValue}_i = \textit{LLBValue}_i / \sum_{i=0}^{255} \textit{LLBValue}_i$$

Nearest-Neighbor Classification

- Feature: HLBH and LLBH
- LI Distance:

$$L_1 = \sum_{i=0}^{255} |HLBH1_i - HLBH2_i| + |LLBH1_i - LLBH2_i|$$

 A smaller distance indicates that the spatial relationships between luminance levels in one map are similar to the ones in the other map

Reuse trained map profile

31