Harvesting Geographic Features from Heterogeneous Raster Maps Yao-Yi Chiang

Ph.D. Defense Sept. 8th, 2010

Motivation

Raster maps are a rich source of geospatial information:

- Easily accessible
- Many different types of information
- Often contains information that cannot be found elsewhere

Challenges

> It is difficult to unlock the geospatial information in raster maps:

- There is limited access to the meta-data
- They have overlapping features
- They often have poor image quality
- Previous work is typically limited to a specific type of map and often relies on intensive manual work

Abu Bakr Al Şadiq

2

Harvesting Geographic Features From Heterogeneous Raster Maps

Contributions

Summary
 Automatically extract road and text layers
 Automatically extract road intersections, connectivity, and road orientations
 Extract road layers from poor quality maps Automatically generate and vectorize road geometry from road layer
 Extract text layers from poor quality maps Automatically recognize text labels in text layers

Outline

Techniques	Summary
Automatic Map Decomposition	 Automatically extract road and text layers
Automatic Road-Intersection Detection for Map Alignment	 Automatically extract road intersections, connectivity, and road orientations
Road Vectorization	 Extract road layers from poor quality maps Automatically generate and vectorize road geometry from road layer
Text Recognition	 Extract text layers from poor quality maps Automatically recognize text labels in text layers

First Contribution

Remove Raster Map Background

- Locate individual luminosity clusters (the triangle method, Zack et al., 77)
- Identify background clusters
 - Background has a dominant number of pixels
 - Foreground has high contrast against the background

First Contribution: Automatic Map Decomposition

Text/Graphics Separation

Separate linear structures from text (Cao and Tan, 02)

First Contribution: Automatic Map Decomposition

Outline

Techniques	Summary
Automatic Map Decomposition	Automatically extract road and text layers
Automatic Road-Intersection Detection for Map Alignment	 Automatically extract road intersections, connectivity, and road orientations
Road Vectorization	 Extract road layers from poor quality maps Automatically generate and vectorize road geometry from road layer
Text Recognition	 Extract text layers from poor quality maps Automatically recognize text labels in text layers

Road-Layer Format

Detect the road format for generating road geometry

- The double-line roads usually used in the maps where linear objects that are not roads exist, such as the contour lines
- Merge the parallel lines in a double-line map and remove single-line objects

Applying Parallel-Pattern Detection Varying Road Width

Remove Single-line Linear Objects

Extract Road Geometry

Use morphological operations to reconnect broken lines and generate one-pixel width roads

Detect Road-Intersection Positions

Experimental Results

- Tested 87 maps from 12 sources
- Successfully decomposed the test maps automatically
- For intersection detection, average precision: 95% recall: 75%
 - Support the map alignment for a conflation system by Chen et al. 2008

Map Source	Map Count	Precision	Recall	F-Measure	
ESRI Maps	10	93%	71%	81%	
MapQuest Maps	9	98%	66%	79%	
TIGER/Line Maps	9	97%	84%	90%	
Yahoo Maps	10	95%	76%	84%	
A9 Maps	5	100%	93%	97%	
MSN Maps	5	97%	88%	92%	
Google Maps	5	98%	86%	91%	
Map24 Maps	5	100%	82%	90%	
ViaMichelin Maps	5	100%	98%	99%	
Multimap Maps	5	98%	85%	91%	
USGS topographic maps	10	82%	60%	69%	
Thomas-Brothers Maps	2	98%	65%	79%	

Outline

Techniques	Summary
Automatic Map Decomposition	Automatically extract road and text layers
Automatic Road-Intersection Detection for Map Alignment	 Automatically extract road intersections, connectivity, and road orientations
Road Vectorization	 Extract road layers from poor quality maps Automatically generate and vectorize road geometry from road layer
Text Recognition	 Extract text layers from poor quality maps Automatically recognize text labels in text layers
15	Third Contribution

Supervised Extraction of Road Layers

- What if we cannot automatically remove the background from raster maps?
- Raster maps may contain noise from scanning and compression process

Third Contribution: Road Vectorization

Numerous Colors in Scanned Maps

Third Contribution: Road Vectorization

Color Segmentation by Analyzing Color Space

- Analyze only color space for color segmentation does not work for feature extraction purpose
 - Colors of individual features do not merge

Color Segmentation with Spatial Information

The Mean-shift algorithm

- Consider distance in the color space and in image space
- Preserve object edges
- Reduce the colors by 50%

The K-means algorithm

- Limit the number of colors to K
- From 155,299 to 10 colors (K=10)

Third Contribution: Road Vectorization

User Labeling

• To extract the road layer, the user needs to provide a user label for each road color (at most K colors)

User label should be (approximately) centered at a road intersection or at the center of a road line

Third Contribution: Road Vectorization

Label Decomposition

Decompose each user label into color images so that every color image contains only one color

(background is shown in black)

Hough-Line Approach to Identify Road Color

- Detect Hough lines
- The center of the user label is the center of a road line
 - The Hough lines that are away from the image center are NOT constructed by road pixels
- Identify road colors using
 - The average distance between the Hough lines to the image center

Red Hough lines are within 5 pixels to the image center

Third Contribution: Road Vectorization

Extract the Road Layer

Identify a set of road colors from each user label

Use the identified road colors to extract road pixels

Third Contribution: Road Vectorization

Outline

Techniques	Summary
Automatic Map Decomposition	Automatically extract road and text layers
Automatic Road-Intersection Detection for Map Alignment	 Automatically extract road intersections, connectivity, and road orientations
Road Vectorization	 Extract road layers from poor quality maps Automatically generate and vectorize road geometry from road layer
Text Recognition	 Extract text layers from poor quality maps Automatically recognize text labels in text layers

Extract Road Geometry

 Use the morphological operators as in the automatic map decomposition technique to generate road geometry

Third Contribution: Road Vectorization

Distortion Correction

Accurate Road-Intersection Templates

Third Contribution: Road Vectorization

Road Vectorization

- Trace road geometry outside the distortion areas (gray boxes)
- Use the accurate road-intersection template to replace the road geometry inside the distortion areas

Experiments

- Implemented the road vectorization techniques in a system called Strabo
- Tested Strabo on 16 maps from 11 sources (4 scanned and 11 computer-generated maps)
- Tested a map digitizing product called R2V from Able Software for comparison

Experiments (Cont'd)

- For the 6 maps that need user labeling, Strabo extracted 6 road layers using 34 user labels (avg. 5.56)
- Strabo generated high quality road vector data with low redundancy, and with considerably less user input

-	Comp.	Corr.	Quality	Redundancy	RMS
Avg. (Strabo)	96.53%	97.61%	94.41%	0.19%	2.79
Avg. (R2V)	94.90%	87.41%	79.73%	42.81%	16.12

Third Contribution: Road Vectorization

Example Results

Third Contribution: Road Vectorization

Example Results (Cont'd)

Third Contribution: Road Vectorization

Outline

Techniques	Summary
Automatic Map Decomposition	Automatically extract road and text layers
Automatic Road-Intersection Detection for Map Alignment	 Automatically extract road intersections, connectivity, and road orientations
Road Vectorization	 Extract text layers from poor quality maps Automatically generate and vectorize road geometry from road layer
Text Recognition	 Extract text layers from poor quality maps Automatically recognize text labels in text layers

Supervised Extraction of Text Layers

- Use color segmentation to reduce the number of colors
- User provides examples of text areas for identifying text colors

Run Length Smoothing Algorithm (RLSA)

- Apply Run Length Smoothing algorithm (RLSA) on user labels to identify text colors
- A RLSA example using a 5x1-pixel window

Determine Text Colors

- Decompose a user label into images, each of the images contains one color
- Apply Run Length Smoothing algorithm (RLSA) to identify text colors

Fourth Contribution: Text Recognition

Fourth Contribution: Text Recognition

Outline

Techniques	Summary
Automatic Map Decomposition	Automatically extract road and text layers
Automatic Road-Intersection Detection for Map Alignment	 Automatically extract road intersections, connectivity, and road orientations
Road Vectorization	 Extract text layers from poor quality maps Automatically generate and vectorize road geometry from road layer
Text Recognition	 Extract text layers from poor quality maps Automatically recognize text labels in text layers

Text Recognition from Identified Text Layers

Identify Individual Strings

Conditional Dilation Algorithm:

- Expand the foreground area of the connected components (i.e., characters) when certain conditions meet
- To determine the connectivity between the characters

Conditions:

- A character can only connect to at most two other characters
- Two characters can be connected only if they have a similar size
- A character can only connect to characters in a local area
- Two strings can only be connected if they have a similar orientation

Conditional Dilation Results

Fourth Contribution: Text Recognition

Detect String Orientation

- Rotate a string from 0° to 180°
- Apply Run Length Smoothing algorithm

Recognize Characters in the Horizontal Text Strings

- Feed the horizontal text strings to a commercial OCR product
- Use the OCR returned confidence to determine the correctly oriented horizontal string
 - Number of suspicious characters
 - Number of recognized characters

Fourth Contribution: Text Recognition

Experiments

- Tested on 15 maps from 10 sources
- Tested the 15 test maps using an OCR product called ABBYY FineReader alone for comparison

Fourth Contribution: Text Recognition

Experiments (Cont'd)

- Strabo extracted 22 text layers using 74 user labels (avg. 3.36)
- Strabo extracted 6,708 characters and 1,383 words
- ABBYY FineReader extracted 2,956 characters and 655 words

	Char. P.	Char. R.	Char. F.	Word P.	Word R.	Word F.
Avg. (Strabo)	92.77%	87.99%	90.32%	82.07%	77.58%	79.76%
Avg. (ABBYY)	71.99%	30.09%	42.44%	46.11%	20.64%	28.52%

Related Work

Separation of Feature Layers form Raster Maps

 Do not further recognize features from the separated layers (Podlasov and Ageenko, 05; Leyk and Boesch, 10; Henderson et al., 09; Lacroix, 09)

Recognition of Features in Raster Maps

- Require intensive user interaction (Leberl and Olson, 82; Suzuki and Yamada, 90; MapScan, 98)
- Rely on prior knowledge (Cofer and Tou, 72; Samet and Soffer, 96; Myers et al., 96)
- Develop recognition rules for a specific type of map (Dhar and Chanda, 06; Kerle and de Leeuw, 09)

Extraction of Contour Lines

 Laborious training process (Khotanzad and Zink, 03; Salvatore and Guitton, 04; Chen et al., 06)

Related Work

Road Vectorization

- Work on one type of map, e.g., computer-generated maps (Cao and Tan, 02; Li et al., 00; Bin and Cheong, 98; Habib et al., 99; Henderson et al., 09; Itonaga et al., 03)
- Intensive manual process (Itonaga et al., 03, R2V, 10)

Text Recognition

- Work on one type of map (Fletcher and Kasturi,88; Bixler, 2000; Chen and Wang, 97)
- Require training for each input map (Adam et al., 00; Deseilligny et al., 95; Pezeshk and Tutwiler, 10)
- Require manual processing to prepare each string for OCR (Cao and Tan, 02; Li et al., 00; Pouderoux et al., 07; Vel azquez and Levachkine, 04, ABBYY FineReader, 10)
- Require additional knowledge of the input map (Gelbukh et al., 04; Myers et al., 96)

Publications

First and Second Contributions:

- Automatic Map Decomposition and Road-Intersection
 Template Extraction
 - ACM-GIS 05, ACM-GIS 08, and GeoInformatica 08
- Third Contribution:
 - Road Vectorization
 - ICDAR 09, GREC (LNCS) 09, and ACM-GIS 10
- Forth Contribution:
 - Text Recognition
 - ICPR 10

Conclusion: Contributions

- A general approach to exploit the information in heterogeneous raster maps by:
 - Decomposing the maps into feature layers
 - Recognizing features from the layers
 - Aligning the raster maps, extracted layers, and recognized features to other geospatial data
- Support map alignment
- Not limited to a specific type of map
 - Handle raster maps with varying map complexity, color usage, and image quality
- Require minimal user input
- Outperform state-of-art commercial products with considerably less user input

Conclusion: Future Work

- Automatically improve the feature recognition results
 - Automatic post-processing of road vector data
 - Exploit the identified map scale
 - Help the OCR component with additional knowledge of the map region
 - Exploit the identified map geocoordinates
- Research extensions:
 - Recognize languages other than English?
 - Infer the relationship between the extracted geographic features