Integrating Color Image Segmentation and User Labeling for Efficient and Robust Graphics Recognition from Historical Maps

Summary: the integration of a Color Image Segmentation (CIS) step with an interactive road-layer extraction process that consists of an image cleaning and a vectorization step.

User input: number of color layers

Historic USGS Topographic Maps

National map series
 (1895-1945): buildings,
 roads, railways, elevation,
 hydro, wetlands, text

 Imperfect quality of scans of archived paper products

Map objects in different colors

Color Image Segmentation

Determining initial color seeds using global color layer prototypes

Identifying homogeneous regions (plane) of different color layers

Prototype adjustment: Local color sampling along margins of homogeneous areas

Final segmentation using constrained region growing and connectivity tests

CIS Results in Low-Quality Maps

- Successful and robust separation of color layers
- Only input parameters: map layer color extremes (Red: 255,0,0 in RGB color space)
- <u>Limitations</u>: Remaining merging effects (dense elevation contours and roads), and mixed colors at intersections
- <u>Rigid performance test</u>: "Raw and unrepaired" segmentation as input to cleaning and the road vectorization

Interactive Cleaning

Input for the cleaning process

Large noise objects i.e., thicker than road lines

Erosion operator to remove most road pixels

User provides examples of remaining road pixels

Interactive Cleaning (Cont'd)

