

Guided Generative Models using Weak Supervision for Detecting Object Spatial Arrangement in Overhead Images

Presenter: Weiwei Duan

University of Southern California

Spatial Arrangement

- The location of a group of desired objects
- E.g., most of cars are parked in the northside of the parking lot

Motivation

• Leverage the Region-of-interest to obtain coarse but useful results

Coarse but Useful

- Crowd surveillance for disease monitoring
 - When was covid-19 active in China [1]

[1] Nsoesie, Elaine Okanyene, et al. "Analysis of hospital traffic and search engine data in Wuhan China indicates early disease activity in the Fall of 2019." (2020).

- Changes detection for geospatial features
 - Wetland changes in topographic maps

Problem Statement

- Detect the **approximate locations** of a group of target objects in a region-of-interest (**ROI**) in overhead images
- Manual work: label one or a few target sample(s)

Inputs

The weak annotation (obtained from external datasets Or manual labeling)

Challenges

- No sufficient labeled samples to cover the diversity of targets
- No labeled samples for non-target objects

V.S.

Labeled target

Unlabeled targets

Non-targets in the region

	Labeled targets	Labeled non-targets	Results accuracy	
Unsupervised [2,3]			Low	
Semi-supervised [4]				[2]
Our model				[4]

[2] Yang et al., 2019
[3] Jiang et al., 2016
[4] Zhang et al., 2019

	Labeled targets	Labeled non-targets	Results accuracy	
Unsupervised [2,3]			Low	
Semi-supervised [4]				[2]
Our model				[4]

[2] Yang et al., 2019
[3] Jiang et al., 2016
[4] Zhang et al., 2019

	Labeled targets	Labeled non-targets	Results accuracy	
Unsupervised [2,3]			Low	
Semi-supervised [4]		🜩 (FI) 🚓	High	[2] Yang et al., 2019
Our model			High	[3] Jiang et al., 2016 [4] Zhang et al., 2019

- Variational Auto-encoder (VAE), generative models
 - Learning representation distribution, z

- Variational Auto-encoder (VAE)
 - Learning representation distribution, z

- Variational Auto-encoder (VAE)
 - Learning representation distribution, z

- Variational Auto-encoder (VAE)
 - Learning representation distribution, z

Feature representations from VAE

- Variational Auto-encoder (VAE)
 - Learning representation distribution, z

15

Non-target images

Solution to No Labeled Non-target Images

- The ROI have strong semantic relationship with the target objects
 The parking lots and cars
- The non-target objects in the region-level annotations are similar
- Limited variations of non-target objects
- Efficiently classify images into the target and non-target categories

Clear images: labeled or classified target images Blurred images: unlabeled images

Notation Definitions for TGGM

Notation	Description
x_l	A labeled image covering the target object(s)
x _u	An unlabeled image (target or non-target image)
Ζ	A continuous variable in the hidden space
у	a categorical variable representing an image's label $y = \{y_1, y_2\}$ y_1 for target category and y_2 for non-target category

Labeled Target Images x_l

- Two learning goals
 - Output (\hat{x}) is similar to the input image (x)
 - The feature distribution is for target images

Labeled Target Images x_l

Unlabeled Images x_u (including target and non-target images)

Labeled Target Images x_l

Unlabeled Images x_u (including target and non-target images)

Labeled Target Images x_l

 x_1 $x_n y_1$ χ_2 x_n y_1 y_1 x_1 x_2 . . . $x_1 \quad x_2$ y_1 $x_n y_2$ x_n y_2 *x*₁ x_2 $p_{\theta_1}(z|y_1)$ $q_{\phi_1}(z|x, y_1)$ Posterior distribution $q_{\phi_1}(z|x,y_1)$ $p_{\theta_1}(z|y_i)$ y_2 $q_{\phi_2}(y_i|x)$ Target prior Target/Non-target Classifier distribution prior distribution $\widehat{x_n}$ $\widehat{x_2}$. . . $\times q_{\phi_2}(y_1|x)$ $\times q_{\phi_2}(y_2|x)$ $\widehat{x_n}$ $\widehat{x_1}$ $\widehat{x_2}$ $\widehat{\chi_1}$ $\widehat{x_n}$ $\widehat{\chi_2}$ $MSE(x_{l}, \hat{x_{l}}) - KL(q(z|x_{l}, y_{1})||p(z|y_{1})) \\ Loss(x_{u}) \neq q(y_{1}|x_{u}) * [MSE(x_{u}, \hat{x_{u1}}) - KL(q(z|x_{u}, y_{1})||p(z|y_{1}))]$ $Loss(x_t) =$ $q(y_2|x_u) * \left[MSE(x_u, \widehat{x_{u2}}) - KL(q(z|x_u, y_2)||p(z|y_2)) \right]$ Reconstruction Distribution error error $-KL[(q(y|x_u)||p(y))]$

Unlabeled Images x_{μ} (including target and non-target images)

Labeled Target Images x_1

Unlabeled Images x_{μ} (including target and non-target images) x_1 $x_n y_1$ x_2 x_n y_1 y_1 x_1 . . . $x_1 \mid x_2$ y_1 $x_n y_2$ x_n y_2 *x*₁ x_2 $p_{\theta_1}(z|y_1)$ $q_{\phi_1}(z|x, y_1)$ Posterior distribution $q_{\phi_1}(z|x,y_1)$ $p_{\theta_1}(z|y_i)$ y_2 $q_{\phi_2}(y_i|x)$ Target prior Target/Non-target Classifier distribution prior distribution $\widehat{x_n}$ $\widehat{\chi_2}$. . . $\times q_{\phi_2}(y_1|x)$ $\times q_{\phi_2}(y_2|x)$ $\widehat{x_n}$ $\widehat{x_2}$ $\widehat{x_1}$ $\widehat{x_1}$ $\widehat{x_n}$ $\widehat{\chi_2}$ $MSE(x_{l}, \widehat{x_{l}}) - KL(q(z|x_{l}, y_{1})||p(z|y_{1})) Loss(x_{u}) = q(y_{1}|x_{u}) * \left[MSE(x_{u}, \widehat{x_{u1}}) - KL(q(z|x_{u}, y_{1})||p(z|y_{1}))\right]$ $Loss(x_t) =$ $q(y_2|x_u) * [MSE(x_u, \widehat{x_{u2}}) - KL(q(z|x_u, y_2)||p(z|y_2))]$ Reconstruction Distribution distance error $-KL[(q(y|x_u)||p(y))]$

Experiment Data

- Satellite imagery
 - Cars Overhead With Context (COWC)
 - Cars and airplanes in xView
 - Ships and airplanes in DIOR
- Topographic maps
 - Wetland areas in USGS topographic maps

Experiment Settings

Model	Category	Labeled targets	Labeled non- targets	Datasets
TGGM	Weak-supervised	Aug 👘		C, D, U, X
dualAE [2]	Unsupervised			C, D, U, X
VaDE [3]	Unsupervised			C, D, U, X
AVAE [4]	Semi-supervised	40% 🕣	40% ╇ [P] .	C, D, U, X
Yolov3 [5]	supervised	50%	50% 🐥 [P] .	D

[2] Yang et al., 2019
[3] Jiang et al., 2016
[4] Zhang et al., 2019
[5] Redmon et al., 2018

- Aug : augmented labeled target windows
- C, D, U, X : COWC, DIOR, USGS, xView datasets

Evaluation Metrics

Model	Category	Labeled targets	Labeled non- targets	Datasets	
TGGM	Weak-supervised	Aug 🕣		C, D, U, X	
dualAE	Unsupervised			C, D, U, X	
VaDE	Unsupervised			C, D, U, X	[2] Vang et al 2019
AVAE	Semi-supervised	40% 🖝	40% 🔷 [P] .	C, D, U, X	[3] Jiang et al., 2016
Yolov3	supervised	50%	50% 🐥 📭	D	[4] Zhang et al., 2019 [5] Redmon et al., 2018

- First group of experiments
- Evaluate the spatial arrangement estimation
- Precision, recall and F₁ score at the grid-cell level
- Second group of experiments
- Compare with the supervised object detector
- mean Average Precision (mAP)

The Grid-cell Level Evaluation

• Slice an image into grid cells (red)

Grid-cell level Evaluation

- Slice an image into grid cells (red)
- True positive grid cells: intersection(grid, bbx) >=0.5
- Otherwise, the grid cells are true negative

Experiment Results

compared with unsupervised and semi-supervised baselines

- TGGM outperformed the unsupervised generative clustering models, i.e., dualAE and VaDE
- TGGM's performance is similar to the semisupervised generative model, i.e., AVAE

True positive grid cells

False positive

grid cells

Experiment Results

compared with supervised object detector, Yolov3

- For airplanes, TGGM: 60.15% mAP, while Yolov3: 72.2%
- For ships, TGGM: 69.92% mAP, while Yolov3: 87.4%
- Reasons for the low mAP
 - The weak semantic relationship between ROI and the target objects
 - Multi-scaled target objects

True positive grid cells False positive grid cells

Airplanes

Ships

Ships

More Results Visualization

- When the ROI has strong semantic relationship with target objects
- The target objects' sizes are similar

Sensitivity Analysis

Grid-cell size for estimation

- Varied the grid-cell sizes
 - Grid-cell size \checkmark precision, recall and F_1
 - Accuracy of spatial arrangement estimation

Summary & Future Work

- TGGM estimate the **spatial arrangement** of target objects within **ROI**
- Target-guidance mechanism reduces the manual work to one or a few labeled target objects
- TGGM helps obtain **accurate** results
- Future work
 - apply to multi-scale target objects

Thank you!